File size: 11,552 Bytes
3ef6de1
 
 
 
 
 
 
 
 
1b92190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef6de1
1b92190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef6de1
 
 
 
 
 
 
 
 
 
 
1b92190
 
 
 
 
 
 
3ef6de1
984c4af
3ef6de1
984c4af
 
3ef6de1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
984c4af
3ef6de1
 
 
 
984c4af
 
 
 
 
 
 
 
 
 
 
3ef6de1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
984c4af
3ef6de1
984c4af
 
1b92190
984c4af
 
 
 
 
 
 
 
 
 
 
 
 
1b92190
3ef6de1
 
 
 
 
 
 
 
 
984c4af
 
 
 
1b92190
3ef6de1
984c4af
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef6de1
 
 
 
 
 
984c4af
 
3ef6de1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import csv
import json
import os

import datasets


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{DBLP:conf/bpm/BellanADGP22,
  author       = {Patrizio Bellan and
                  Han van der Aa and
                  Mauro Dragoni and
                  Chiara Ghidini and
                  Simone Paolo Ponzetto},
  editor       = {Cristina Cabanillas and
                  Niels Frederik Garmann{-}Johnsen and
                  Agnes Koschmider},
  title        = {{PET:} An Annotated Dataset for Process Extraction from Natural Language
                  Text Tasks},
  booktitle    = {Business Process Management Workshops - {BPM} 2022 International Workshops,
                  M{\"{u}}nster, Germany, September 11-16, 2022, Revised Selected
                  Papers},
  series       = {Lecture Notes in Business Information Processing},
  volume       = {460},
  pages        = {315--321},
  publisher    = {Springer},
  year         = {2022},
  url          = {https://doi.org/10.1007/978-3-031-25383-6\_23},
  doi          = {10.1007/978-3-031-25383-6\_23},
  timestamp    = {Tue, 14 Feb 2023 09:47:10 +0100},
  biburl       = {https://dblp.org/rec/conf/bpm/BellanADGP22.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{DBLP:conf/aiia/BellanGDPA22,
  author       = {Patrizio Bellan and
                  Chiara Ghidini and
                  Mauro Dragoni and
                  Simone Paolo Ponzetto and
                  Han van der Aa},
  editor       = {Debora Nozza and
                  Lucia C. Passaro and
                  Marco Polignano},
  title        = {Process Extraction from Natural Language Text: the {PET} Dataset and
                  Annotation Guidelines},
  booktitle    = {Proceedings of the Sixth Workshop on Natural Language for Artificial
                  Intelligence {(NL4AI} 2022) co-located with 21th International Conference
                  of the Italian Association for Artificial Intelligence (AI*IA 2022),
                  Udine, November 30th, 2022},
  series       = {{CEUR} Workshop Proceedings},
  volume       = {3287},
  pages        = {177--191},
  publisher    = {CEUR-WS.org},
  year         = {2022},
  url          = {https://ceur-ws.org/Vol-3287/paper18.pdf},
  timestamp    = {Fri, 10 Mar 2023 16:23:01 +0100},
  biburl       = {https://dblp.org/rec/conf/aiia/BellanGDPA22.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

"""

# You can copy an official description
_DESCRIPTION = """\
Abstract. Although there is a long tradition of work in NLP on extracting entities and relations from text, to date there exists little work on the acquisition of business processes from unstructured data such as textual corpora of process descriptions. With this work we aim at filling this gap and establishing the first steps towards bridging data-driven information extraction methodologies from Natural Language Processing and the model-based formalization that is aimed from Business Process Management. For this, we develop the first corpus of business process descriptions annotated with activities, gateways, actors and flow information. We present our new resource, including a detailed overview of the annotation schema and guidelines, as well as a variety of baselines to benchmark the difficulty and challenges of business process extraction from text.
"""

_HOMEPAGE = "https://pdi.fbk.eu/pet-dataset/"

_LICENSE = "MIT"

_URL_11 = "https://raw.githubusercontent.com/patriziobellan86/PETv1.1/master/"
_URL_10 = "https://pdi.fbk.eu/pet/PETHuggingFace/"
_TEST_FILE_11 = "PETv1.1-entities.jsonl"
_TEST_FILE_10 = "test.json"
_TEST_FILE_RELATIONS_11 = "PETv1.1-relations.json"
_TEST_FILE_RELATIONS_10 = 'PETrelations.json'

_NER = 'token-classification'
_NER_11 = 'token-classification-v1.1'
_RELATIONS_EXTRACTION = 'relations-extraction'
_RELATIONS_EXTRACTION_11 = 'relations-extraction-v1.1'

_NER_TAGS = [ "O",
            "B-Actor",
            "I-Actor",
            "B-Activity",
            "I-Activity",
            "B-Activity Data",
            "I-Activity Data",
            "B-Further Specification",
            "I-Further Specification",
            "B-XOR Gateway",
            "I-XOR Gateway",
            "B-Condition Specification",
            "I-Condition Specification",
            "B-AND Gateway",
            "I-AND Gateway"]

_STR_PET = """\n
 _______ _     _ _______       _____  _______ _______      ______  _______ _______ _______ _______ _______ _______
    |    |_____| |______      |_____] |______    |         |     \ |_____|    |    |_____| |______ |______    |   
    |    |     | |______      |       |______    |         |_____/ |     |    |    |     | ______| |______    |   
                                                                                                                  
Discover more at: [https://pdi.fbk.eu/pet-dataset/]
"""


class PETConfig(datasets.BuilderConfig):
    """The PET Dataset."""

    def __init__(self, **kwargs):
        """BuilderConfig for PET.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(PETConfig, self).__init__(**kwargs)

class PET(datasets.GeneratorBasedBuilder):
    """PET DATASET."""

    features_ner = {
            "document name": datasets.Value("string"),
            "sentence-ID": datasets.Value("int8"),
            "tokens": datasets.Sequence(datasets.Value("string")),
            "ner-tags": datasets.Sequence(datasets.features.ClassLabel(names=_NER_TAGS)),
        }

    features_relations = datasets.Sequence(
        datasets.Features(

        {
            'source-head-sentence-ID': datasets.Value("int8"),
            'source-head-word-ID': datasets.Value("int8"),
            'relation-type': datasets.Value("string"),
            'target-head-sentence-ID': datasets.Value("int8"),
            'target-head-word-ID' : datasets.Value("int8"),
        }
    ))
    BUILDER_CONFIGS = [ PETConfig(
                            name=_NER,
                            version=datasets.Version("1.0.1"),
                            description="The PET Dataset for Token Classification"
                            ),
                        PETConfig(
                            name=_RELATIONS_EXTRACTION,
                            version=datasets.Version("1.0.1"),
                            description="The PET Dataset for Relation Extraction"
                            ),
                        PETConfig(
                            name=_NER_11,
                            version=datasets.Version("1.1.0"),
                            description="The PET Dataset for Token Classification"
                            ),
                        PETConfig(
                            name=_RELATIONS_EXTRACTION_11,
                            version=datasets.Version("1.1.0"),
                            description="The PET Dataset for Relation Extraction"
                            ),
                        ]

    DEFAULT_CONFIG_NAME = _RELATIONS_EXTRACTION

    def _info(self):
        print(_STR_PET)
        if self.config.name == _NER:
            features = datasets.Features(self.features_ner)
        else:
            features = datasets.Features(
                {
                "document name": datasets.Value("string"),
                'tokens':datasets.Sequence(datasets.Value("string")),
                'tokens-IDs':datasets.Sequence(datasets.Value("int8")),
                'ner_tags': datasets.Sequence(datasets.Value("string")),
                'sentence-IDs':datasets.Sequence(datasets.Value("int8")),
                "relations": self.features_relations
                }
            )
        # print(features)
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(features),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        print(f"{self.config.version}")
        if self.config.name == _NER:
            urls_to_download = {
                    "test": f"{_URL_10}{_TEST_FILE_10}",
                }
            downloaded_files = dl_manager.download_and_extract(urls_to_download)
            return [datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                            "filepath": downloaded_files["test"],
                            "split":    "test"
                    },
            )]
        elif self.config.name == _NER_11:
            urls_to_download = {
                "test": f"{_URL_11}{_TEST_FILE_11}",
            }

            downloaded_files = dl_manager.download_and_extract(urls_to_download)
            return [datasets.SplitGenerator(
                        name=datasets.Split.TEST,
                        # These kwargs will be passed to _generate_examples
                        gen_kwargs={
                            "filepath": downloaded_files["test"],
                            "split": "test"
                        },
                    )]

        elif self.config.name == _RELATIONS_EXTRACTION:
            urls_to_download = {
                    "test": f"{_URL_10}{_TEST_FILE_RELATIONS_10}",
                }
            downloaded_files = dl_manager.download_and_extract(urls_to_download)
            return [datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                            "filepath": downloaded_files["test"],
                            "split":    "test"
                            },
                    )]

        else:
            urls_to_download = {
                "test": f"{_URL_11}{_TEST_FILE_RELATIONS_11}",
            }
            downloaded_files = dl_manager.download_and_extract(urls_to_download)
            return [datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": downloaded_files["test"],
                    "split": "test"
                    },
                )]

    def _generate_examples(self, filepath, split):
        if self.config.name == _NER:
            with open(filepath, encoding="utf-8", mode='r') as f:
                for key, row in enumerate(f):
                    row = json.loads(row)
                    yield key, {
                                "document name": row["document name"],
                                "sentence-ID": row["sentence-ID"],
                                "tokens": row["tokens"],
                                "ner-tags": row["ner-tags"]
                                }
        else:
            with open(filepath, encoding="utf-8", mode='r') as f:
                for key, row in enumerate(json.load(f)):
                    yield key, {"document name": row["document name"],
                                'tokens': row["tokens"],
                                'tokens-IDs': row["tokens-IDs"],
                                'ner_tags': row["ner_tags"],
                                'sentence-IDs': row["sentence-IDs"],

                                "relations": row["relations"]
                                }