first with data loader
Browse files- italian_tweets_1M.py +86 -0
italian_tweets_1M.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Norwegian Colossal Corpus v2 dataset."""
|
2 |
+
import gzip
|
3 |
+
import json
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
logger = datasets.logging.get_logger(__name__)
|
7 |
+
_DESCRIPTION = """\\nItalian tweets."""
|
8 |
+
_DATA_URL = "https://huggingface.co/datasets/pere/italian_tweets_1M/resolve/main/data/{split_suffix}-shard-{index:04d}-of-{n_shards:04d}.json.gz"
|
9 |
+
_N_SHARDS_PER_SPLIT = {
|
10 |
+
"train": 1, "validation": 1
|
11 |
+
}
|
12 |
+
|
13 |
+
|
14 |
+
class italian_tweets_1MConfig(datasets.BuilderConfig):
|
15 |
+
"""BuilderConfig for NbNn."""
|
16 |
+
|
17 |
+
def __init__(self, *args, **kwargs):
|
18 |
+
"""BuilderConfig for NbNn.
|
19 |
+
Args:
|
20 |
+
**kwargs: keyword arguments forwarded to super.
|
21 |
+
"""
|
22 |
+
super().__init__(
|
23 |
+
*args,
|
24 |
+
name="italian_tweets_1M",
|
25 |
+
**kwargs,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
class italian_tweets_1M(datasets.GeneratorBasedBuilder):
|
30 |
+
"""Norwegian Colossal Corpus v2."""
|
31 |
+
BUILDER_CONFIGS = [italian_tweets_1MConfig()]
|
32 |
+
BUILDER_CONFIG_CLASS = italian_tweets_1MConfig
|
33 |
+
|
34 |
+
def _info(self):
|
35 |
+
return datasets.DatasetInfo(
|
36 |
+
description=_DESCRIPTION,
|
37 |
+
features=datasets.Features(
|
38 |
+
{
|
39 |
+
"id": datasets.Value("string"),
|
40 |
+
"doc_type": datasets.Value("string"),
|
41 |
+
"publish_year": datasets.Value("int32"),
|
42 |
+
"lang_fasttext": datasets.Value("string"),
|
43 |
+
"lang_fasttext_conf": datasets.Value("string"),
|
44 |
+
"text": datasets.Value("string"),
|
45 |
+
|
46 |
+
}
|
47 |
+
),
|
48 |
+
supervised_keys=None,
|
49 |
+
homepage=_URL,
|
50 |
+
citation=_CITATION,
|
51 |
+
)
|
52 |
+
|
53 |
+
def _split_generators(self, dl_manager):
|
54 |
+
data_urls = {}
|
55 |
+
for split in ["train", "validation"]:
|
56 |
+
data_urls[split] = [
|
57 |
+
_DATA_URL.format(
|
58 |
+
language=self.config.name,
|
59 |
+
split_suffix=split,
|
60 |
+
index=index,
|
61 |
+
n_shards=_N_SHARDS_PER_SPLIT[split],
|
62 |
+
)
|
63 |
+
for index in range(1, _N_SHARDS_PER_SPLIT[split] + 1)
|
64 |
+
]
|
65 |
+
train_downloaded_files = dl_manager.download(data_urls["train"])
|
66 |
+
validation_downloaded_files = dl_manager.download(data_urls["validation"])
|
67 |
+
|
68 |
+
return [
|
69 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}),
|
70 |
+
datasets.SplitGenerator(
|
71 |
+
name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files}
|
72 |
+
),
|
73 |
+
|
74 |
+
]
|
75 |
+
|
76 |
+
def _generate_examples(self, filepaths):
|
77 |
+
"""This function returns the examples in the raw (text) form by iterating on all the files."""
|
78 |
+
id_ = 0
|
79 |
+
for filepath in filepaths:
|
80 |
+
logger.info("generating examples from = %s", filepath)
|
81 |
+
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
|
82 |
+
for line in f:
|
83 |
+
if line:
|
84 |
+
example = json.loads(line)
|
85 |
+
yield id_, example
|
86 |
+
id_ += 1
|