File size: 7,067 Bytes
fa80b3b
 
 
 
 
6841a96
fa80b3b
 
9d90879
4a2df8c
4be26da
 
fa80b3b
 
 
 
 
4be26da
 
fa80b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cdfe9e
124742b
 
fa80b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4de61d
43ae34c
 
fa80b3b
 
 
 
 
fe98323
fa80b3b
 
5054110
fa80b3b
5054110
328cc41
fe98323
453acdc
fa80b3b
b72ac57
fa80b3b
0d219f4
fa80b3b
 
 
453acdc
fa80b3b
 
4eb9b49
fa80b3b
 
 
 
 
 
fe98323
fa80b3b
 
 
 
 
 
 
 
fe98323
 
 
 
 
 
 
fa80b3b
fe98323
 
 
 
 
fa80b3b
 
 
 
fe98323
fa80b3b
 
b1016b1
fa80b3b
 
 
 
fe98323
fa80b3b
 
 
 
 
 
 
 
fe98323
 
 
 
 
 
 
fa80b3b
fe98323
 
fa80b3b
 
 
 
fe98323
fa80b3b
 
b1016b1
fa80b3b
 
 
 
fe98323
fa80b3b
 
 
 
 
 
 
 
fe98323
 
 
 
 
 
 
fa80b3b
fe98323
 
 
fa80b3b
 
 
 
fe98323
fa80b3b
 
b1016b1
fa80b3b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
{
    "config": {
        "name": "cpu_training_transformers_fill-mask_google-bert/bert-base-uncased",
        "backend": {
            "name": "pytorch",
            "version": "2.4.1+cpu",
            "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
            "task": "fill-mask",
            "library": "transformers",
            "model_type": "bert",
            "model": "google-bert/bert-base-uncased",
            "processor": "google-bert/bert-base-uncased",
            "device": "cpu",
            "device_ids": null,
            "seed": 42,
            "inter_op_num_threads": null,
            "intra_op_num_threads": null,
            "model_kwargs": {},
            "processor_kwargs": {},
            "no_weights": true,
            "device_map": null,
            "torch_dtype": null,
            "eval_mode": true,
            "to_bettertransformer": false,
            "low_cpu_mem_usage": null,
            "attn_implementation": null,
            "cache_implementation": null,
            "autocast_enabled": false,
            "autocast_dtype": null,
            "torch_compile": false,
            "torch_compile_target": "forward",
            "torch_compile_config": {},
            "quantization_scheme": null,
            "quantization_config": {},
            "deepspeed_inference": false,
            "deepspeed_inference_config": {},
            "peft_type": null,
            "peft_config": {}
        },
        "scenario": {
            "name": "training",
            "_target_": "optimum_benchmark.scenarios.training.scenario.TrainingScenario",
            "max_steps": 5,
            "warmup_steps": 2,
            "dataset_shapes": {
                "dataset_size": 500,
                "sequence_length": 16,
                "num_choices": 1
            },
            "training_arguments": {
                "per_device_train_batch_size": 2,
                "gradient_accumulation_steps": 1,
                "output_dir": "./trainer_output",
                "evaluation_strategy": "no",
                "eval_strategy": "no",
                "save_strategy": "no",
                "do_train": true,
                "use_cpu": false,
                "max_steps": 5,
                "do_eval": false,
                "do_predict": false,
                "report_to": "none",
                "skip_memory_metrics": true,
                "ddp_find_unused_parameters": false
            },
            "latency": true,
            "memory": true,
            "energy": false
        },
        "launcher": {
            "name": "process",
            "_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher",
            "device_isolation": false,
            "device_isolation_action": null,
            "numactl": false,
            "numactl_kwargs": {},
            "start_method": "spawn"
        },
        "environment": {
            "cpu": " AMD EPYC 7763 64-Core Processor",
            "cpu_count": 4,
            "cpu_ram_mb": 16766.775296,
            "system": "Linux",
            "machine": "x86_64",
            "platform": "Linux-6.8.0-1014-azure-x86_64-with-glibc2.35",
            "processor": "x86_64",
            "python_version": "3.10.15",
            "optimum_benchmark_version": "0.4.0",
            "optimum_benchmark_commit": "d2f084e42e1501deb5a02d595249ca9c9661976d",
            "transformers_version": "4.44.2",
            "transformers_commit": null,
            "accelerate_version": "0.34.2",
            "accelerate_commit": null,
            "diffusers_version": "0.30.3",
            "diffusers_commit": null,
            "optimum_version": null,
            "optimum_commit": null,
            "timm_version": "1.0.9",
            "timm_commit": null,
            "peft_version": null,
            "peft_commit": null
        }
    },
    "report": {
        "overall": {
            "memory": {
                "unit": "MB",
                "max_ram": 2481.778688,
                "max_global_vram": null,
                "max_process_vram": null,
                "max_reserved": null,
                "max_allocated": null
            },
            "latency": {
                "unit": "s",
                "count": 5,
                "total": 2.890031635000014,
                "mean": 0.5780063270000028,
                "stdev": 0.055040917534139436,
                "p50": 0.5495576030000393,
                "p90": 0.6355290363999984,
                "p95": 0.6616933352000046,
                "p99": 0.6826247742400097,
                "values": [
                    0.6878576340000109,
                    0.5493850400000042,
                    0.5495576030000393,
                    0.5570361399999797,
                    0.5461952179999798
                ]
            },
            "throughput": {
                "unit": "samples/s",
                "value": 17.300848680848354
            },
            "energy": null,
            "efficiency": null
        },
        "warmup": {
            "memory": {
                "unit": "MB",
                "max_ram": 2481.778688,
                "max_global_vram": null,
                "max_process_vram": null,
                "max_reserved": null,
                "max_allocated": null
            },
            "latency": {
                "unit": "s",
                "count": 2,
                "total": 1.237242674000015,
                "mean": 0.6186213370000075,
                "stdev": 0.06923629700000333,
                "p50": 0.6186213370000075,
                "p90": 0.6740103746000102,
                "p95": 0.6809340043000105,
                "p99": 0.6864729080600108,
                "values": [
                    0.6878576340000109,
                    0.5493850400000042
                ]
            },
            "throughput": {
                "unit": "samples/s",
                "value": 6.465991004122044
            },
            "energy": null,
            "efficiency": null
        },
        "train": {
            "memory": {
                "unit": "MB",
                "max_ram": 2481.778688,
                "max_global_vram": null,
                "max_process_vram": null,
                "max_reserved": null,
                "max_allocated": null
            },
            "latency": {
                "unit": "s",
                "count": 3,
                "total": 1.6527889609999988,
                "mean": 0.5509296536666662,
                "stdev": 0.004530878481881404,
                "p50": 0.5495576030000393,
                "p90": 0.5555404325999916,
                "p95": 0.5562882862999856,
                "p99": 0.5568865692599809,
                "values": [
                    0.5495576030000393,
                    0.5570361399999797,
                    0.5461952179999798
                ]
            },
            "throughput": {
                "unit": "samples/s",
                "value": 10.890682612684762
            },
            "energy": null,
            "efficiency": null
        }
    }
}