|
import contextlib |
|
import functools |
|
import io |
|
import os |
|
import time |
|
from typing import Union |
|
|
|
import av |
|
import numpy as np |
|
import torch |
|
|
|
|
|
class FrameSelectionMethod: |
|
""" |
|
Enum-like class for frame selection methods 🎞 |
|
""" |
|
|
|
RANDOM: str = "random" |
|
UNIFORM: str = "uniform" |
|
SEQUENTIAL: str = "sequential" |
|
|
|
|
|
def seek_to_second(container, stream, second): |
|
|
|
timestamp = int( |
|
second * stream.time_base.denominator / stream.time_base.numerator |
|
) |
|
|
|
container.seek(timestamp, stream=stream) |
|
return container |
|
|
|
|
|
def duration_in_seconds(stream): |
|
return float(stream.duration * stream.time_base) |
|
|
|
|
|
def frame_timestamp_in_seconds(frame, stream): |
|
return float(frame.pts * stream.time_base) |
|
|
|
|
|
def duration_in_seconds_from_path(video_path, modality): |
|
with av.open(video_path) as container: |
|
stream = next(s for s in container.streams if s.type == modality) |
|
return duration_in_seconds(stream) |
|
|
|
|
|
def suppress_stderr(func): |
|
@functools.wraps(func) |
|
def wrapper(*args, **kwargs): |
|
with open(os.devnull, "w") as devnull: |
|
with contextlib.redirect_stderr(devnull): |
|
return func(*args, **kwargs) |
|
|
|
return wrapper |
|
|
|
|
|
@suppress_stderr |
|
def extract_frames_pyav( |
|
video_data: Union[str, bytes], |
|
modality: str, |
|
starting_second: float, |
|
ending_second: float, |
|
num_frames: int, |
|
rng: np.random.Generator, |
|
frame_selection_method: str = "RANDOM", |
|
key_frames_only: bool = False, |
|
stereo_audio_if_available: bool = False, |
|
single_image_frame: bool = False, |
|
) -> torch.Tensor: |
|
frame_dict = {} |
|
|
|
video_source = ( |
|
io.BytesIO(video_data) if isinstance(video_data, bytes) else video_data |
|
) |
|
|
|
with av.open(video_source) as container: |
|
stream = next(s for s in container.streams if s.type == modality) |
|
if key_frames_only: |
|
stream.codec_context.skip_frame = "NONKEY" |
|
|
|
container = seek_to_second(container, stream, starting_second) |
|
|
|
|
|
video_duration = duration_in_seconds(stream) |
|
|
|
|
|
|
|
video_fps = stream.average_rate |
|
|
|
|
|
for frame in container.decode(stream): |
|
|
|
frame_timestamp = frame_timestamp_in_seconds(frame, stream) |
|
|
|
array_frame = torch.from_numpy( |
|
frame.to_ndarray( |
|
format="rgb24" if modality == "video" else None |
|
) |
|
) |
|
|
|
if modality == "video" and len(array_frame.shape) == 2: |
|
array_frame = array_frame.unsqueeze(0) |
|
|
|
if modality == "audio" and not stereo_audio_if_available: |
|
array_frame = array_frame[0].unsqueeze(0) |
|
|
|
if frame_timestamp > ending_second: |
|
break |
|
frame_dict[frame_timestamp] = array_frame |
|
|
|
if single_image_frame: |
|
break |
|
|
|
frame_values = ( |
|
torch.stack(list(frame_dict.values())) |
|
if modality == "video" |
|
else torch.cat(list(frame_dict.values()), dim=1).permute(1, 0) |
|
) |
|
|
|
if frame_selection_method == FrameSelectionMethod.RANDOM: |
|
frame_indices = rng.choice( |
|
len(frame_values), |
|
min(num_frames, len(frame_values)), |
|
replace=key_frames_only, |
|
) |
|
elif frame_selection_method == FrameSelectionMethod.UNIFORM: |
|
frame_indices = np.linspace( |
|
0, |
|
len(frame_values), |
|
min(num_frames, len(frame_values)), |
|
endpoint=False, |
|
dtype=int, |
|
) |
|
elif frame_selection_method == FrameSelectionMethod.SEQUENTIAL: |
|
frame_indices = np.arange(0, min(num_frames, len(frame_values))) |
|
|
|
frame_indices = sorted(set(frame_indices)) |
|
output = frame_values[frame_indices] |
|
|
|
if modality == "video" and len(output.shape) == 3: |
|
output = output.unsqueeze(0) |
|
|
|
return output |
|
|
|
|
|
def test_extract_frames_video_pyav(): |
|
video_path = "/data/datasets/tali-wit-2-1-buckets/video_data.parquet/550/550321/4chLRYT8ylY/360p_90.mp4" |
|
video_path = "/data/datasets/tali-wit-2-1-buckets//video_data.parquet/10/10586/SA7bKo4HRTg/360p_0.mp4" |
|
modality = "video" |
|
start_time = 10 |
|
end_time = 20 |
|
num_frames = 30 |
|
rng = np.random.default_rng() |
|
|
|
for selection_method in [ |
|
FrameSelectionMethod.RANDOM, |
|
FrameSelectionMethod.UNIFORM, |
|
FrameSelectionMethod.SEQUENTIAL, |
|
]: |
|
for i in range(5): |
|
time_list = [] |
|
for key_frames_only in [False]: |
|
start_fn_time = time.time() |
|
frames = extract_frames_pyav( |
|
video_path=video_path, |
|
modality=modality, |
|
starting_second=start_time, |
|
ending_second=end_time, |
|
num_frames=num_frames, |
|
rng=rng, |
|
frame_selection_method=selection_method, |
|
key_frames_only=key_frames_only, |
|
) |
|
end_fn_time = time.time() |
|
time_list.append(end_fn_time - start_fn_time) |
|
print( |
|
f"Using {selection_method} frame selection method 🎲, with key_frames_only: {key_frames_only}, have extracted {frames.shape}, mean time {np.mean(time_list)} seconds, std time {np.std(time_list)} seconds" |
|
) |
|
|
|
|
|
def test_extract_frames_audio_pyav(): |
|
video_path = "/data/datasets/tali-wit-2-1-buckets/video_data.parquet/550/550321/4chLRYT8ylY/360p_90.mp4" |
|
video_path = "/data/datasets/tali-wit-2-1-buckets//video_data.parquet/10/10586/SA7bKo4HRTg/360p_0.mp4" |
|
modality = "audio" |
|
start_time = 10 |
|
end_time = 20 |
|
num_frames = 88200 |
|
rng = np.random.default_rng() |
|
|
|
for selection_method in [ |
|
FrameSelectionMethod.RANDOM, |
|
FrameSelectionMethod.UNIFORM, |
|
FrameSelectionMethod.SEQUENTIAL, |
|
]: |
|
for i in range(5): |
|
time_list = [] |
|
for key_frames_only in [False]: |
|
start_fn_time = time.time() |
|
frames = extract_frames_pyav( |
|
video_path=video_path, |
|
modality=modality, |
|
starting_second=start_time, |
|
ending_second=end_time, |
|
num_frames=num_frames, |
|
rng=rng, |
|
frame_selection_method=selection_method, |
|
key_frames_only=key_frames_only, |
|
stereo_audio_if_available=False, |
|
) |
|
end_fn_time = time.time() |
|
time_list.append(end_fn_time - start_fn_time) |
|
print( |
|
f"Using {selection_method} frame selection method 🎲, with key_frames_only: {key_frames_only}, have extracted {frames.shape}, mean time {np.mean(time_list)} seconds, std time {np.std(time_list)} seconds" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
test_extract_frames_audio_pyav() |
|
|