Update NURC-SP_ENTOA_TTS.py
Browse files- NURC-SP_ENTOA_TTS.py +67 -156
NURC-SP_ENTOA_TTS.py
CHANGED
@@ -2,112 +2,44 @@ import csv
|
|
2 |
import datasets
|
3 |
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
8 |
}
|
9 |
|
10 |
-
|
11 |
-
"
|
12 |
"train": "automatic/train.csv",
|
13 |
}
|
14 |
|
15 |
_ARCHIVES = {
|
16 |
-
"
|
17 |
-
"
|
18 |
}
|
19 |
|
20 |
_PATH_TO_CLIPS = {
|
21 |
-
"
|
22 |
-
"
|
23 |
-
"validation_automatic": "automatic/validation",
|
24 |
-
"train_automatic": "automatic/train",
|
25 |
}
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
"""
|
31 |
-
import csv
|
32 |
-
from collections import defaultdict
|
33 |
-
|
34 |
-
# Store CSV paths
|
35 |
-
csv_paths = set()
|
36 |
-
|
37 |
-
with open(csv_path, "r") as f:
|
38 |
-
reader = csv.DictReader(f)
|
39 |
-
for row in reader:
|
40 |
-
# Store both the full path and filename
|
41 |
-
path = row.get("path") or row.get("file_path")
|
42 |
-
csv_paths.add(path)
|
43 |
-
csv_paths.add(path.split("/")[-1])
|
44 |
-
|
45 |
-
# Compare with archive paths
|
46 |
-
archive_paths = set()
|
47 |
-
matches = defaultdict(list)
|
48 |
-
|
49 |
-
for path, _ in archive_files:
|
50 |
-
archive_paths.add(path)
|
51 |
-
archive_paths.add(path.split("/")[-1])
|
52 |
-
|
53 |
-
# Check for matches
|
54 |
-
for csv_path in csv_paths:
|
55 |
-
if path.endswith(csv_path) or csv_path.endswith(path):
|
56 |
-
matches[path].append(csv_path)
|
57 |
-
|
58 |
-
print("=== Debug Report ===")
|
59 |
-
print(f"CSV Paths: {len(csv_paths)}")
|
60 |
-
print(f"Archive Paths: {len(archive_paths)}")
|
61 |
-
print(f"Matched Paths: {len(matches)}")
|
62 |
-
print("\nSample CSV paths:")
|
63 |
-
for path in list(csv_paths)[:5]:
|
64 |
-
print(f" {path}")
|
65 |
-
print("\nSample Archive paths:")
|
66 |
-
for path in list(archive_paths)[:5]:
|
67 |
-
print(f" {path}")
|
68 |
-
print("\nSample Matches:")
|
69 |
-
for archive_path, csv_paths in list(matches.items())[:5]:
|
70 |
-
print(f" Archive: {archive_path}")
|
71 |
-
print(f" CSV: {csv_paths}")
|
72 |
-
print()
|
73 |
-
|
74 |
-
return csv_paths, archive_paths, matches
|
75 |
-
|
76 |
-
class EntoaConfig(BuilderConfig):
|
77 |
-
def __init__(self, prompts_type="prosodic", **kwargs):
|
78 |
super().__init__(**kwargs)
|
79 |
self.prompts_type = prompts_type
|
80 |
|
81 |
-
|
|
|
82 |
BUILDER_CONFIGS = [
|
83 |
-
|
84 |
-
|
85 |
]
|
86 |
|
87 |
def _info(self):
|
88 |
-
|
89 |
-
features
|
90 |
-
{
|
91 |
-
"path": datasets.Value("string"),
|
92 |
-
"name": datasets.Value("string"),
|
93 |
-
"speaker": datasets.Value("string"),
|
94 |
-
"start_time": datasets.Value("string"),
|
95 |
-
"end_time": datasets.Value("string"),
|
96 |
-
"normalized_text": datasets.Value("string"),
|
97 |
-
"text": datasets.Value("string"),
|
98 |
-
"duration": datasets.Value("string"),
|
99 |
-
"type": datasets.Value("string"),
|
100 |
-
"year": datasets.Value("string"),
|
101 |
-
"gender": datasets.Value("string"),
|
102 |
-
"age_range": datasets.Value("string"),
|
103 |
-
"total_duration": datasets.Value("string"),
|
104 |
-
"quality": datasets.Value("string"),
|
105 |
-
"theme": datasets.Value("string"),
|
106 |
-
"audio": datasets.Audio(sampling_rate=16_000),
|
107 |
-
}
|
108 |
-
)
|
109 |
-
else: # automatic
|
110 |
-
features = datasets.Features(
|
111 |
{
|
112 |
"audio_name": datasets.Value("string"),
|
113 |
"file_path": datasets.Value("string"),
|
@@ -127,102 +59,81 @@ class EntoaDataset(GeneratorBasedBuilder):
|
|
127 |
"audio": datasets.Audio(sampling_rate=16_000),
|
128 |
}
|
129 |
)
|
130 |
-
|
131 |
|
132 |
def _split_generators(self, dl_manager):
|
133 |
-
prompts_urls =
|
134 |
-
archive = dl_manager.download(_ARCHIVES[self.config.name])
|
135 |
-
prompts_path = dl_manager.download(prompts_urls)
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
140 |
|
141 |
return [
|
142 |
SplitGenerator(
|
143 |
name=Split.VALIDATION,
|
144 |
gen_kwargs={
|
145 |
-
"prompts_path": prompts_path["
|
146 |
-
"path_to_clips": _PATH_TO_CLIPS[
|
147 |
-
"audio_files": dl_manager.iter_archive(archive),
|
148 |
-
}
|
149 |
),
|
150 |
SplitGenerator(
|
151 |
name=Split.TRAIN,
|
152 |
gen_kwargs={
|
153 |
"prompts_path": prompts_path["train"],
|
154 |
-
"path_to_clips": _PATH_TO_CLIPS[
|
155 |
-
"audio_files": dl_manager.iter_archive(archive),
|
156 |
-
}
|
157 |
),
|
158 |
]
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
def _generate_examples(self, prompts_path, path_to_clips, audio_files):
|
164 |
-
csv_paths, archive_paths, matches = debug_path_matching(prompts_path, audio_files)
|
165 |
examples = {}
|
166 |
with open(prompts_path, "r") as f:
|
167 |
csv_reader = csv.DictReader(f)
|
168 |
for row in csv_reader:
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
"sex": row["sex"],
|
202 |
-
"age_range": row["age_range"],
|
203 |
-
"num_speakers": row["num_speakers"],
|
204 |
-
"speaker_id": row["speaker_id"],
|
205 |
-
}
|
206 |
-
|
207 |
-
id_ = 0
|
208 |
inside_clips_dir = False
|
209 |
-
|
210 |
for path, f in audio_files:
|
211 |
-
|
212 |
if path.startswith(path_to_clips):
|
213 |
inside_clips_dir = True
|
214 |
if path in examples:
|
215 |
-
# Debug: Match found
|
216 |
-
print(f"Match found for: {path}")
|
217 |
audio = {"path": path, "bytes": f.read()}
|
218 |
yield id_, {**examples[path], "audio": audio}
|
219 |
id_ += 1
|
220 |
-
else:
|
221 |
-
# Debug: No match for this file
|
222 |
-
print(f"No match for: {path}")
|
223 |
elif inside_clips_dir:
|
224 |
break
|
225 |
-
|
226 |
-
# Debug: Print total examples generated
|
227 |
-
print(f"Completed generating examples. Total examples: {id_}")
|
228 |
-
|
|
|
2 |
import datasets
|
3 |
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
|
4 |
|
5 |
+
|
6 |
+
|
7 |
+
_PROMPTS_URLS = {
|
8 |
+
"dev": "automatic/validation.csv",
|
9 |
+
"train": "automatic/train.csv",
|
10 |
}
|
11 |
|
12 |
+
_PROMPTS_FILTERED_URLS = {
|
13 |
+
"dev": "automatic/validation.csv",
|
14 |
"train": "automatic/train.csv",
|
15 |
}
|
16 |
|
17 |
_ARCHIVES = {
|
18 |
+
"dev": "automatic.tar.gz",
|
19 |
+
"train": "automatic.tar.gz",
|
20 |
}
|
21 |
|
22 |
_PATH_TO_CLIPS = {
|
23 |
+
"dev": "validation",
|
24 |
+
"train": "train",
|
|
|
|
|
25 |
}
|
26 |
|
27 |
+
|
28 |
+
class NurcSPConfig(BuilderConfig):
|
29 |
+
def __init__(self, prompts_type="original", **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
super().__init__(**kwargs)
|
31 |
self.prompts_type = prompts_type
|
32 |
|
33 |
+
|
34 |
+
class NurcSPDataset(GeneratorBasedBuilder):
|
35 |
BUILDER_CONFIGS = [
|
36 |
+
NurcSPConfig(name="original", description="Original audio prompts", prompts_type="original"),
|
37 |
+
NurcSPConfig(name="filtered", description="Filtered audio prompts", prompts_type="filtered"),
|
38 |
]
|
39 |
|
40 |
def _info(self):
|
41 |
+
return DatasetInfo(
|
42 |
+
features=datasets.Features(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
{
|
44 |
"audio_name": datasets.Value("string"),
|
45 |
"file_path": datasets.Value("string"),
|
|
|
59 |
"audio": datasets.Audio(sampling_rate=16_000),
|
60 |
}
|
61 |
)
|
62 |
+
)
|
63 |
|
64 |
def _split_generators(self, dl_manager):
|
65 |
+
prompts_urls = _PROMPTS_URLS # Default to original prompts URLs
|
|
|
|
|
66 |
|
67 |
+
if self.config.prompts_type == "filtered":
|
68 |
+
prompts_urls = _PROMPTS_FILTERED_URLS
|
69 |
+
|
70 |
+
prompts_path = dl_manager.download(prompts_urls)
|
71 |
+
archive = dl_manager.download(_ARCHIVES)
|
72 |
|
73 |
return [
|
74 |
SplitGenerator(
|
75 |
name=Split.VALIDATION,
|
76 |
gen_kwargs={
|
77 |
+
"prompts_path": prompts_path["dev"],
|
78 |
+
"path_to_clips": _PATH_TO_CLIPS["dev"],
|
79 |
+
"audio_files": dl_manager.iter_archive(archive["dev"]),
|
80 |
+
}
|
81 |
),
|
82 |
SplitGenerator(
|
83 |
name=Split.TRAIN,
|
84 |
gen_kwargs={
|
85 |
"prompts_path": prompts_path["train"],
|
86 |
+
"path_to_clips": _PATH_TO_CLIPS["train"],
|
87 |
+
"audio_files": dl_manager.iter_archive(archive["train"]),
|
88 |
+
}
|
89 |
),
|
90 |
]
|
91 |
|
|
|
|
|
|
|
92 |
def _generate_examples(self, prompts_path, path_to_clips, audio_files):
|
|
|
93 |
examples = {}
|
94 |
with open(prompts_path, "r") as f:
|
95 |
csv_reader = csv.DictReader(f)
|
96 |
for row in csv_reader:
|
97 |
+
audio_name = row['audio_name']
|
98 |
+
file_path = row['file_path']
|
99 |
+
text = row['text']
|
100 |
+
start_time = row['start_time']
|
101 |
+
end_time = row['end_time']
|
102 |
+
duration = row['duration']
|
103 |
+
quality = row['quality']
|
104 |
+
speech_genre = row['speech_genre']
|
105 |
+
speech_style = row['speech_style']
|
106 |
+
variety = row['variety']
|
107 |
+
accent = row['accent']
|
108 |
+
sex = row['sex']
|
109 |
+
age_range = row['age_range']
|
110 |
+
num_speakers = row['num_speakers']
|
111 |
+
speaker_id = row['speaker_id']
|
112 |
+
examples[file_path] = {
|
113 |
+
"audio_name": audio_name,
|
114 |
+
"file_path": file_path,
|
115 |
+
"text": text,
|
116 |
+
"start_time": start_time,
|
117 |
+
"end_time": end_time,
|
118 |
+
"duration": duration,
|
119 |
+
"quality": quality,
|
120 |
+
"speech_genre": speech_genre,
|
121 |
+
"speech_style": speech_style,
|
122 |
+
"variety": variety,
|
123 |
+
"accent": accent,
|
124 |
+
"sex": sex,
|
125 |
+
"age_range": age_range,
|
126 |
+
"num_speakers": num_speakers,
|
127 |
+
"speaker_id": speaker_id,
|
128 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
inside_clips_dir = False
|
130 |
+
id_ = 0
|
131 |
for path, f in audio_files:
|
|
|
132 |
if path.startswith(path_to_clips):
|
133 |
inside_clips_dir = True
|
134 |
if path in examples:
|
|
|
|
|
135 |
audio = {"path": path, "bytes": f.read()}
|
136 |
yield id_, {**examples[path], "audio": audio}
|
137 |
id_ += 1
|
|
|
|
|
|
|
138 |
elif inside_clips_dir:
|
139 |
break
|
|
|
|
|
|
|
|