Commit
•
8790288
1
Parent(s):
827dc58
Upload cpu_inference_timm_image-classification_timm/resnet50.a1_in1k/benchmark.json with huggingface_hub
Browse files
cpu_inference_timm_image-classification_timm/resnet50.a1_in1k/benchmark.json
CHANGED
@@ -7,6 +7,7 @@
|
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "timm",
|
|
|
10 |
"model": "timm/resnet50.a1_in1k",
|
11 |
"processor": "timm/resnet50.a1_in1k",
|
12 |
"device": "cpu",
|
@@ -73,14 +74,14 @@
|
|
73 |
"environment": {
|
74 |
"cpu": " AMD EPYC 7763 64-Core Processor",
|
75 |
"cpu_count": 4,
|
76 |
-
"cpu_ram_mb": 16757.
|
77 |
"system": "Linux",
|
78 |
"machine": "x86_64",
|
79 |
"platform": "Linux-6.5.0-1023-azure-x86_64-with-glibc2.35",
|
80 |
"processor": "x86_64",
|
81 |
"python_version": "3.10.14",
|
82 |
"optimum_benchmark_version": "0.3.1",
|
83 |
-
"optimum_benchmark_commit": "
|
84 |
"transformers_version": "4.42.4",
|
85 |
"transformers_commit": null,
|
86 |
"accelerate_version": "0.32.1",
|
@@ -99,7 +100,7 @@
|
|
99 |
"forward": {
|
100 |
"memory": {
|
101 |
"unit": "MB",
|
102 |
-
"max_ram":
|
103 |
"max_global_vram": null,
|
104 |
"max_process_vram": null,
|
105 |
"max_reserved": null,
|
@@ -108,42 +109,42 @@
|
|
108 |
"latency": {
|
109 |
"unit": "s",
|
110 |
"count": 12,
|
111 |
-
"total": 1.
|
112 |
-
"mean": 0.
|
113 |
-
"stdev": 0.
|
114 |
-
"p50": 0.
|
115 |
-
"p90": 0.
|
116 |
-
"p95": 0.
|
117 |
-
"p99": 0.
|
118 |
"values": [
|
119 |
-
0.
|
120 |
-
0.
|
121 |
-
0.
|
122 |
-
0.
|
123 |
-
0.
|
124 |
-
0.
|
125 |
-
0.
|
126 |
-
0.
|
127 |
-
0.
|
128 |
-
0.
|
129 |
-
0.
|
130 |
-
0.
|
131 |
]
|
132 |
},
|
133 |
"throughput": {
|
134 |
"unit": "samples/s",
|
135 |
-
"value": 11.
|
136 |
},
|
137 |
"energy": {
|
138 |
"unit": "kWh",
|
139 |
-
"cpu": 3.
|
140 |
-
"ram": 1.
|
141 |
"gpu": 0.0,
|
142 |
-
"total": 3.
|
143 |
},
|
144 |
"efficiency": {
|
145 |
"unit": "samples/kWh",
|
146 |
-
"value":
|
147 |
}
|
148 |
}
|
149 |
}
|
|
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "timm",
|
10 |
+
"model_type": "resnet50",
|
11 |
"model": "timm/resnet50.a1_in1k",
|
12 |
"processor": "timm/resnet50.a1_in1k",
|
13 |
"device": "cpu",
|
|
|
74 |
"environment": {
|
75 |
"cpu": " AMD EPYC 7763 64-Core Processor",
|
76 |
"cpu_count": 4,
|
77 |
+
"cpu_ram_mb": 16757.342208,
|
78 |
"system": "Linux",
|
79 |
"machine": "x86_64",
|
80 |
"platform": "Linux-6.5.0-1023-azure-x86_64-with-glibc2.35",
|
81 |
"processor": "x86_64",
|
82 |
"python_version": "3.10.14",
|
83 |
"optimum_benchmark_version": "0.3.1",
|
84 |
+
"optimum_benchmark_commit": "402644384abc46743e46dac65be6512bc68c9d92",
|
85 |
"transformers_version": "4.42.4",
|
86 |
"transformers_commit": null,
|
87 |
"accelerate_version": "0.32.1",
|
|
|
100 |
"forward": {
|
101 |
"memory": {
|
102 |
"unit": "MB",
|
103 |
+
"max_ram": 549.445632,
|
104 |
"max_global_vram": null,
|
105 |
"max_process_vram": null,
|
106 |
"max_reserved": null,
|
|
|
109 |
"latency": {
|
110 |
"unit": "s",
|
111 |
"count": 12,
|
112 |
+
"total": 1.0294317120000187,
|
113 |
+
"mean": 0.08578597600000155,
|
114 |
+
"stdev": 0.0076868557732262,
|
115 |
+
"p50": 0.08570103950000885,
|
116 |
+
"p90": 0.09373562999996352,
|
117 |
+
"p95": 0.09560260294997817,
|
118 |
+
"p99": 0.0972504781899994,
|
119 |
"values": [
|
120 |
+
0.0920920199999955,
|
121 |
+
0.09210081600002695,
|
122 |
+
0.09206116199999315,
|
123 |
+
0.09203536399996892,
|
124 |
+
0.09391727599995647,
|
125 |
+
0.0976624470000047,
|
126 |
+
0.07936671500004877,
|
127 |
+
0.07736469800005352,
|
128 |
+
0.07739438400000154,
|
129 |
+
0.0793268699999885,
|
130 |
+
0.0779920819999802,
|
131 |
+
0.07811787800000047
|
132 |
]
|
133 |
},
|
134 |
"throughput": {
|
135 |
"unit": "samples/s",
|
136 |
+
"value": 11.656916976732676
|
137 |
},
|
138 |
"energy": {
|
139 |
"unit": "kWh",
|
140 |
+
"cpu": 3.032528640877488e-06,
|
141 |
+
"ram": 1.2673120694400425e-07,
|
142 |
"gpu": 0.0,
|
143 |
+
"total": 3.1592598478214916e-06
|
144 |
},
|
145 |
"efficiency": {
|
146 |
"unit": "samples/kWh",
|
147 |
+
"value": 316529.83552130504
|
148 |
}
|
149 |
}
|
150 |
}
|