File size: 4,980 Bytes
df907da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381bc18
 
df907da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from datasets import load_dataset
import random
import argparse
import csv
import glob
import pandas as pd
from sklearn.model_selection import train_test_split


def main(args):
    trans_chars = ",.:;!"
    
    filelist = glob.glob('../langid/sentences/*.txt')

    data = pd.DataFrame()

    for tsvfile in filelist:
        print(f"Processing {tsvfile}")
        tmp = pd.read_csv(tsvfile, sep='\t',on_bad_lines='skip',engine='python',encoding='utf8')
        if len(tmp.columns)==1:
            tmp.insert(0,'id','')
        
        tmp.columns=['id','source']   
        data=pd.concat([data,tmp])

   
    # Trim
    data['source'] = data['source'].str.strip()
    
    # Drop rows that does not end with punctation
    data = data[data['source'].str[-1:].isin([".",",",":",";","!"])]
    
    # For not creating chaos later with . . . Just remove examples with elipsis 
    data = data[~data['source'].str.contains("...", regex=False)] 
    data = data[~data['source'].str.contains(". . .", regex=False)]
   
    #Drop the id
    data = data.drop(['id'],axis=1)
    
    # Duplicate column
    data['target'] = data['source']
   
    # Apply each method to 10% of the corpus
    # set a stop
    stop =int(len(data)/10)
    stop_small = int(stop/2)

    #Main shuffling
    data = data.sample(frac=1).reset_index(drop=True)
    
    # Lowercase in 10% of the cases
    data.loc[:stop,'source'] = data['source'].str.lower()
    print(f"Lower casing 10% - '{data.loc[0]['target']}' -> '{data.loc[0]['source']}'")
    data = data.sample(frac=1).reset_index(drop=True)

    # Uppercase in 5% of the cases
    data.loc[:stop_small,'source'] = data['source'].str.upper()
    print(f"Upper casing 5% - '{data.loc[0]['target']}' -> '{data.loc[0]['source']}'")
    data = data.sample(frac=1).reset_index(drop=True)


    # Remove all spaces in 10% of the cases
    data.loc[:stop,'source'] = data['source'].str.replace(" ","")
    print(f"Removing space 10% - '{data.loc[0]['target']}' -> '{data.loc[0]['source']}'")
    data = data.sample(frac=1).reset_index(drop=True)

    # Remove both spaces and do lowercasing in 10%
    data.loc[:stop,'source'] = data['source'].str.replace(" ","")
    data.loc[:stop,'source'] = data['source'].str.lower()
    print(f"Removing space and doing lovercase 10% - '{data.loc[0]['target']}' -> '{data.loc[0]['source']}'")
    data = data.sample(frac=1).reset_index(drop=True)
    
    # Remove a random number of spaces in 10% of the cases
    for index, row in data[0:stop].iterrows():
        source = row['source']
        #Find the spaces
        spacepos = [pos for pos, char in enumerate(source) if char == " "]
        random.shuffle(spacepos)
        
        #Reduce to a random number
        spacepos = spacepos[0:random.randint(0,len(spacepos))]
        
        ##Sort in reverse order
        spacepos.sort(reverse=True)
        
        ##Loop and replace
        for s in spacepos:
            source = source[:s] + source[s+1:]

        data.loc[index,'source'] = source
    
    print(f"Removing a random number of spaces 10% - '{data.loc[0]['target']}' -> '{data.loc[0]['source']}'")
    data = data.sample(frac=1).reset_index(drop=True)

    # Remove all punctation in 10% of the cases
    trans_table = source.maketrans("", "", trans_chars)
    data.loc[:stop,'source'] = data['source'].str.translate(trans_table)
    print(f"Removing punctation 10% - '{data.loc[0]['target']}' -> '{data.loc[0]['source']}'")
    data = data.sample(frac=1).reset_index(drop=True)
    
    # Remove a random number of commas in 10% of the cases
    for index, row in data[0:stop].iterrows():
        source = row['source']
        #Find the spaces
        spacepos = [pos for pos, char in enumerate(source) if char == ", "]
        random.shuffle(spacepos)

        #Reduce to a random number
        spacepos = spacepos[0:random.randint(0,len(spacepos))]

        ##Sort in reverse order
        spacepos.sort(reverse=True)

        ##Loop and replace
        for s in spacepos:
            source = source[:s] + " " +source[s+1:]

        data.loc[index,'source'] = source

    print(f"Removing a random number of commas 10% - '{data.loc[0]['target']}' -> '{data.loc[0]['source']}'")
    data = data.sample(frac=1).reset_index(drop=True)
    data.loc[:,'source'] = "correct: "+data['source']
    

    # Train - test - dev
    train, test = train_test_split(data, test_size=0.2)
    test, dev = train_test_split(test, test_size=0.5)
    
    # Write the datasets to disk
    train.to_csv('correct_datafiles/correct_train.tsv', index=False, header=False, sep='\t')
    test.to_csv('correct_datafiles/correct_test.tsv', index=False, header=False, sep='\t')
    dev.to_csv('correct_datafiles/correct_dev.tsv', index=False, header=False, sep='\t')

def parse_args():
    # Parse commandline
    parser = argparse.ArgumentParser()
    args = parser.parse_args()
    return args

if __name__ == "__main__":
    args = parse_args()
    main(args)