Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
parquet
Languages:
Chinese
Size:
10M - 100M
ArXiv:
License:
Update README.md
Browse files
README.md
CHANGED
@@ -24,6 +24,9 @@ size_categories:
|
|
24 |
|
25 |
|
26 |
</div>
|
|
|
|
|
|
|
27 |
**Chinese Fineweb Edu** dataset is a meticulously constructed high-quality Chinese pre-training corpus, specifically designed for natural language processing tasks in the education domain. This dataset undergoes a rigorous selection and deduplication process, using a scoring model trained on a small amount of data for evaluation. From vast amounts of raw data, it extracts high-value education-related content, ensuring the quality and diversity of the data. Ultimately, the dataset contains approximately 90 million high-quality Chinese text entries, with a total size of about 300GB.
|
28 |
|
29 |
|
@@ -204,3 +207,17 @@ Chinese Fineweb Edu 数据集的原始数据来源广泛,涵盖了多个国内
|
|
204 |
|
205 |
## 许可协议
|
206 |
使用 Chinese Fineweb Edu 数据集需要遵循 OpenCSG 社区许可证。Chinese Fineweb Edu 数据集支持商业用途。如果您计划将 OpenCSG 模型或其衍生产品用于商业目的,您必须遵守 OpenCSG 社区许可证以及 Apache 2.0 许可证中的条款和条件。如用于商业用途,需发送邮件至 lorraineg@opencsg.com,并获得许可。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
</div>
|
27 |
+
|
28 |
+
[📖Technical Report](https://arxiv.org/abs/2501.08197)
|
29 |
+
|
30 |
**Chinese Fineweb Edu** dataset is a meticulously constructed high-quality Chinese pre-training corpus, specifically designed for natural language processing tasks in the education domain. This dataset undergoes a rigorous selection and deduplication process, using a scoring model trained on a small amount of data for evaluation. From vast amounts of raw data, it extracts high-value education-related content, ensuring the quality and diversity of the data. Ultimately, the dataset contains approximately 90 million high-quality Chinese text entries, with a total size of about 300GB.
|
31 |
|
32 |
|
|
|
207 |
|
208 |
## 许可协议
|
209 |
使用 Chinese Fineweb Edu 数据集需要遵循 OpenCSG 社区许可证。Chinese Fineweb Edu 数据集支持商业用途。如果您计划将 OpenCSG 模型或其衍生产品用于商业目的,您必须遵守 OpenCSG 社区许可证以及 Apache 2.0 许可证中的条款和条件。如用于商业用途,需发送邮件至 lorraineg@opencsg.com,并获得许可。
|
210 |
+
|
211 |
+
## Citation
|
212 |
+
|
213 |
+
```
|
214 |
+
@misc{yu2025opencsgchinesecorpusseries,
|
215 |
+
title={OpenCSG Chinese Corpus: A Series of High-quality Chinese Datasets for LLM Training},
|
216 |
+
author={Yijiong Yu and Ziyun Dai and Zekun Wang and Wei Wang and Ran Chen and Ji Pei},
|
217 |
+
year={2025},
|
218 |
+
eprint={2501.08197},
|
219 |
+
archivePrefix={arXiv},
|
220 |
+
primaryClass={cs.CL},
|
221 |
+
url={https://arxiv.org/abs/2501.08197},
|
222 |
+
}
|
223 |
+
```
|