--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: source dtype: string - name: file_name dtype: string - name: cwe dtype: string splits: - name: train num_bytes: 87854 num_examples: 76 download_size: 53832 dataset_size: 87854 --- # Dataset Card for "static-analysis-eval" A dataset of 76 Python programs taken from real Python open source projects (top 1000 on GitHub), where each program is a file that has exactly 1 vulnerability as detected by a particular static analyzer (Semgrep). You can run the `_script_for_eval.py` to check the results. ``` python3 -m venv .venv source .venv/bin/activate pip install -r requirements.txt python _script_for_eval.py ``` # Leaderboard The top models on the leaderboard are all fine-tuned using the same dataset that we released called [synth vuln fixes](https://huggingface.co/datasets/patched-codes/synth-vuln-fixes). You can read about our experience with fine-tuning them on our [blog](https://www.patched.codes/blog/a-comparative-study-of-fine-tuning-gpt-4o-mini-gemini-flash-1-5-and-llama-3-1-8b). You can also explore the leaderboard with this [interactive visualization](https://claude.site/artifacts/5656c16d-9751-407c-9631-a3526c259354). ![Visualization of the leaderboard](./visualization.png) | Model | StaticAnalysisEval (%) | Time (mins) | Price (USD) | |:-------------------------:|:----------------------:|:-------------:|:-----------:| | gpt-4o-mini-fine-tuned | 77.63 | 21:0 | 0.21 | | gemini-1.5-flash-fine-tuned | 73.68 | 18:0 | | | Llama-3.1-8B-Instruct-fine-tuned | 69.74 | 23:0 | | | gpt-4o | 69.74 | 24:0 | 0.12 | | gpt-4o-mini | 68.42 | 20:0 | 0.07 | | gemini-1.5-flash-latest | 68.42 | 18:2 | 0.07 | | Llama-3.1-405B-Instruct | 65.78 | 40:12 | | | Llama-3-70B-instruct | 65.78 | 35:2 | | | Llama-3-8B-instruct | 65.78 | 31.34 | | | gemini-1.5-pro-latest | 64.47 | 34:40 | | | gpt-4-1106-preview | 64.47 | 27:56 | 3.04 | | gpt-4 | 63.16 | 26:31 | 6.84 | | claude-3-5-sonnet-20240620| 59.21 | 23:59 | 0.70 | | moa-gpt-3.5-turbo-0125 | 53.95 | 49:26 | | | gpt-4-0125-preview | 53.94 | 34:40 | | | patched-coder-7b | 51.31 | 45.20 | | | patched-coder-34b | 46.05 | 33:58 | 0.87 | | patched-mix-4x7b | 46.05 | 60:00+ | 0.80 | | Mistral-Large | 40.80 | 60:00+ | | | Gemini-pro | 39.47 | 16:09 | 0.23 | | Mistral-Medium | 39.47 | 60:00+ | 0.80 | | Mixtral-Small | 30.26 | 30:09 | | | gpt-3.5-turbo-0125 | 28.95 | 21:50 | | | claude-3-opus-20240229 | 25.00 | 60:00+ | | | Llama-3-8B-instruct.Q4_K_M| 21.05 | 60:00+ | | | Gemma-7b-it | 19.73 | 36:40 | | | gpt-3.5-turbo-1106 | 17.11 | 13:00 | 0.23 | | Codellama-70b-Instruct | 10.53 | 30.32 | | | CodeLlama-34b-Instruct | 7.89 | 23:16 | | The price is calcualted by assuming 1000 input and output tokens per call as all examples in the dataset are < 512 tokens (OpenAI cl100k_base tokenizer). Some models timed out during the run or had intermittent API errors. We try each example 3 times in such cases. This is why some runs are reported to be longer than 1 hr (60:00+ mins).