Datasets:
File size: 3,276 Bytes
e99a7c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@misc{multipl-e,
doi = {10.48550/ARXIV.2208.08227},
url = {https://arxiv.org/abs/2208.08227},
author = {Cassano, Federico and Gouwar, John and Nguyen, Daniel and
Nguyen, Sydney and Phipps-Costin, Luna and Pinckney, Donald and
Yee, Ming-Ho and Zi, Yangtian and Anderson, Carolyn Jane and
Feldman, Molly Q and Guha, Arjun and
Greenberg, Michael and Jangda, Abhinav},
title = {A Scalable and Extensible Approach to Benchmarking NL2Code for 18
Programming Languages},
publisher = {arXiv},
year = {2022},
}
"""
_DESCRIPTION = """\
MultiPL-E is a dataset for evaluating large language models for code \
generation that supports 18 programming languages. It takes the OpenAI \
"HumanEval" Python benchmarks and uses little compilers to translate them \
to other languages. It is easy to add support for new languages and benchmarks.
"""
_LANGUAGES = [
"cpp", "cs", "d", "go", "java", "jl", "js", "lua", "php", "pl", "py", "r",
"rb", "rkt", "rs", "scala", "sh", "swift", "ts"
]
_VARIATIONS = [ "keep", "transform", "reworded", "remove" ]
class MultiPLEConfig(datasets.BuilderConfig):
def __init__(self, language, variation):
super(MultiPLEConfig, self).__init__(version=datasets.Version("1.0.0"))
self.name = language + "-" + variation
self.language = language
self.variation = variation
self.url = f"./data/{language}-{variation}.json"
self.data_files = self.url
class MultiPLE(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
MultiPLEConfig(language=language, variation=variation) for language in _LANGUAGES for variation in _VARIATIONS
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
license="MIT",
features=datasets.Features({
"name": datasets.Value("string"),
"language": datasets.Value("string"),
"prompt": datasets.Value("string"),
"doctests": datasets.Value("string"),
"original": datasets.Value("string"),
"prompt_terminology": datasets.Value("string"),
"tests": datasets.Value("string"),
"stop_tokens": datasets.features.Sequence(datasets.Value("string")),
}),
supervised_keys=None,
homepage="https://nuprl.github.io/MultiPL-E/",
citation=_CITATION,
task_templates=[]
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
files = dl_manager.download(self.config.data_files)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": files,
"split": datasets.Split.TEST,
}
)
]
def _generate_examples(self, filepath, split):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for id_, row in enumerate(data):
yield id_, row |