nikhilchigali commited on
Commit
573c7d6
1 Parent(s): f12eda4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -0
README.md CHANGED
@@ -19,3 +19,47 @@ configs:
19
  - split: train
20
  path: data/train-*
21
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  - split: train
20
  path: data/train-*
21
  ---
22
+
23
+ # Dataset Card for "wikianswers_embeddings_768"
24
+ ## Dataset Summary
25
+ `nikhilchigali/wikianswers_embeddings_768` is a subset of the `embedding-data/WikiAnswers` ([Link](https://huggingface.co/datasets/embedding-data/WikiAnswers))
26
+ As opposed to the original dataset with 3,386,256 rows, this dataset contains only .13% of the total rows(sets). The sets of sentences have been unraveled into individual items with corresponding cluster IDs to identify sentences from the same set. Each Sentence has its associated cluster ID and embeddings of dimension 768.
27
+
28
+ ## Languages
29
+ English.
30
+
31
+ ## Dataset Structure
32
+ Each example in the dataset contains a sentence and its cluster id of other equivalent sentences. The sentences in the same cluster are paraphrases of each other. The embeddings for the dataset are created using the `all-distilroberta-v1` model.
33
+ ```
34
+ {"sentence": [sentence], "cluster": [cluster_id], "embedding_768": [embeddings]}
35
+ {"sentence": [sentence], "cluster": [cluster_id], "embedding_768": [embeddings]}
36
+ {"sentence": [sentence], "cluster": [cluster_id], "embedding_768": [embeddings]}
37
+ ...
38
+ {"sentence": [sentence], "cluster": [cluster_id], "embedding_768": [embeddings]}
39
+ ```
40
+ ### Usage Example
41
+ Install the 🤗 Datasets library with `pip install datasets` and load the dataset from the Hub with:
42
+
43
+ ```python
44
+ from datasets import load_dataset
45
+ dataset = load_dataset("nikhilchigali/wikianswers_embeddings_768")
46
+ ```
47
+
48
+ The dataset is loaded as a DatasetDict and has the format for N examples:
49
+
50
+ ```python
51
+ DatasetDict({
52
+ train: Dataset({
53
+ features: ['sentence', "cluster", "embedding_768"],
54
+ num_rows: N
55
+ })
56
+ })
57
+ ```
58
+
59
+ Review an example i with:
60
+ ```python
61
+ dataset["train"][i]
62
+ ```
63
+ ## Source Data
64
+ `embedding-data/WikiAnswers` on HuggingFace ([Link](https://huggingface.co/datasets/embedding-data/WikiAnswers))
65
+ ### Note: This dataset is for the owner's personal use and claims no rights whatsoever.