--- dataset_info: features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string - name: embedding sequence: float32 splits: - name: train num_bytes: 73850973 num_examples: 3001 download_size: 49787145 dataset_size: 73850973 configs: - config_name: default data_files: - split: train path: data/train-* --- this is a subset of the [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset code for creating this dataset : ```python from datasets import load_dataset, Dataset from sentence_transformers import SentenceTransformer model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") # load dataset in streaming mode (no download and it's fast) dataset = load_dataset( "wikimedia/wikipedia", "20231101.en", split="train", streaming=True ) # select 3000 samples from tqdm import tqdm data = Dataset.from_dict({}) for i, entry in enumerate(dataset): # each entry has the following columns # ['id', 'url', 'title', 'text'] data = data.add_item(entry) if i == 3000: break # free memory del dataset # embed the dataset def embed(batch): return {"embedding" : model.encode(batch["text"])} data = data.map(embed) # push to hub data.push_to_hub("not-lain/wikipedia-small-3000-embedded") ```