Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Chinese
ArXiv:
Libraries:
Datasets
Dask
License:
yuyijiong commited on
Commit
c121084
·
verified ·
1 Parent(s): 6f05457

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -0
README.md CHANGED
@@ -24,6 +24,9 @@ size_categories:
24
 
25
 
26
  </div>
 
 
 
27
  **Chinese Fineweb Edu** dataset is a meticulously constructed high-quality Chinese pre-training corpus, specifically designed for natural language processing tasks in the education domain. This dataset undergoes a rigorous selection and deduplication process, using a scoring model trained on a small amount of data for evaluation. From vast amounts of raw data, it extracts high-value education-related content, ensuring the quality and diversity of the data. Ultimately, the dataset contains approximately 90 million high-quality Chinese text entries, with a total size of about 300GB.
28
 
29
 
@@ -204,3 +207,17 @@ Chinese Fineweb Edu 数据集的原始数据来源广泛,涵盖了多个国内
204
 
205
  ## 许可协议
206
  使用 Chinese Fineweb Edu 数据集需要遵循 OpenCSG 社区许可证。Chinese Fineweb Edu 数据集支持商业用途。如果您计划将 OpenCSG 模型或其衍生产品用于商业目的,您必须遵守 OpenCSG 社区许可证以及 Apache 2.0 许可证中的条款和条件。如用于商业用途,需发送邮件至 lorraineg@opencsg.com,并获得许可。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
 
26
  </div>
27
+
28
+ [📖Technical Report](https://arxiv.org/abs/2501.08197)
29
+
30
  **Chinese Fineweb Edu** dataset is a meticulously constructed high-quality Chinese pre-training corpus, specifically designed for natural language processing tasks in the education domain. This dataset undergoes a rigorous selection and deduplication process, using a scoring model trained on a small amount of data for evaluation. From vast amounts of raw data, it extracts high-value education-related content, ensuring the quality and diversity of the data. Ultimately, the dataset contains approximately 90 million high-quality Chinese text entries, with a total size of about 300GB.
31
 
32
 
 
207
 
208
  ## 许可协议
209
  使用 Chinese Fineweb Edu 数据集需要遵循 OpenCSG 社区许可证。Chinese Fineweb Edu 数据集支持商业用途。如果您计划将 OpenCSG 模型或其衍生产品用于商业目的,您必须遵守 OpenCSG 社区许可证以及 Apache 2.0 许可证中的条款和条件。如用于商业用途,需发送邮件至 lorraineg@opencsg.com,并获得许可。
210
+
211
+ ## Citation
212
+
213
+ ```
214
+ @misc{yu2025opencsgchinesecorpusseries,
215
+ title={OpenCSG Chinese Corpus: A Series of High-quality Chinese Datasets for LLM Training},
216
+ author={Yijiong Yu and Ziyun Dai and Zekun Wang and Wei Wang and Ran Chen and Ji Pei},
217
+ year={2025},
218
+ eprint={2501.08197},
219
+ archivePrefix={arXiv},
220
+ primaryClass={cs.CL},
221
+ url={https://arxiv.org/abs/2501.08197},
222
+ }
223
+ ```