File size: 8,864 Bytes
96fd80c
 
 
 
 
69bf1ce
 
96fd80c
 
 
69bf1ce
 
96fd80c
 
 
 
 
 
 
 
531c7c5
 
 
 
96fd80c
 
7ffcd40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96fd80c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbea063
 
 
 
96fd80c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ffcd40
c13860d
 
96fd80c
c13860d
96fd80c
 
 
 
ff55467
96fd80c
ff55467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96fd80c
 
ff55467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96fd80c
ff55467
96fd80c
 
ff55467
96fd80c
ff55467
96fd80c
 
 
ff55467
 
96fd80c
 
 
ff55467
 
 
96fd80c
 
ff55467
 
bbea063
ff55467
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import csv
import datasets
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split

_PROSODIC_PROMPTS_URLS = {
    "validation": "prosodic/validation.csv",
    "train": "prosodic/train.csv",
}

_AUTOMATIC_PROMPTS_URLS = {
    "validation": "automatic/validation.csv",
    "train": "automatic/train.csv",
}

_ARCHIVES = {
    "prosodic": "prosodic/audios.tar.gz",
    "automatic": "automatic/audios.tar.gz",
}

_PATH_TO_CLIPS = {
    "validation_prosodic": "audios",
    "train_prosodic": "audios",
    "validation_automatic": "audios/validation",
    "train_automatic": "audios/train",
}

def debug_path_matching(csv_path, archive_files):
    """
    Debug utility to compare paths between CSV and archive files
    """
    import csv
    from collections import defaultdict
    
    # Store CSV paths
    csv_paths = set()
    with open(csv_path, "r") as f:
        reader = csv.DictReader(f)
        for row in reader:
            # Store both the full path and filename
            path = row.get("path") or row.get("file_path")
            csv_paths.add(path)
            csv_paths.add(path.split("/")[-1])
    
    # Compare with archive paths
    archive_paths = set()
    matches = defaultdict(list)
    
    for path, _ in archive_files:
        archive_paths.add(path)
        archive_paths.add(path.split("/")[-1])
        
        # Check for matches
        for csv_path in csv_paths:
            if path.endswith(csv_path) or csv_path.endswith(path):
                matches[path].append(csv_path)
    
    print("=== Debug Report ===")
    print(f"CSV Paths: {len(csv_paths)}")
    print(f"Archive Paths: {len(archive_paths)}")
    print(f"Matched Paths: {len(matches)}")
    print("\nSample CSV paths:")
    for path in list(csv_paths)[:5]:
        print(f"  {path}")
    print("\nSample Archive paths:")
    for path in list(archive_paths)[:5]:
        print(f"  {path}")
    print("\nSample Matches:")
    for archive_path, csv_paths in list(matches.items())[:5]:
        print(f"  Archive: {archive_path}")
        print(f"  CSV: {csv_paths}")
        print()
    
    return csv_paths, archive_paths, matches

class EntoaConfig(BuilderConfig):
    def __init__(self, prompts_type="prosodic", **kwargs):
        super().__init__(**kwargs)
        self.prompts_type = prompts_type

class EntoaDataset(GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        EntoaConfig(name="prosodic", description="Prosodic audio prompts", prompts_type="prosodic"),
        EntoaConfig(name="automatic", description="Automatic audio prompts", prompts_type="automatic"),
    ]

    def _info(self):
        if self.config.name == "prosodic":
            features = datasets.Features(
                {
                    "path": datasets.Value("string"),
                    "name": datasets.Value("string"),
                    "speaker": datasets.Value("string"),
                    "start_time": datasets.Value("string"),
                    "end_time": datasets.Value("string"),
                    "normalized_text": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "duration": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "year": datasets.Value("string"),
                    "gender": datasets.Value("string"),
                    "age_range": datasets.Value("string"),
                    "total_duration": datasets.Value("string"),
                    "quality": datasets.Value("string"),
                    "theme": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                }
            )
        else:  # automatic
            features = datasets.Features(
                {
                    "audio_name": datasets.Value("string"),
                    "file_path": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "start_time": datasets.Value("string"),
                    "end_time": datasets.Value("string"),
                    "duration": datasets.Value("string"),
                    "quality": datasets.Value("string"),
                    "speech_genre": datasets.Value("string"),
                    "speech_style": datasets.Value("string"),
                    "variety": datasets.Value("string"),
                    "accent": datasets.Value("string"),
                    "sex": datasets.Value("string"),
                    "age_range": datasets.Value("string"),
                    "num_speakers": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                }
            )
        return DatasetInfo(features=features)

    def _split_generators(self, dl_manager):
        prompts_urls = _PROSODIC_PROMPTS_URLS if self.config.name == "prosodic" else _AUTOMATIC_PROMPTS_URLS
        archive = dl_manager.download(_ARCHIVES[self.config.name])
        prompts_path = dl_manager.download(prompts_urls)

        # Debug prints for downloaded paths
        print(f"Downloaded prompts: {prompts_path}")
        print(f"Downloaded archive: {archive}")

        return [
            SplitGenerator(
                name=Split.VALIDATION,
                gen_kwargs={
                    "prompts_path": prompts_path["validation"],
                    "path_to_clips": _PATH_TO_CLIPS[f"validation_{self.config.name}"],
                    "audio_files": dl_manager.iter_archive(archive),
                },
            ),
            SplitGenerator(
                name=Split.TRAIN,
                gen_kwargs={
                    "prompts_path": prompts_path["train"],
                    "path_to_clips": _PATH_TO_CLIPS[f"train_{self.config.name}"],
                    "audio_files": dl_manager.iter_archive(archive),
                },
            ),
        ]


        

    def _generate_examples(self, prompts_path, path_to_clips, audio_files):
        csv_paths, archive_paths, matches = debug_path_matching(prompts_path, audio_files)
        examples = {}
        with open(prompts_path, "r") as f:
            csv_reader = csv.DictReader(f)
            for row in csv_reader:
    
                if self.config.name == "prosodic":
                    examples[row["path"]] = {
                        "path": row["path"],
                        "name": row["name"],
                        "speaker": row["speaker"],
                        "start_time": row["start_time"],
                        "end_time": row["end_time"],
                        "normalized_text": row["normalized_text"],
                        "text": row["text"],
                        "duration": row["duration"],
                        "type": row["type"],
                        "year": row["year"],
                        "gender": row["gender"],
                        "age_range": row["age_range"],
                        "total_duration": row["total_duration"],
                        "quality": row["quality"],
                        "theme": row["theme"],
                    }
                else:  # automatic
                    examples[row["file_path"]] = {
                        "audio_name": row["audio_name"],
                        "file_path": row["file_path"],
                        "text": row["text"],
                        "start_time": row["start_time"],
                        "end_time": row["end_time"],
                        "duration": row["duration"],
                        "quality": row["quality"],
                        "speech_genre": row["speech_genre"],
                        "speech_style": row["speech_style"],
                        "variety": row["variety"],
                        "accent": row["accent"],
                        "sex": row["sex"],
                        "age_range": row["age_range"],
                        "num_speakers": row["num_speakers"],
                        "speaker_id": row["speaker_id"],
                    }
    
        id_ = 0
        inside_clips_dir = False
    
        for path, f in audio_files:
    
            if path.startswith(path_to_clips):
                inside_clips_dir = True
                if path in examples:
                    # Debug: Match found
                    print(f"Match found for: {path}")
                    audio = {"path": path, "bytes": f.read()}
                    yield id_, {**examples[path], "audio": audio}
                    id_ += 1
                else:
                    # Debug: No match for this file
                    print(f"No match for: {path}")
            elif inside_clips_dir:
                break
    
        # Debug: Print total examples generated
        print(f"Completed generating examples. Total examples: {id_}")