File size: 2,564 Bytes
6514cc3
 
 
 
 
 
 
df907da
6514cc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0388815
 
 
6514cc3
 
381bc18
 
 
 
 
 
 
 
6514cc3
 
 
 
 
0388815
 
381bc18
6514cc3
aac2c7b
 
 
 
 
 
 
 
 
381bc18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aac2c7b
 
 
6514cc3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import pandas as pd
import xmltodict
from sklearn.model_selection import train_test_split
import glob
import sys
import os

filelist = glob.glob('translate_dataset/*.tsv')

data = pd.DataFrame()

for tsvfile in filelist:
    tmp = pd.read_csv(tsvfile, sep='\t')
    tmp.columns=['source','target']
    tmp['rev_source'] = tmp['target']
    tmp['rev_target'] = tmp['source']


    path = tsvfile.split("/")
    source = path[1][0:3]
    target = path[1][3:6]
    
    prefix = f"{source}_{target}: "
    tmp['source'] = prefix + tmp['source']
    
    rev_prefix = f"{target}_{source}: "
    tmp['rev_source'] = rev_prefix + tmp['rev_source']

    data = pd.concat([data,tmp])


#Shuffle
data = data.sample(frac=1).reset_index(drop=True)

# Add both directions
original = data[['source','target']]
reverse = data[['rev_source','rev_target']]
reverse.columns=['source','target']

data = pd.concat([original,reverse])
#remove the source prefix
data['source'] = data['source'].str[4:]

data = data.sample(frac=1).reset_index(drop=True)

#Clean before splitting
data['source'] = data['source'].str.replace('\t',' ')
data['source'] = data['source'].str.replace('\n',' ')
data['target'] = data['target'].str.replace('\t',' ')
data['target'] = data['target'].str.replace('\n',' ')



# Train - test - dev
train, test = train_test_split(data, test_size=0.2)
test, dev = train_test_split(test, test_size=0.5)

# Write the datasets to disk
test.to_csv('tsv_all_target/test.tsv', index=False, header=False, sep='\t')
dev.to_csv('tsv_all_target/dev.tsv', index=False, header=False, sep='\t')
print("Finished writint dev and test. Now we are adding some extra language detection and English translation")

# Add the language detection to the training dataset
filelist = glob.glob('langid/langid_datafiles/*train.tsv')

for tsvfile in filelist:
    tmp = pd.read_csv(tsvfile, sep='\t')
    tmp.columns=['source','target']

    train = pd.concat([train,tmp])


# Add extra English training set - Currently we do not add this to the test/dev-collection
tmp = pd.read_csv('eng_nob/train.tsv', sep='\t')
tmp.columns=['source','target']
train = pd.concat([train,tmp])

#Final shuffle
train = train.sample(frac=1).reset_index(drop=True)

#Clean before splitting
train['source'] = train['source'].str.replace('\t',' ')
train['source'] = train['source'].str.replace('\n',' ')
train['target'] = train['target'].str.replace('\t',' ')
train['target'] = train['target'].str.replace('\n',' ')


train.to_csv('tsv_all_target/train.tsv', index=False, header=False, sep='\t')

print("Finished")