more_testing / frames.py
obrookes
add str byte decoding
4ce4025
import contextlib
import functools
import io
import os
import time
from typing import Union
import av
import numpy as np
import torch
class FrameSelectionMethod:
"""
Enum-like class for frame selection methods 🎞
"""
RANDOM: str = "random" # 🎲
UNIFORM: str = "uniform" # 📏
SEQUENTIAL: str = "sequential" #
def seek_to_second(container, stream, second):
# Convert the second to the stream's time base
timestamp = int(
second * stream.time_base.denominator / stream.time_base.numerator
)
# Seek to the timestamp
container.seek(timestamp, stream=stream)
return container
def duration_in_seconds(stream):
return float(stream.duration * stream.time_base)
def frame_timestamp_in_seconds(frame, stream):
return float(frame.pts * stream.time_base)
def duration_in_seconds_from_path(video_path, modality):
with av.open(video_path) as container:
stream = next(s for s in container.streams if s.type == modality)
return duration_in_seconds(stream)
def suppress_stderr(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
with open(os.devnull, "w") as devnull:
with contextlib.redirect_stderr(devnull):
return func(*args, **kwargs)
return wrapper
@suppress_stderr
def extract_frames_pyav(
video_data: Union[str, bytes],
modality: str,
starting_second: float,
ending_second: float,
num_frames: int,
rng: np.random.Generator,
frame_selection_method: str = "RANDOM",
key_frames_only: bool = False,
stereo_audio_if_available: bool = False,
single_image_frame: bool = False,
) -> torch.Tensor:
frame_dict = {}
video_source = (
io.BytesIO(video_data) if isinstance(video_data, bytes) else video_data
)
with av.open(video_source) as container:
stream = next(s for s in container.streams if s.type == modality)
if key_frames_only:
stream.codec_context.skip_frame = "NONKEY"
container = seek_to_second(container, stream, starting_second)
# Get the duration of the video
video_duration = duration_in_seconds(stream)
# print(f"Video duration: {video_duration} seconds")
# Get the FPS of the video
video_fps = stream.average_rate
# print(f"Video FPS: {video_fps}")
for frame in container.decode(stream):
# logger.info(f"Frame timestamp: {frame}")
frame_timestamp = frame_timestamp_in_seconds(frame, stream)
# logger.info(f"Frame timestamp: {frame_timestamp}")
array_frame = torch.from_numpy(
frame.to_ndarray(
format="rgb24" if modality == "video" else None
)
)
if modality == "video" and len(array_frame.shape) == 2:
array_frame = array_frame.unsqueeze(0)
if modality == "audio" and not stereo_audio_if_available:
array_frame = array_frame[0].unsqueeze(0)
if frame_timestamp > ending_second:
break
frame_dict[frame_timestamp] = array_frame
# logger.info(f"Frame dict: {frame_dict}")
if single_image_frame:
break
frame_values = (
torch.stack(list(frame_dict.values()))
if modality == "video"
else torch.cat(list(frame_dict.values()), dim=1).permute(1, 0)
)
if frame_selection_method == FrameSelectionMethod.RANDOM:
frame_indices = rng.choice(
len(frame_values),
min(num_frames, len(frame_values)),
replace=key_frames_only,
)
elif frame_selection_method == FrameSelectionMethod.UNIFORM:
frame_indices = np.linspace(
0,
len(frame_values),
min(num_frames, len(frame_values)),
endpoint=False,
dtype=int,
)
elif frame_selection_method == FrameSelectionMethod.SEQUENTIAL:
frame_indices = np.arange(0, min(num_frames, len(frame_values)))
frame_indices = sorted(set(frame_indices))
output = frame_values[frame_indices]
if modality == "video" and len(output.shape) == 3:
output = output.unsqueeze(0)
return output
def test_extract_frames_video_pyav():
video_path = "/data/datasets/tali-wit-2-1-buckets/video_data.parquet/550/550321/4chLRYT8ylY/360p_90.mp4"
video_path = "/data/datasets/tali-wit-2-1-buckets//video_data.parquet/10/10586/SA7bKo4HRTg/360p_0.mp4"
modality = "video"
start_time = 10
end_time = 20
num_frames = 30
rng = np.random.default_rng()
for selection_method in [
FrameSelectionMethod.RANDOM,
FrameSelectionMethod.UNIFORM,
FrameSelectionMethod.SEQUENTIAL,
]:
for i in range(5):
time_list = []
for key_frames_only in [False]:
start_fn_time = time.time()
frames = extract_frames_pyav(
video_path=video_path,
modality=modality,
starting_second=start_time,
ending_second=end_time,
num_frames=num_frames,
rng=rng,
frame_selection_method=selection_method,
key_frames_only=key_frames_only,
)
end_fn_time = time.time()
time_list.append(end_fn_time - start_fn_time)
print(
f"Using {selection_method} frame selection method 🎲, with key_frames_only: {key_frames_only}, have extracted {frames.shape}, mean time {np.mean(time_list)} seconds, std time {np.std(time_list)} seconds"
)
def test_extract_frames_audio_pyav():
video_path = "/data/datasets/tali-wit-2-1-buckets/video_data.parquet/550/550321/4chLRYT8ylY/360p_90.mp4"
video_path = "/data/datasets/tali-wit-2-1-buckets//video_data.parquet/10/10586/SA7bKo4HRTg/360p_0.mp4"
modality = "audio"
start_time = 10
end_time = 20
num_frames = 88200
rng = np.random.default_rng()
for selection_method in [
FrameSelectionMethod.RANDOM,
FrameSelectionMethod.UNIFORM,
FrameSelectionMethod.SEQUENTIAL,
]:
for i in range(5):
time_list = []
for key_frames_only in [False]:
start_fn_time = time.time()
frames = extract_frames_pyav(
video_path=video_path,
modality=modality,
starting_second=start_time,
ending_second=end_time,
num_frames=num_frames,
rng=rng,
frame_selection_method=selection_method,
key_frames_only=key_frames_only,
stereo_audio_if_available=False,
)
end_fn_time = time.time()
time_list.append(end_fn_time - start_fn_time)
print(
f"Using {selection_method} frame selection method 🎲, with key_frames_only: {key_frames_only}, have extracted {frames.shape}, mean time {np.mean(time_list)} seconds, std time {np.std(time_list)} seconds"
)
if __name__ == "__main__":
# test_extract_frames_torchvision()
# test_extract_frames_video_pyav()
test_extract_frames_audio_pyav()