|
import csv |
|
import datasets |
|
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split |
|
|
|
|
|
|
|
_PROMPTS_URLS = { |
|
"dev": "original/audios_dev_metadata.csv", |
|
"test": "original/audios_test_metadata.csv", |
|
"train": "original/audios_train_metadata.csv", |
|
} |
|
|
|
_PROMPTS_FILTERED_URLS = { |
|
"dev": "filtered/audios_dev_metadata.csv", |
|
"test": "filtered/audios_test_metadata.csv", |
|
"train": "filtered/audios_train_metadata.csv", |
|
} |
|
|
|
_ARCHIVES = { |
|
"dev": "dev.tar.gz", |
|
"test": "test.tar.gz", |
|
"train": "train.tar.gz", |
|
} |
|
|
|
_PATH_TO_CLIPS = { |
|
"dev": "dev", |
|
"test": "test", |
|
"train": "train", |
|
} |
|
|
|
|
|
class NurcSPConfig(BuilderConfig): |
|
def __init__(self, prompts_type="original", **kwargs): |
|
super().__init__(**kwargs) |
|
self.prompts_type = prompts_type |
|
|
|
|
|
class NurcSPDataset(GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
NurcSPConfig(name="original", description="Original audio prompts", prompts_type="original"), |
|
NurcSPConfig(name="filtered", description="Filtered audio prompts", prompts_type="filtered"), |
|
] |
|
|
|
def _info(self): |
|
return DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"audio_name": datasets.Value("string"), |
|
"file_path": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"start_time": datasets.Value("string"), |
|
"end_time": datasets.Value("string"), |
|
"duration": datasets.Value("string"), |
|
"quality": datasets.Value("string"), |
|
"speech_genre": datasets.Value("string"), |
|
"speech_style": datasets.Value("string"), |
|
"variety": datasets.Value("string"), |
|
"accent": datasets.Value("string"), |
|
"sex": datasets.Value("string"), |
|
"age_range": datasets.Value("string"), |
|
"num_speakers": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
} |
|
) |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
prompts_urls = _PROMPTS_URLS |
|
|
|
if self.config.prompts_type == "filtered": |
|
prompts_urls = _PROMPTS_FILTERED_URLS |
|
|
|
prompts_path = dl_manager.download(prompts_urls) |
|
archive = dl_manager.download(_ARCHIVES) |
|
|
|
return [ |
|
SplitGenerator( |
|
name=Split.VALIDATION, |
|
gen_kwargs={ |
|
"prompts_path": prompts_path["dev"], |
|
"path_to_clips": _PATH_TO_CLIPS["dev"], |
|
"audio_files": dl_manager.iter_archive(archive["dev"]), |
|
} |
|
), |
|
SplitGenerator( |
|
name=Split.TEST, |
|
gen_kwargs={ |
|
"prompts_path": prompts_path["test"], |
|
"path_to_clips": _PATH_TO_CLIPS["test"], |
|
"audio_files": dl_manager.iter_archive(archive["test"]), |
|
} |
|
), |
|
SplitGenerator( |
|
name=Split.TRAIN, |
|
gen_kwargs={ |
|
"prompts_path": prompts_path["train"], |
|
"path_to_clips": _PATH_TO_CLIPS["train"], |
|
"audio_files": dl_manager.iter_archive(archive["train"]), |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, prompts_path, path_to_clips, audio_files): |
|
examples = {} |
|
with open(prompts_path, "r") as f: |
|
csv_reader = csv.DictReader(f) |
|
for row in csv_reader: |
|
audio_name = row['audio_name'] |
|
file_path = row['file_path'] |
|
text = row['text'] |
|
start_time = row['start_time'] |
|
end_time = row['end_time'] |
|
duration = row['duration'] |
|
quality = row['quality'] |
|
speech_genre = row['speech_genre'] |
|
speech_style = row['speech_style'] |
|
variety = row['variety'] |
|
accent = row['accent'] |
|
sex = row['sex'] |
|
age_range = row['age_range'] |
|
num_speakers = row['num_speakers'] |
|
speaker_id = row['speaker_id'] |
|
examples[file_path] = { |
|
"audio_name": audio_name, |
|
"file_path": file_path, |
|
"text": text, |
|
"start_time": start_time, |
|
"end_time": end_time, |
|
"duration": duration, |
|
"quality": quality, |
|
"speech_genre": speech_genre, |
|
"speech_style": speech_style, |
|
"variety": variety, |
|
"accent": accent, |
|
"sex": sex, |
|
"age_range": age_range, |
|
"num_speakers": num_speakers, |
|
"speaker_id": speaker_id, |
|
} |
|
inside_clips_dir = False |
|
id_ = 0 |
|
for path, f in audio_files: |
|
if path.startswith(path_to_clips): |
|
inside_clips_dir = True |
|
if path in examples: |
|
audio = {"path": path, "bytes": f.read()} |
|
yield id_, {**examples[path], "audio": audio} |
|
id_ += 1 |
|
elif inside_clips_dir: |
|
break |
|
|