Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
Tags:
conversation
License:
File size: 8,357 Bytes
995a095 4cc07f0 995a095 4cc07f0 995a095 4cc07f0 d96a144 4cc07f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
license: mpl-2.0
task_categories:
- text-classification
task_ids:
- sentiment-classification
language:
- en
tags:
- conversation
size_categories:
- 10K<n<100K
source_datasets:
- emo
pretty_name: Cleansed_EmoContext
dataset_info:
features:
- name: turn1
dtype: string
- name: turn2
dtype: string
- name: turn3
dtype: string
- name: label
dtype:
class_label:
names:
"0": others
"1": happy
"2": sad
"3": angry
config_name: cleansed_emo2019
# splits:
# - name: train
# num_bytes: 2433205
# num_examples: 30160
# - name: test
# num_bytes: 421555
# num_examples: 5509
# download_size: 3362556
# dataset_size: 2854760
---
# Dataset Card for "cleansed_emocontext"
- `cleansed_emocontext` is a **cleansed and normalized version** of [`emo`](https://huggingface.co/datasets/emo).
- For cleansing and normalization, [`data_cleansing.py`](https://github.com/oneonlee/cleansed_emocontext/blob/master/helpers/data_cleaning.py) was used, [modifying the code](https://github.com/oneonlee/cleansed_emocontext/commit/c09b020dfb49692a1c5fcd2099d531503d9bb8b5#diff-266912260148f110c4e7fe00b6cdef4c23b024dca8c693a0dd3c83f25ba56f54) provided on the [official EmoContext GitHub](https://github.com/DhruvDh/emocontext).
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text](https://aclanthology.org/S19-2005/)
- **Repository:** [More Information Needed](https://github.com/DhruvDh/emocontext)
- **Paper:** [SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text](https://aclanthology.org/S19-2005/)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 3.37 MB
- **Size of the generated dataset:** 2.85 MB
- **Total amount of disk used:** 6.22 MB
### Dataset Summary
In this dataset, given a textual dialogue i.e. an utterance along with two previous turns of context, the goal was to infer the underlying emotion of the utterance by choosing from four emotion classes - Happy, Sad, Angry and Others.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### cleansed_emo2019
An example of 'train' looks as follows.
```
{
"label": 0,
"turn1": "don't worry i'm girl",
"turn2": "hmm how do i know if you are",
"turn3": "what's your name ?"
}
```
### Data Fields
The data fields are the same among all splits.
#### cleansed_emo2019
- `turn1`, `turn2`, `turn3`: a `string` feature.
- `label`: a classification label, with possible values including `others` (0), `happy` (1), `sad` (2), `angry` (3).
### Data Splits
| name | train | dev | test |
| ---------------- | ----: | ---: | ---: |
| cleansed_emo2019 | 30160 | 2755 | 5509 |
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@inproceedings{chatterjee-etal-2019-semeval,
title={SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text},
author={Ankush Chatterjee and Kedhar Nath Narahari and Meghana Joshi and Puneet Agrawal},
booktitle={Proceedings of the 13th International Workshop on Semantic Evaluation},
year={2019},
address={Minneapolis, Minnesota, USA},
publisher={Association for Computational Linguistics},
url={https://www.aclweb.org/anthology/S19-2005},
doi={10.18653/v1/S19-2005},
pages={39--48},
abstract={In this paper, we present the SemEval-2019 Task 3 - EmoContext: Contextual Emotion Detection in Text. Lack of facial expressions and voice modulations make detecting emotions in text a challenging problem. For instance, as humans, on reading ''Why don't you ever text me!'' we can either interpret it as a sad or angry emotion and the same ambiguity exists for machines. However, the context of dialogue can prove helpful in detection of the emotion. In this task, given a textual dialogue i.e. an utterance along with two previous turns of context, the goal was to infer the underlying emotion of the utterance by choosing from four emotion classes - Happy, Sad, Angry and Others. To facilitate the participation in this task, textual dialogues from user interaction with a conversational agent were taken and annotated for emotion classes after several data processing steps. A training data set of 30160 dialogues, and two evaluation data sets, Test1 and Test2, containing 2755 and 5509 dialogues respectively were released to the participants. A total of 311 teams made submissions to this task. The final leader-board was evaluated on Test2 data set, and the highest ranked submission achieved 79.59 micro-averaged F1 score. Our analysis of systems submitted to the task indicate that Bi-directional LSTM was the most common choice of neural architecture used, and most of the systems had the best performance for the Sad emotion class, and the worst for the Happy emotion class}
}
```
|