|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" MASC Dataset""" |
|
|
|
|
|
|
|
import csv |
|
import os |
|
import json |
|
|
|
import datasets |
|
from datasets.utils.py_utils import size_str |
|
from tqdm import tqdm |
|
|
|
_CITATION = """\ |
|
@INPROCEEDINGS{10022652, |
|
author={Al-Fetyani, Mohammad and Al-Barham, Muhammad and Abandah, Gheith and Alsharkawi, Adham and Dawas, Maha}, |
|
booktitle={2022 IEEE Spoken Language Technology Workshop (SLT)}, |
|
title={MASC: Massive Arabic Speech Corpus}, |
|
year={2023}, |
|
volume={}, |
|
number={}, |
|
pages={1006-1013}, |
|
doi={10.1109/SLT54892.2023.10022652}} |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
MASC is a dataset that contains 1,000 hours of speech sampled at 16 kHz and crawled from over 700 YouTube channels. The dataset is multi-regional, multi-genre, and multi-dialect intended to advance the research and development of Arabic speech technology with a special emphasis on Arabic speech recognition. |
|
""" |
|
|
|
_HOMEPAGE = "https://ieee-dataport.org/open-access/masc-massive-arabic-speech-corpus" |
|
_LICENSE = "https://creativecommons.org/licenses/by/4.0/" |
|
_BASE_URL = "https://huggingface.co/datasets/pain/MASC/resolve/main/" |
|
_AUDIO_URL1 = _BASE_URL + "audio/{split}/{split}_{shard_idx}.tar.gz" |
|
_AUDIO_URL2 = _BASE_URL + "audio/{split}/{split}_{shard_idx}.tar.xz" |
|
_TRANSCRIPT_URL = _BASE_URL + "transcript/{split}/{split}.csv" |
|
|
|
class MASC(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
|
|
features = datasets.Features( |
|
{ |
|
"video_id": datasets.Value("string"), |
|
"start": datasets.Value("float64"), |
|
"end": datasets.Value("float64"), |
|
"duration": datasets.Value("float64"), |
|
"text": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"file_path": datasets.Value("string"), |
|
"audio": datasets.features.Audio(sampling_rate=16_000), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
version=self.config.version, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
n_shards = {"train": 8,"dev": 1, "test": 1} |
|
audio_urls = {} |
|
splits = ("train", "dev", "test") |
|
|
|
for split in splits: |
|
audio_urls[split] = [ |
|
_AUDIO_URL2.format(split=split, shard_idx="{:02d}".format(i+1)) if split=="train" else _AUDIO_URL1.format(split=split, shard_idx="{:02d}".format(i+1)) for i in range(n_shards[split]) |
|
] |
|
archive_paths = dl_manager.download(audio_urls) |
|
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} |
|
|
|
meta_urls = {split: _TRANSCRIPT_URL.format(split=split) for split in splits} |
|
|
|
meta_paths = dl_manager.download(meta_urls) |
|
|
|
split_generators = [] |
|
split_names = { |
|
"train": datasets.Split.TRAIN, |
|
"dev": datasets.Split.VALIDATION, |
|
"test": datasets.Split.TEST, |
|
} |
|
for split in splits: |
|
split_generators.append( |
|
datasets.SplitGenerator( |
|
name=split_names.get(split, split), |
|
gen_kwargs={ |
|
"local_extracted_archive_paths": local_extracted_archive_paths.get(split), |
|
"archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)], |
|
"meta_path": meta_paths[split], |
|
}, |
|
), |
|
) |
|
|
|
return split_generators |
|
|
|
def _generate_examples(self, local_extracted_archive_paths, archives, meta_path): |
|
data_fields = list(self._info().features.keys()) |
|
metadata = {} |
|
with open(meta_path, encoding="utf-8") as f: |
|
reader = csv.DictReader(f, delimiter=",", quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
if not row["file_path"].endswith(".wav"): |
|
row["file_path"] += ".wav" |
|
for field in data_fields: |
|
if field not in row: |
|
row[field] = "" |
|
metadata[row["file_path"]] = row |
|
|
|
for i, audio_archive in enumerate(archives): |
|
for filename, file in audio_archive: |
|
_, filename = os.path.split(filename) |
|
if filename in metadata: |
|
result = dict(metadata[filename]) |
|
|
|
path = os.path.join(local_extracted_archive_paths[i], filename) if local_extracted_archive_paths else filename |
|
|
|
try: |
|
result["audio"] = {"path": path, "bytes": file.read()} |
|
except ReadError as e: |
|
|
|
print("An error occurred while reading the data:", str(e)) |
|
continiue |
|
|
|
result["file_path"] = path if local_extracted_archive_paths else filename |
|
yield path, result |