File size: 6,873 Bytes
fa80b3b
 
 
 
 
 
 
 
9d90879
4be26da
 
fa80b3b
 
 
 
 
4be26da
 
 
fa80b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d990296
fa80b3b
 
4be26da
fa80b3b
5329527
d990296
1351d74
fa80b3b
 
9d90879
fa80b3b
 
 
 
 
1886c9a
fa80b3b
 
 
 
 
 
 
 
 
1351d74
fa80b3b
 
 
 
 
 
 
 
1351d74
 
 
 
 
 
 
fa80b3b
1351d74
 
 
 
 
fa80b3b
 
 
 
1351d74
fa80b3b
 
 
 
 
 
 
1351d74
fa80b3b
 
 
 
 
 
 
 
1351d74
 
 
 
 
 
 
fa80b3b
1351d74
 
fa80b3b
 
 
 
1351d74
fa80b3b
 
 
 
 
 
 
1351d74
fa80b3b
 
 
 
 
 
 
 
1351d74
 
 
 
 
 
 
fa80b3b
1351d74
 
 
fa80b3b
 
 
 
1351d74
fa80b3b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
{
    "config": {
        "name": "cpu_training_transformers_fill-mask_google-bert/bert-base-uncased",
        "backend": {
            "name": "pytorch",
            "version": "2.3.0+cpu",
            "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
            "task": "fill-mask",
            "library": "transformers",
            "model": "google-bert/bert-base-uncased",
            "processor": "google-bert/bert-base-uncased",
            "device": "cpu",
            "device_ids": null,
            "seed": 42,
            "inter_op_num_threads": null,
            "intra_op_num_threads": null,
            "model_kwargs": {},
            "processor_kwargs": {},
            "hub_kwargs": {},
            "no_weights": true,
            "device_map": null,
            "torch_dtype": null,
            "eval_mode": true,
            "to_bettertransformer": false,
            "low_cpu_mem_usage": null,
            "attn_implementation": null,
            "cache_implementation": null,
            "autocast_enabled": false,
            "autocast_dtype": null,
            "torch_compile": false,
            "torch_compile_target": "forward",
            "torch_compile_config": {},
            "quantization_scheme": null,
            "quantization_config": {},
            "deepspeed_inference": false,
            "deepspeed_inference_config": {},
            "peft_type": null,
            "peft_config": {}
        },
        "scenario": {
            "name": "training",
            "_target_": "optimum_benchmark.scenarios.training.scenario.TrainingScenario",
            "max_steps": 5,
            "warmup_steps": 2,
            "dataset_shapes": {
                "dataset_size": 500,
                "sequence_length": 16,
                "num_choices": 1
            },
            "training_arguments": {
                "per_device_train_batch_size": 2,
                "gradient_accumulation_steps": 1,
                "output_dir": "./trainer_output",
                "do_train": true,
                "use_cpu": false,
                "max_steps": 5,
                "do_eval": false,
                "do_predict": false,
                "report_to": "none",
                "skip_memory_metrics": true,
                "ddp_find_unused_parameters": false
            },
            "latency": true,
            "memory": true,
            "energy": false
        },
        "launcher": {
            "name": "process",
            "_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher",
            "device_isolation": false,
            "device_isolation_action": "error",
            "start_method": "spawn"
        },
        "environment": {
            "cpu": " AMD EPYC 7763 64-Core Processor",
            "cpu_count": 4,
            "cpu_ram_mb": 16757.354496,
            "system": "Linux",
            "machine": "x86_64",
            "platform": "Linux-6.5.0-1021-azure-x86_64-with-glibc2.35",
            "processor": "x86_64",
            "python_version": "3.10.14",
            "optimum_benchmark_version": "0.2.1",
            "optimum_benchmark_commit": "48414f58841d7ba7c7fd42d74fd524d1d23c3081",
            "transformers_version": "4.40.2",
            "transformers_commit": null,
            "accelerate_version": "0.30.1",
            "accelerate_commit": null,
            "diffusers_version": "0.27.2",
            "diffusers_commit": null,
            "optimum_version": null,
            "optimum_commit": null,
            "timm_version": "1.0.3",
            "timm_commit": null,
            "peft_version": null,
            "peft_commit": null
        }
    },
    "report": {
        "overall": {
            "memory": {
                "unit": "MB",
                "max_ram": 2465.1776,
                "max_global_vram": null,
                "max_process_vram": null,
                "max_reserved": null,
                "max_allocated": null
            },
            "latency": {
                "unit": "s",
                "count": 5,
                "total": 2.866109176000009,
                "mean": 0.5732218352000018,
                "stdev": 0.041814966660995836,
                "p50": 0.5522233910000125,
                "p90": 0.6153035473999864,
                "p95": 0.6360760241999855,
                "p99": 0.6526940056399849,
                "values": [
                    0.6568485009999847,
                    0.5522233910000125,
                    0.5521941500000196,
                    0.552986116999989,
                    0.5518570170000032
                ]
            },
            "throughput": {
                "unit": "samples/s",
                "value": 17.44525310434296
            },
            "energy": null,
            "efficiency": null
        },
        "warmup": {
            "memory": {
                "unit": "MB",
                "max_ram": 2465.1776,
                "max_global_vram": null,
                "max_process_vram": null,
                "max_reserved": null,
                "max_allocated": null
            },
            "latency": {
                "unit": "s",
                "count": 2,
                "total": 1.2090718919999972,
                "mean": 0.6045359459999986,
                "stdev": 0.052312554999986105,
                "p50": 0.6045359459999986,
                "p90": 0.6463859899999875,
                "p95": 0.6516172454999861,
                "p99": 0.655802249899985,
                "values": [
                    0.6568485009999847,
                    0.5522233910000125
                ]
            },
            "throughput": {
                "unit": "samples/s",
                "value": 6.616645422768639
            },
            "energy": null,
            "efficiency": null
        },
        "train": {
            "memory": {
                "unit": "MB",
                "max_ram": 2465.1776,
                "max_global_vram": null,
                "max_process_vram": null,
                "max_reserved": null,
                "max_allocated": null
            },
            "latency": {
                "unit": "s",
                "count": 3,
                "total": 1.6570372840000118,
                "mean": 0.5523457613333372,
                "stdev": 0.00047325553336067703,
                "p50": 0.5521941500000196,
                "p90": 0.5528277235999951,
                "p95": 0.5529069202999921,
                "p99": 0.5529702776599896,
                "values": [
                    0.5521941500000196,
                    0.552986116999989,
                    0.5518570170000032
                ]
            },
            "throughput": {
                "unit": "samples/s",
                "value": 10.862761009546405
            },
            "energy": null,
            "efficiency": null
        }
    }
}