Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 3,276 Bytes
e99a7c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import json
import datasets

logger = datasets.logging.get_logger(__name__)

_CITATION = """\
@misc{multipl-e,
  doi = {10.48550/ARXIV.2208.08227},
  url = {https://arxiv.org/abs/2208.08227},
  author = {Cassano, Federico and Gouwar, John and Nguyen, Daniel and
            Nguyen, Sydney and Phipps-Costin, Luna and Pinckney, Donald and 
            Yee, Ming-Ho and Zi, Yangtian and Anderson, Carolyn Jane and 
            Feldman, Molly Q and Guha, Arjun and 
            Greenberg, Michael and Jangda, Abhinav},
  title = {A Scalable and Extensible Approach to Benchmarking NL2Code for 18
           Programming Languages},
  publisher = {arXiv},
  year = {2022},
}
"""

_DESCRIPTION = """\
MultiPL-E is a dataset for evaluating large language models for code \
generation that supports 18 programming languages. It takes the OpenAI \
"HumanEval" Python benchmarks and uses little compilers to translate them \
to other languages. It is easy to add support for new languages and benchmarks.
"""

_LANGUAGES = [ 
    "cpp", "cs", "d", "go", "java", "jl", "js", "lua", "php", "pl", "py", "r", 
    "rb", "rkt", "rs", "scala", "sh", "swift", "ts"
]

_VARIATIONS = [ "keep", "transform", "reworded", "remove" ]

class MultiPLEConfig(datasets.BuilderConfig):

    def __init__(self, language, variation):
        super(MultiPLEConfig, self).__init__(version=datasets.Version("1.0.0"))
        self.name = language + "-" + variation
        
        self.language = language
        self.variation = variation
        self.url = f"./data/{language}-{variation}.json"
        self.data_files = self.url



class MultiPLE(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        MultiPLEConfig(language=language, variation=variation) for language in _LANGUAGES for variation in _VARIATIONS
    ]
    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            license="MIT",
            features=datasets.Features({
                "name": datasets.Value("string"),
                "language": datasets.Value("string"),
                "prompt": datasets.Value("string"),
                "doctests": datasets.Value("string"),
                "original": datasets.Value("string"),
                "prompt_terminology": datasets.Value("string"),
                "tests": datasets.Value("string"),
                "stop_tokens": datasets.features.Sequence(datasets.Value("string")),
            }),
            supervised_keys=None,
            homepage="https://nuprl.github.io/MultiPL-E/",
            citation=_CITATION,
            task_templates=[]
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager):
        files = dl_manager.download(self.config.data_files)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": files,
                    "split": datasets.Split.TEST,
                }
            )
        ]

    def _generate_examples(self, filepath, split):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            data = json.load(f)
            for id_, row in enumerate(data):
                yield id_, row