import csv import datasets from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split _PROSODIC_PROMPTS_URLS = { "validation": "prosodic/validation.csv", "train": "prosodic/train.csv", } _AUTOMATIC_PROMPTS_URLS = { "validation": "automatic/validation.csv", "train": "automatic/train.csv", } _ARCHIVES = { "prosodic": "prosodic/audios.tar.gz", "automatic": "automatic/audios.tar.gz", } _PATH_TO_CLIPS = { "validation_prosodic": "prosodic/audios", "train_prosodic": "prosodic/audios", "validation_automatic": "automatic/audios/validation", "train_automatic": "automatic/audios/train", } class EntoaConfig(BuilderConfig): def __init__(self, prompts_type="prosodic", **kwargs): super().__init__(**kwargs) self.prompts_type = prompts_type class EntoaDataset(GeneratorBasedBuilder): BUILDER_CONFIGS = [ EntoaConfig(name="prosodic", description="Prosodic audio prompts", prompts_type="prosodic"), EntoaConfig(name="automatic", description="Automatic audio prompts", prompts_type="automatic"), ] def _info(self): if self.config.name == "prosodic": features = datasets.Features( { "path": datasets.Value("string"), "name": datasets.Value("string"), "speaker": datasets.Value("string"), "start_time": datasets.Value("string"), "end_time": datasets.Value("string"), "normalized_text": datasets.Value("string"), "text": datasets.Value("string"), "duration": datasets.Value("string"), "type": datasets.Value("string"), "year": datasets.Value("string"), "gender": datasets.Value("string"), "age_range": datasets.Value("string"), "total_duration": datasets.Value("string"), "quality": datasets.Value("string"), "theme": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), } ) else: # automatic features = datasets.Features( { "audio_name": datasets.Value("string"), "file_path": datasets.Value("string"), "text": datasets.Value("string"), "start_time": datasets.Value("string"), "end_time": datasets.Value("string"), "duration": datasets.Value("string"), "quality": datasets.Value("string"), "speech_genre": datasets.Value("string"), "speech_style": datasets.Value("string"), "variety": datasets.Value("string"), "accent": datasets.Value("string"), "sex": datasets.Value("string"), "age_range": datasets.Value("string"), "num_speakers": datasets.Value("string"), "speaker_id": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), } ) return DatasetInfo(features=features) def _split_generators(self, dl_manager): prompts_urls = _PROSODIC_PROMPTS_URLS if self.config.name == "prosodic" else _AUTOMATIC_PROMPTS_URLS archive = dl_manager.download(_ARCHIVES[self.config.name]) prompts_path = dl_manager.download(prompts_urls) # Debug prints for downloaded paths print(f"Downloaded prompts: {prompts_path}") print(f"Downloaded archive: {archive}") return [ SplitGenerator( name=Split.VALIDATION, gen_kwargs={ "prompts_path": prompts_path["validation"], "path_to_clips": _PATH_TO_CLIPS[f"validation_{self.config.name}"], "audio_files": dl_manager.iter_archive(archive), }, ), SplitGenerator( name=Split.TRAIN, gen_kwargs={ "prompts_path": prompts_path["train"], "path_to_clips": _PATH_TO_CLIPS[f"train_{self.config.name}"], "audio_files": dl_manager.iter_archive(archive), }, ), ] def _generate_examples(self, prompts_path, path_to_clips, audio_files): examples = {} with open(prompts_path, "r") as f: csv_reader = csv.DictReader(f) for row in csv_reader: # Debug: Print each row being processed print(f"Processing row: {row}") if self.config.name == "prosodic": examples[row["path"]] = { "path": row["path"], "name": row["name"], "speaker": row["speaker"], "start_time": row["start_time"], "end_time": row["end_time"], "normalized_text": row["normalized_text"], "text": row["text"], "duration": row["duration"], "type": row["type"], "year": row["year"], "gender": row["gender"], "age_range": row["age_range"], "total_duration": row["total_duration"], "quality": row["quality"], "theme": row["theme"], } else: # automatic examples[row["file_path"]] = { "audio_name": row["audio_name"], "file_path": row["file_path"], "text": row["text"], "start_time": row["start_time"], "end_time": row["end_time"], "duration": row["duration"], "quality": row["quality"], "speech_genre": row["speech_genre"], "speech_style": row["speech_style"], "variety": row["variety"], "accent": row["accent"], "sex": row["sex"], "age_range": row["age_range"], "num_speakers": row["num_speakers"], "speaker_id": row["speaker_id"], } id_ = 0 inside_clips_dir = False # Debug: Print path_to_clips for reference print(f"Expected path_to_clips: {path_to_clips}") for path, f in audio_files: # Debug: Print each file in the archive print(f"Audio file in archive: {path}") if path.startswith(path_to_clips): inside_clips_dir = True if path in examples: # Debug: Match found print(f"Match found for: {path}") audio = {"path": path, "bytes": f.read()} yield id_, {**examples[path], "audio": audio} id_ += 1 else: # Debug: No match for this file print(f"No match for: {path}") elif inside_clips_dir: break # Debug: Print total examples generated print(f"Completed generating examples. Total examples: {id_}")