IlyasMoutawwakil HF staff commited on
Commit
48a870b
1 Parent(s): 13cf760

Upload cpu_inference_transformers_image-classification_google/vit-base-patch16-224/benchmark.json with huggingface_hub

Browse files
cpu_inference_transformers_image-classification_google/vit-base-patch16-224/benchmark.json CHANGED
@@ -6,19 +6,17 @@
6
  "version": "2.3.0+cpu",
7
  "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
8
  "task": "image-classification",
9
- "model": "google/vit-base-patch16-224",
10
  "library": "transformers",
 
 
11
  "device": "cpu",
12
  "device_ids": null,
13
  "seed": 42,
14
  "inter_op_num_threads": null,
15
  "intra_op_num_threads": null,
16
- "hub_kwargs": {
17
- "revision": "main",
18
- "force_download": false,
19
- "local_files_only": false,
20
- "trust_remote_code": false
21
- },
22
  "no_weights": true,
23
  "device_map": null,
24
  "torch_dtype": null,
@@ -73,14 +71,14 @@
73
  "environment": {
74
  "cpu": " AMD EPYC 7763 64-Core Processor",
75
  "cpu_count": 4,
76
- "cpu_ram_mb": 16757.338112,
77
  "system": "Linux",
78
  "machine": "x86_64",
79
- "platform": "Linux-6.5.0-1018-azure-x86_64-with-glibc2.35",
80
  "processor": "x86_64",
81
  "python_version": "3.10.14",
82
  "optimum_benchmark_version": "0.2.0",
83
- "optimum_benchmark_commit": "3e2eebdc0f80ae6deeb2e1faad3e889ed5a4df2d",
84
  "transformers_version": "4.40.2",
85
  "transformers_commit": null,
86
  "accelerate_version": "0.30.1",
@@ -99,7 +97,7 @@
99
  "forward": {
100
  "memory": {
101
  "unit": "MB",
102
- "max_ram": 795.283456,
103
  "max_global_vram": null,
104
  "max_process_vram": null,
105
  "max_reserved": null,
@@ -108,34 +106,34 @@
108
  "latency": {
109
  "unit": "s",
110
  "count": 4,
111
- "total": 1.1651409320000425,
112
- "mean": 0.29128523300001063,
113
- "stdev": 0.011655637708947399,
114
- "p50": 0.29692046700000674,
115
- "p90": 0.299744849900037,
116
- "p95": 0.29979450395003937,
117
- "p99": 0.29983422719004127,
118
  "values": [
119
- 0.2943278029999874,
120
- 0.2995131310000261,
121
- 0.2998441580000417,
122
- 0.27145583999998735
123
  ]
124
  },
125
  "throughput": {
126
  "unit": "samples/s",
127
- "value": 3.4330610917030713
128
  },
129
  "energy": {
130
  "unit": "kWh",
131
- "cpu": 1.0235568881034852e-05,
132
- "ram": 4.277668870819203e-07,
133
  "gpu": 0.0,
134
- "total": 1.0663335768116772e-05
135
  },
136
  "efficiency": {
137
  "unit": "samples/kWh",
138
- "value": 93779.28462029548
139
  }
140
  }
141
  }
 
6
  "version": "2.3.0+cpu",
7
  "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
8
  "task": "image-classification",
 
9
  "library": "transformers",
10
+ "model": "google/vit-base-patch16-224",
11
+ "processor": "google/vit-base-patch16-224",
12
  "device": "cpu",
13
  "device_ids": null,
14
  "seed": 42,
15
  "inter_op_num_threads": null,
16
  "intra_op_num_threads": null,
17
+ "model_kwargs": {},
18
+ "processor_kwargs": {},
19
+ "hub_kwargs": {},
 
 
 
20
  "no_weights": true,
21
  "device_map": null,
22
  "torch_dtype": null,
 
71
  "environment": {
72
  "cpu": " AMD EPYC 7763 64-Core Processor",
73
  "cpu_count": 4,
74
+ "cpu_ram_mb": 16757.354496,
75
  "system": "Linux",
76
  "machine": "x86_64",
77
+ "platform": "Linux-6.5.0-1021-azure-x86_64-with-glibc2.35",
78
  "processor": "x86_64",
79
  "python_version": "3.10.14",
80
  "optimum_benchmark_version": "0.2.0",
81
+ "optimum_benchmark_commit": "6fd377459e287bb09e9383ba2516b1b2a271a562",
82
  "transformers_version": "4.40.2",
83
  "transformers_commit": null,
84
  "accelerate_version": "0.30.1",
 
97
  "forward": {
98
  "memory": {
99
  "unit": "MB",
100
+ "max_ram": 798.711808,
101
  "max_global_vram": null,
102
  "max_process_vram": null,
103
  "max_reserved": null,
 
106
  "latency": {
107
  "unit": "s",
108
  "count": 4,
109
+ "total": 1.1454697629999941,
110
+ "mean": 0.28636744074999854,
111
+ "stdev": 0.013911491336067337,
112
+ "p50": 0.29191292600000907,
113
+ "p90": 0.2968462741000167,
114
+ "p95": 0.2978549690500131,
115
+ "p99": 0.2986619250100102,
116
  "values": [
117
+ 0.2916868209999848,
118
+ 0.29213903100003336,
119
+ 0.2988636640000095,
120
+ 0.2627802469999665
121
  ]
122
  },
123
  "throughput": {
124
  "unit": "samples/s",
125
+ "value": 3.4920171000620472
126
  },
127
  "energy": {
128
  "unit": "kWh",
129
+ "cpu": 1.0519333349333872e-05,
130
+ "ram": 4.396313898431714e-07,
131
  "gpu": 0.0,
132
+ "total": 1.0958964739177043e-05
133
  },
134
  "efficiency": {
135
  "unit": "samples/kWh",
136
+ "value": 91249.49516673911
137
  }
138
  }
139
  }