fact
stringlengths 0
6.66k
| type
stringclasses 10
values | imports
stringclasses 399
values | filename
stringclasses 465
values | symbolic_name
stringlengths 1
75
| index_level
int64 0
7.85k
|
---|---|---|---|---|---|
(M : IsInitialMorphism Ap) : morphism C X (U (IsInitialMorphism_object M)) := CommaCategory. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics. | Categories\UniversalProperties.v | IsInitialMorphism_morphism | 1,900 |
(M : IsInitialMorphism Ap) (Y : D) (f : morphism C X (U Y)) : morphism D (IsInitialMorphism_object M) Y := CommaCategory. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics. | Categories\UniversalProperties.v | IsInitialMorphism_property_morphism | 1,901 |
(M : IsInitialMorphism Ap) (Y : D) (f : morphism C X (U Y)) : (U _1 (IsInitialMorphism_property_morphism M Y f)) o IsInitialMorphism_morphism M = f := concat (CommaCategory. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics. | Categories\UniversalProperties.v | IsInitialMorphism_property_morphism_property | 1,902 |
(M : IsInitialMorphism Ap) (Y : D) (f : morphism C X (U Y)) m' (H : U _1 m' o IsInitialMorphism_morphism M = f) : IsInitialMorphism_property_morphism M Y f = m' := ap (@CommaCategory. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics. | Categories\UniversalProperties.v | IsInitialMorphism_property_morphism_unique | 1,903 |
(M : IsInitialMorphism Ap) (Y : D) (f : morphism C X (U Y)) : Contr { m : morphism D (IsInitialMorphism_object M) Y | U _1 m o IsInitialMorphism_morphism M = f } := Build_Contr _ (IsInitialMorphism_property_morphism M Y f; IsInitialMorphism_property_morphism_property M Y f) (fun m' => path_sigma _ (IsInitialMorphism_property_morphism M Y f; IsInitialMorphism_property_morphism_property M Y f) m' (@IsInitialMorphism_property_morphism_unique M Y f m'. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics. | Categories\UniversalProperties.v | IsInitialMorphism_property | 1,904 |
(Ap : object (U / X)) : Type := @IsInitialMorphism (C^op) _ X (U^op) (op_object Ap). | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics. | Categories\UniversalProperties.v | IsTerminalMorphism | 1,905 |
forall (A : D)(* := CommaCategory. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics. | Categories\UniversalProperties.v | Build_IsTerminalMorphism | 1,906 |
forall (A : D) (p : morphism C (U A) X) (Ap := CommaCategory. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics. | Categories\UniversalProperties.v | Build_IsTerminalMorphism_curried | 1,907 |
forall (univ : { A : D | { p : morphism C (U A) X | let Ap := CommaCategory. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics. | Categories\UniversalProperties.v | Build_IsTerminalMorphism_uncurried | 1,908 |
D := @IsInitialMorphism_object C^op D^op X U^op (op_object Ap) M. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics. | Categories\UniversalProperties.v | IsTerminalMorphism_object | 1,909 |
morphism C (U IsTerminalMorphism_object) X := @IsInitialMorphism_morphism C^op D^op X U^op (op_object Ap) M. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics. | Categories\UniversalProperties.v | IsTerminalMorphism_morphism | 1,910 |
forall (Y : D) (f : morphism C (U Y) X), Contr { m : morphism D Y IsTerminalMorphism_object | IsTerminalMorphism_morphism o U _1 m = f } := @IsInitialMorphism_property C^op D^op X U^op (op_object Ap) M. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics. | Categories\UniversalProperties.v | IsTerminalMorphism_property | 1,911 |
forall (Y : D) (f : morphism C (U Y) X), morphism D Y IsTerminalMorphism_object := @IsInitialMorphism_property_morphism C^op D^op X U^op (op_object Ap) M. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics. | Categories\UniversalProperties.v | IsTerminalMorphism_property_morphism | 1,912 |
forall (Y : D) (f : morphism C (U Y) X), IsTerminalMorphism_morphism o (U _1 (IsTerminalMorphism_property_morphism Y f)) = f := @IsInitialMorphism_property_morphism_property C^op D^op X U^op (op_object Ap) M. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics. | Categories\UniversalProperties.v | IsTerminalMorphism_property_morphism_property | 1,913 |
forall (Y : D) (f : morphism C (U Y) X) m' (H : IsTerminalMorphism_morphism o U _1 m' = f), IsTerminalMorphism_property_morphism Y f = m' := @IsInitialMorphism_property_morphism_unique C^op D^op X U^op (op_object Ap) M. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics. | Categories\UniversalProperties.v | IsTerminalMorphism_property_morphism_unique | 1,914 |
A : Functor A^op (A -> set_cat) := ExponentialLaws. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics. | Categories\Yoneda.v | coyoneda | 1,915 |
A : Functor A (A^op -> set_cat) := coyoneda A^op. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics. | Categories\Yoneda.v | yoneda | 1,916 |
Functor (A -> set_cat) (A -> set_cat) := (compose_functor _ _ set_cat (coyoneda A)^op) o (yoneda (A -> set_cat)). | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics. | Categories\Yoneda.v | coyoneda_functor | 1,917 |
F : morphism (_ -> _) (coyoneda_functor A F) F. Proof. refine (Build_NaturalTransformation (coyoneda_functor A F) F (fun a phi => phi a 1%morphism) _). simpl. abstract ( repeat (intro || apply path_forall); simpl in *; match goal with | [ T : NaturalTransformation _ _ |- _ ] => simpl rewrite <- (fun s d m => apD10 (commutes T s d m)) end; rewrite ?left_identity, ?right_identity; reflexivity ). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics. | Categories\Yoneda.v | coyoneda_natural_transformation_helper | 1,918 |
morphism (_ -> _) (coyoneda_functor A) 1. Proof. hnf. simpl. let F := match goal with |- NaturalTransformation ?F ?G => constr:(F) end in let G := match goal with |- NaturalTransformation ?F ?G => constr:(G) end in refine (Build_NaturalTransformation F G coyoneda_natural_transformation_helper _). simpl. abstract (repeat first [ intro | progress path_natural_transformation | reflexivity ]). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics. | Categories\Yoneda.v | coyoneda_natural_transformation | 1,919 |
`{Funext} A (F : object (A -> set_cat)) a : morphism set_cat (F a) (coyoneda_functor A F a). Proof. intro Fa. hnf. simpl in *. let F0 := match goal with |- NaturalTransformation ?F ?G => constr:(F) end in let G0 := match goal with |- NaturalTransformation ?F ?G => constr:(G) end in refine (Build_NaturalTransformation F0 G0 (fun a' : A => (fun f : morphism A a a' => F _1 f Fa)) _ ). simpl. abstract ( repeat first [ reflexivity | intro | apply path_forall | progress rewrite ?composition_of, ?identity_of ] ). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics. | Categories\Yoneda.v | coyoneda_lemma_morphism_inverse | 1,920 |
Functor (A^op -> set_cat) (A^op -> set_cat) := coyoneda_functor A^op. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics. | Categories\Yoneda.v | yoneda_functor | 1,921 |
morphism (_ -> _) 1 (yoneda_functor A) := @morphism_inverse _ _ _ _ (coyoneda_lemma A^op). | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics. | Categories\Yoneda.v | yoneda_natural_transformation | 1,922 |
(A : PreCategory) : IsFullyFaithful (coyoneda A). Proof. intros a b. pose proof (@isisomorphism_inverse _ _ _ _ (@isisomorphism_components_of _ _ _ _ _ _ (@isisomorphism_components_of _ _ _ _ _ _ (@coyoneda_lemma _ A) (@coyoneda _ A b)) a)) as H'. simpl in *. unfold coyoneda_lemma_morphism_inverse in *; simpl in *. unfold Functors.inverse_object_of_morphism_of in *; simpl in *. let m := match type of H' with IsIsomorphism ?m => constr:(m) end in apply isisomorphism_set_cat_natural_transformation_paths with (T1 := m). - simpl. clear H'. intros; apply path_forall; intro; rewrite left_identity, right_identity; reflexivity. - destruct H' as [m' H0' H1']. (exists m'). + exact H0'. + exact H1'. Qed. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics. | Categories\Yoneda.v | coyoneda_embedding | 1,923 |
(A : PreCategory) : IsFullyFaithful (yoneda A). Proof. intros a b. pose proof (@coyoneda_embedding A^op a b) as CYE. unfold yoneda. let T := type of CYE in let T' := (eval simpl in T) in pose proof ((fun x : T => (x : T')) CYE) as CYE'. let G := match goal with |- ?G => constr:(G) end in let G' := (eval simpl in G) in exact ((fun x : G' => (x : G)) CYE'). Qed. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics. | Categories\Yoneda.v | yoneda_embedding | 1,924 |
C D (F : Functor C D) (G : Functor D C) (A : F -| G) : G^op -| F^op := @Build_AdjunctionUnitCounit _ _ (G^op) (F^op) ((counit A)^op) ((unit A)^op) (unit_counit_equation_2 A) (unit_counit_equation_1 A). | Definition | Require Import Category.Core Functor.Core. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.UnitCounit Adjoint.Core. | Categories\Adjoint\Dual.v | opposite | 1,925 |
C D (F : Functor C D) (G : Functor D C) (A : F -| G) : (A^op)^op = A := idpath. | Definition | Require Import Category.Core Functor.Core. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.UnitCounit Adjoint.Core. | Categories\Adjoint\Dual.v | opposite_involutive | 1,926 |
Record | Require Import Category.Core Functor.Core. Require Import Adjoint.UnitCounit. Require Import Functor.Dual. Require Import Functor.Prod.Core. Require Import HomFunctor. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. | Categories\Adjoint\Hom.v | AdjunctionHom | 1,927 |
|
adjunction_naturalityT. Proof. pose proof (ap10 (commutes A (c, d) (c, d') (1%morphism, g))^ f) as H'; simpl in *. rewrite ?identity_of, ?left_identity, ?right_identity in H'. exact H'. Qed. | Lemma | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences. | Categories\Adjoint\HomCoercions.v | adjunction_naturality | 1,928 |
adjunction_naturality' : adjunction_naturalityT'. Proof. pose proof (ap10 (commutes A (c', d) (c, d) (g, 1%morphism))^ f) as H'; simpl in *. rewrite ?identity_of, ?left_identity, ?right_identity in H'. exact H'. Qed. | Lemma | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences. | Categories\Adjoint\HomCoercions.v | adjunction_naturality' | 1,929 |
9. | Proposition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences. | Categories\Adjoint\HomCoercions.v | 9.4. | 1,930 |
(A : AdjunctionHom F G) (c : C) (d : D) (f : morphism C c (G d)) : IsHProp {g : morphism D (F c) d & G _1 g o A (c, F c) 1 = f}. Proof. apply hprop_allpath. intros [g0 H0] [g1 H1]; apply path_sigma_hprop; simpl. destruct H1. rewrite !adjunction_naturality in H0. rewrite !right_identity in H0. change (idmap g0 = idmap g1). rewrite <- (ap10 (@left_inverse _ _ _ (A (c, d)) _)). simpl rewrite H0. let k := constr:(ap10 (@left_inverse _ _ _ (A (c, d)) _)) in simpl rewrite k. reflexivity. Qed. | Lemma | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences. | Categories\Adjoint\HomCoercions.v | adjunction_unit__of__adjunction_hom_helper | 1,931 |
(A : AdjunctionHom F G) (s d : C) (m : morphism C s d) : A (d, F d) 1 o m = G _1 (F _1 m) o A (s, F s) 1. Proof. simpl; rewrite adjunction_naturality', adjunction_naturality. rewrite ?left_identity, ?right_identity. reflexivity. Qed. | Lemma | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences. | Categories\Adjoint\HomCoercions.v | adjunction_unit__of__adjunction_hom__mate_of__commutes | 1,932 |
(A : AdjunctionHom F G) : AdjunctionUnit F G. Proof. exists (Build_NaturalTransformation 1 (G o F) (fun c => A (c, F c) 1) (adjunction_unit__of__adjunction_hom__mate_of__commutes A)). simpl in *. intros c d f. apply contr_inhabited_hprop. - apply adjunction_unit__of__adjunction_hom_helper. - exact ((A (c, d))^-1%morphism f; ((adjunction_naturality A _ _ _ _ _) @ (ap (A (c, d)) (right_identity _ _ _ _)) @ (ap10 (@right_inverse _ _ _ (A (c, d)) _) f))%path). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences. | Categories\Adjoint\HomCoercions.v | adjunction_unit__of__adjunction_hom | 1,933 |
(c : C) (d : D) : morphism C c (G d) <~> morphism D (F c) d. Proof. refine (equiv_adjointify (fun f => (@center _ (T.2 _ _ f)).1) (fun g => G _1 g o T.1 c) _ _); intro. - match goal with | [ |- @pr1 ?A ?P ?x = ?y ] => change (x.1 = (exist P y idpath).1) end. apply (ap pr1). apply contr. - match goal with | [ |- context[?x.1] ] => apply x.2 end. Defined. | Lemma | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences. | Categories\Adjoint\HomCoercions.v | equiv_hom_set_adjunction | 1,934 |
(T : AdjunctionUnit F G) sc sd dc dd (mc : morphism C dc sc) (md : morphism D sd dd) : (fun x : morphism D (F sc) sd => G _1 (md o x o F _1 mc) o T .1 dc) = (fun x : morphism D (F sc) sd => G _1 md o (G _1 x o T .1 sc) o mc). Proof. apply path_forall; intro. rewrite !composition_of, !associativity. simpl rewrite (commutes T.1). reflexivity. Qed. | Lemma | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences. | Categories\Adjoint\HomCoercions.v | adjunction_hom__of__adjunction_unit__commutes | 1,935 |
(T : AdjunctionUnit F G) : AdjunctionHom F G. Proof. constructor. (eexists (Build_NaturalTransformation _ _ _ _)). apply (@isisomorphism_natural_transformation _); simpl. exact (fun cd => @isiso_isequiv _ _ _ _ (equiv_isequiv (equiv_hom_set_adjunction T (fst cd) (snd cd))^-1)). Unshelve. simpl. intros. exact (adjunction_hom__of__adjunction_unit__commutes T _ _ _ _ _ _). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences. | Categories\Adjoint\HomCoercions.v | adjunction_hom__of__adjunction_unit | 1,936 |
`{Funext} C D F G := @AdjunctionUnit C D F G. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences. | Categories\Adjoint\HomCoercions.v | AdjunctionUnitWithFunext | 1,937 |
`{Funext} C D F G := @AdjunctionCounit C D F G. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences. | Categories\Adjoint\HomCoercions.v | AdjunctionCounitWithFunext | 1,938 |
`{Funext} C D F G := @AdjunctionUnitCounit C D F G. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences. | Categories\Adjoint\HomCoercions.v | AdjunctionUnitCounitWithFunext | 1,939 |
`{Funext} C D F G (A : AdjunctionUnitWithFunext _ _) : AdjunctionHom _ _ := @adjunction_hom__of__adjunction_unit _ C D F G A. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences. | Categories\Adjoint\HomCoercions.v | adjunction_hom__of__adjunction_unit_Funext | 1,940 |
`{Funext} C D F G (A : AdjunctionCounitWithFunext _ _) : AdjunctionHom _ _ := @adjunction_hom__of__adjunction_unit _ C D F G (adjunction_unit_counit__of__adjunction_counit A). | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences. | Categories\Adjoint\HomCoercions.v | AdjunctionHomOfAdjunctionCounit_Funext | 1,941 |
`{Funext} C D F G (A : AdjunctionUnitCounitWithFunext _ _) : AdjunctionHom _ _ := @adjunction_hom__of__adjunction_unit _ C D F G A. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences. | Categories\Adjoint\HomCoercions.v | adjunction_hom__of__adjunction_unitCounit_Funext | 1,942 |
C : @Adjunction C C 1 1 := @Build_AdjunctionUnitCounit C C 1 1 1 1 (fun _ => identity_identity _ _) (fun _ => identity_identity _ _). | Definition | Require Import Category.Core. Require Import Functor.Identity NaturalTransformation.Identity. Require Import Adjoint.UnitCounit Adjoint.Core. | Categories\Adjoint\Identity.v | identity | 1,943 |
adjunction_sig <~> (F -| G). Proof. issig. Defined. | Lemma | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core Functor.Identity. Require Import Adjoint.UnitCounit Adjoint.Core NaturalTransformation.Paths. Require Import Types Trunc. Require Import Basics.Tactics. | Categories\Adjoint\Paths.v | equiv_sig_adjunction | 1,944 |
path_adjunction' (A A' : F -| G) : unit A = unit A' -> counit A = counit A' -> A = A'. Proof. intros. destruct A, A'; simpl in *. path_induction. f_ap; exact (center _). Qed. | Lemma | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core Functor.Identity. Require Import Adjoint.UnitCounit Adjoint.Core NaturalTransformation.Paths. Require Import Types Trunc. Require Import Basics.Tactics. | Categories\Adjoint\Paths.v | path_adjunction' | 1,945 |
(A A' : F -| G) : components_of (unit A) == components_of (unit A') -> components_of (counit A) == components_of (counit A') -> A = A'. Proof. intros. apply '; apply path_natural_transformation; assumption. Qed. | Lemma | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core Functor.Identity. Require Import Adjoint.UnitCounit Adjoint.Core NaturalTransformation.Paths. Require Import Types Trunc. Require Import Basics.Tactics. | Categories\Adjoint\Paths.v | path_adjunction | 1,946 |
NaturalTransformation (identity (E -> C)) ((pointwise (identity E) G) o (pointwise (identity E) F)). Proof. pose proof (A : AdjunctionUnit _ _) as A''. refine (_ o (((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.identity_of _ _))^-1)%morphism : morphism _ _ _)). refine (_ o NaturalTransformation.Pointwise.pointwise_r (Functor.Identity.identity E) (proj1 A'')). refine (((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.composition_of (Functor.Identity.identity E) F (Functor.Identity.identity E) G)) : morphism _ _ _) o _). refine (NaturalTransformation.Pointwise.pointwise_l _ _). exact (NaturalTransformation.Composition.Laws.left_identity_natural_transformation_2 _). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions. Require Import Functor.Pointwise.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import FunctorCategory.Core. Import NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import NaturalTransformation.Paths Functor.Paths. Require Import Basics.PathGroupoids HoTT.Tactics Types.Arrow. | Categories\Adjoint\Pointwise.v | unit_l | 1,947 |
NaturalTransformation (pointwise (identity E) F o pointwise (identity E) G) (identity (E -> D)). Proof. pose proof (A : AdjunctionCounit _ _) as A''. refine ((((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.identity_of _ _)))%morphism : morphism _ _ _) o _). refine (NaturalTransformation.Pointwise.pointwise_r (Functor.Identity.identity E) (proj1 A'') o _). refine (_ o (((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.composition_of (Functor.Identity.identity E) G (Functor.Identity.identity E) F))^-1)%morphism : morphism _ _ _)). refine (NaturalTransformation.Pointwise.pointwise_l _ _). exact (NaturalTransformation.Composition.Laws.left_identity_natural_transformation_1 _). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions. Require Import Functor.Pointwise.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import FunctorCategory.Core. Import NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import NaturalTransformation.Paths Functor.Paths. Require Import Basics.PathGroupoids HoTT.Tactics Types.Arrow. | Categories\Adjoint\Pointwise.v | counit_l | 1,948 |
pointwise (identity E) F -| pointwise (identity E) G. Proof. exists unit_l counit_l; abstract ( path_natural_transformation; intros; destruct A; simpl in *; repeat match goal with | _ => progress simpl | _ => progress autorewrite with adjoint_pointwise | [ |- context[ap object_of (path_functor_uncurried ?F ?G (?HO; ?HM))] ] => rewrite (@path_functor_uncurried_fst _ _ _ F G HO HM) | _ => progress unfold Functor.Pointwise.Properties.identity_of | _ => progress unfold Functor.Pointwise.Properties.composition_of | _ => progress unfold Functor.Pointwise.Properties.identity_of_helper | _ => progress unfold Functor.Pointwise.Properties.composition_of_helper | _ => progress unfold Functor.Pointwise.Properties.identity_of_helper_helper | _ => progress unfold Functor.Pointwise.Properties.composition_of_helper_helper | [ H : _ |- _ ] => apply H end ). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions. Require Import Functor.Pointwise.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import FunctorCategory.Core. Import NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import NaturalTransformation.Paths Functor.Paths. Require Import Basics.PathGroupoids HoTT.Tactics Types.Arrow. | Categories\Adjoint\Pointwise.v | pointwise_l | 1,949 |
NaturalTransformation (identity (C -> E)) ((pointwise F (identity E)) o (pointwise G (identity E))). Proof. pose proof (A : AdjunctionUnit _ _) as A''. refine (_ o (((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.identity_of _ _))^-1)%morphism : morphism _ _ _)). refine (_ o NaturalTransformation.Pointwise.pointwise_l (proj1 A'') (Functor.Identity.identity E)). refine (((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.composition_of G (Functor.Identity.identity E) F (Functor.Identity.identity E))) : morphism _ _ _) o _). refine (NaturalTransformation.Pointwise.pointwise_r _ _). exact (NaturalTransformation.Composition.Laws.left_identity_natural_transformation_2 _). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions. Require Import Functor.Pointwise.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import FunctorCategory.Core. Import NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import NaturalTransformation.Paths Functor.Paths. Require Import Basics.PathGroupoids HoTT.Tactics Types.Arrow. | Categories\Adjoint\Pointwise.v | unit_r | 1,950 |
NaturalTransformation (pointwise G (identity E) o pointwise F (identity E)) (identity (D -> E)). Proof. pose proof (A : AdjunctionCounit _ _) as A''. refine ((((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.identity_of _ _)))%morphism : morphism _ _ _) o _). refine (NaturalTransformation.Pointwise.pointwise_l (proj1 A'') (Functor.Identity.identity E) o _). refine (_ o (((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.composition_of F (Functor.Identity.identity E) G (Functor.Identity.identity E)))^-1)%morphism : morphism _ _ _)). refine (NaturalTransformation.Pointwise.pointwise_r _ _). exact (NaturalTransformation.Composition.Laws.left_identity_natural_transformation_1 _). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions. Require Import Functor.Pointwise.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import FunctorCategory.Core. Import NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import NaturalTransformation.Paths Functor.Paths. Require Import Basics.PathGroupoids HoTT.Tactics Types.Arrow. | Categories\Adjoint\Pointwise.v | counit_r | 1,951 |
pointwise G (identity E) -| pointwise F (identity E). Proof. exists unit_r counit_r; abstract ( path_natural_transformation; intros; destruct A; simpl in *; repeat match goal with | _ => reflexivity | _ => progress simpl | _ => progress autorewrite with adjoint_pointwise | [ |- context[ap object_of (path_functor_uncurried ?F ?G (?HO; ?HM))] ] => rewrite (@path_functor_uncurried_fst _ _ _ F G HO HM) | _ => progress unfold Functor.Pointwise.Properties.identity_of | _ => progress unfold Functor.Pointwise.Properties.composition_of | _ => progress unfold Functor.Pointwise.Properties.identity_of_helper | _ => progress unfold Functor.Pointwise.Properties.composition_of_helper | _ => progress unfold Functor.Pointwise.Properties.identity_of_helper_helper | _ => progress unfold Functor.Pointwise.Properties.composition_of_helper_helper | _ => rewrite <- composition_of; progress rewrite_hyp end ). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions. Require Import Functor.Pointwise.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import FunctorCategory.Core. Import NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import NaturalTransformation.Paths Functor.Paths. Require Import Basics.PathGroupoids HoTT.Tactics Types.Arrow. | Categories\Adjoint\Pointwise.v | pointwise_r | 1,952 |
{ T : NaturalTransformation 1 (G o F) | forall (c : C) (d : D) (f : morphism C c (G d)), Contr { g : morphism D (F c) d | G _1 g o T c = f } }. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Composition.Core Functor.Identity. | Categories\Adjoint\UnitCounit.v | AdjunctionUnit | 1,953 |
{ U : NaturalTransformation (F o G) 1 | forall (c : C) (d : D) (g : morphism D (F c) d), Contr { f : morphism C c (G d) | U d o F _1 f = g } }. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Composition.Core Functor.Identity. | Categories\Adjoint\UnitCounit.v | AdjunctionCounit | 1,954 |
(A : AdjunctionUnit G^op F^op) : AdjunctionCounit F G := exist (fun U : NaturalTransformation (F o G) 1 => forall (c : C) (d : D) (g : morphism D (F c) d), Contr {f : morphism C c (G d) | U d o F _1 f = g }) (A. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Composition.Core Functor.Identity. | Categories\Adjoint\UnitCounit.v | adjunction_counit__op__adjunction_unit | 1,955 |
(A : AdjunctionUnit G F) : AdjunctionCounit F^op G^op := exist (fun U : NaturalTransformation (F^op o G^op) 1 => forall (c : C^op) (d : D^op) (g : morphism D^op ((F^op)%functor c) d), Contr {f : morphism C^op c ((G^op)%functor d) | U d o F^op _1 f = g }) (A. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Composition.Core Functor.Identity. | Categories\Adjoint\UnitCounit.v | adjunction_counit__op__adjunction_unit__inv | 1,956 |
(A : AdjunctionCounit G^op F^op) : AdjunctionUnit F G := exist (fun T : NaturalTransformation 1 (G o F) => forall (c : C) (d : D) (f : morphism C c (G d)), Contr { g : morphism D (F c) d | G _1 g o T c = f }) (A. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Composition.Core Functor.Identity. | Categories\Adjoint\UnitCounit.v | adjunction_unit__op__adjunction_counit | 1,957 |
(A : AdjunctionCounit G F) : AdjunctionUnit F^op G^op := exist (fun T : NaturalTransformation 1 (G^op o F^op) => forall (c : C^op) (d : D^op) (f : morphism C^op c ((G^op)%functor d)), Contr {g : morphism D^op ((F^op)%functor c) d | G^op _1 g o T c = f }) (A. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Composition.Core Functor.Identity. | Categories\Adjoint\UnitCounit.v | adjunction_unit__op__adjunction_counit__inv | 1,958 |
Record | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Composition.Core Functor.Identity. | Categories\Adjoint\UnitCounit.v | AdjunctionUnitCounit | 1,959 |
|
C D F G (A : @AdjunctionUnitCounit C D F G) : AdjunctionUnit F G. Proof. exists (unit A). intros c d f. apply contr_inhabited_hprop; [ apply hprop_allpath | (exists (counit A d o F _1 f)); abstract unit_counit_of_t ]. intros [? ?] [? ?]. apply path_sigma_uncurried. let A := match goal with |- @sig ?A ?P => constr:(A) end in let H := fresh in assert (H : A); [ | exists H; exact (center _) ]. simpl. let x := match goal with |- ?x = ?y => constr:(x) end in let y := match goal with |- ?x = ?y => constr:(y) end in rewrite <- (right_identity _ _ _ x), <- (right_identity _ _ _ y), <- !(unit_counit_equation_1 A), <- ?associativity; repeat simpl rewrite <- (commutes (counit A)); (try_associativity_quick rewrite <- !composition_of); repeat apply ap; etransitivity; [ | symmetry ]; eassumption. Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import HoTT.Tactics Basics.Trunc Types.Sigma. Require Import Basics.Tactics. | Categories\Adjoint\UnitCounitCoercions.v | adjunction_unit__of__adjunction_unit_counit | 1,960 |
C D F G (A : @AdjunctionUnitCounit C D F G) : AdjunctionCounit F G := adjunction_counit__op__adjunction_unit (adjunction_unit__of__adjunction_unit_counit A^op). | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import HoTT.Tactics Basics.Trunc Types.Sigma. Require Import Basics.Tactics. | Categories\Adjoint\UnitCounitCoercions.v | adjunction_counit__of__adjunction_unit_counit | 1,961 |
(A : AdjunctionUnit F G) s d (m : morphism D s d) (eta := A.1) (eps := fun X => (@center _ (A.2 (G X) X 1)).1) : G _1 (eps d o F _1 (G _1 m)) o eta (G s) = G _1 m -> G _1 (m o eps s) o eta (G s) = G _1 m -> eps d o F _1 (G _1 m) = m o eps s. Proof. intros. transitivity (@center _ (A.2 _ _ (G _1 m))).1; [ symmetry | ]; let x := match goal with |- _ = ?x => constr:(x) end in refine ((fun H => ap pr1 (@contr _ (A.2 _ _ (G _1 m)) (x; H))) _); assumption. Qed. | Lemma | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import HoTT.Tactics Basics.Trunc Types.Sigma. Require Import Basics.Tactics. | Categories\Adjoint\UnitCounitCoercions.v | counit_natural_transformation__of__adjunction_unit_helper | 1,962 |
(A : AdjunctionUnit F G) : NaturalTransformation (F o G) 1. Proof. refine (Build_NaturalTransformation (F o G) 1 (fun d => (@center _ (A.2 (G d) d 1)).1) _). abstract ( to_unit_counit_nt counit_natural_transformation__of__adjunction_unit_helper ltac:(fun H => try_associativity_quick rewrite <- H) ). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import HoTT.Tactics Basics.Trunc Types.Sigma. Require Import Basics.Tactics. | Categories\Adjoint\UnitCounitCoercions.v | counit_natural_transformation__of__adjunction_unit | 1,963 |
(A : AdjunctionUnit F G) (Y : C) (eta := A.1) (eps := fun X => (@center _ (A.2 (G X) X 1)).1) : G _1 (eps (F Y) o F _1 (eta Y)) o eta Y = eta Y -> eps (F Y) o F _1 (eta Y) = 1. Proof. intros. etransitivity; [ symmetry | ]; simpl_do_clear ltac:(fun H => apply H) (fun y H => (@contr _ (A.2 _ _ (A.1 Y)) (y; H))..1); try assumption. simpl. rewrite ?identity_of, ?left_identity, ?right_identity; reflexivity. Qed. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import HoTT.Tactics Basics.Trunc Types.Sigma. Require Import Basics.Tactics. | Categories\Adjoint\UnitCounitCoercions.v | zig__of__adjunction_unit | 1,964 |
(A : AdjunctionUnit F G) : AdjunctionUnitCounit F G. Proof. exists A.1 (counit_natural_transformation__of__adjunction_unit A); simpl; intros; try match goal with | [ |- context[?x.1] ] => exact x.2 end; []. abstract (to_unit_counit_nt zig__of__adjunction_unit ltac:(fun H => try_associativity_quick rewrite <- H)). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import HoTT.Tactics Basics.Trunc Types.Sigma. Require Import Basics.Tactics. | Categories\Adjoint\UnitCounitCoercions.v | adjunction_unit_counit__of__adjunction_unit | 1,965 |
C D F G (A : @AdjunctionCounit C D F G) : AdjunctionUnitCounit F G := ((adjunction_unit_counit__of__adjunction_unit (adjunction_unit__op__adjunction_counit__inv A))^op)%adjunction. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import HoTT.Tactics Basics.Trunc Types.Sigma. Require Import Basics.Tactics. | Categories\Adjoint\UnitCounitCoercions.v | adjunction_unit_counit__of__adjunction_counit | 1,966 |
((_, _); (AH o AG) o AF) = ((_, _); AH o (AG o AF)) :> AdjunctionWithFunctors B E. Proof. apply path_sigma_uncurried; simpl. (exists (path_prod' (Functor.Composition.Laws. _ _ _) (symmetry _ _ (Functor.Composition.Laws. _ _ _)))); Adjoint.Composition.LawsTactic.law_t. Qed. | Lemma | Require Import Category.Core Functor.Core. Require Import Adjoint.Composition.Core Adjoint.Core. Require Import Types.Sigma Types.Prod. | Categories\Adjoint\Composition\AssociativityLaw.v | associativity | 1,967 |
NaturalTransformation 1 ((G o G') o (F' o F)). Proof. pose (unit A) as eta. pose (unit A') as eta'. refine ((fun (T : NaturalTransformation _ _) (U : NaturalTransformation _ _) => T o (G oL eta' oR F) o U o eta) _ _); NaturalTransformation.Composition.Laws.nt_solve_associator. Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Functor.Identity. Require Import Adjoint.UnitCounit Adjoint.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics. | Categories\Adjoint\Composition\Core.v | compose_unit | 1,968 |
NaturalTransformation ((F' o F) o (G o G')) 1. Proof. pose (counit A) as eps. pose (counit A') as eps'. refine ((fun (T : NaturalTransformation _ _) (U : NaturalTransformation _ _) => eps' o U o (F' oL eps oR G') o T) _ _); NaturalTransformation.Composition.Laws.nt_solve_associator. Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Functor.Identity. Require Import Adjoint.UnitCounit Adjoint.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics. | Categories\Adjoint\Composition\Core.v | compose_counit | 1,969 |
F' o F -| G o G'. Proof. exists compose_unit compose_counit; simpl; abstract ( repeat match goal with | _ => intro | _ => reflexivity | _ => progress rewrite ?identity_of, ?left_identity, ?right_identity | _ => rewrite <- ?composition_of, unit_counit_equation_1 | _ => rewrite <- ?composition_of, unit_counit_equation_2 | [ A : _ -| _ |- _ = 1%morphism ] => (etransitivity; [ | apply (unit_counit_equation_1 A) ]; try_associativity_quick f_ap) | [ A : _ -| _ |- _ = 1%morphism ] => (etransitivity; [ | apply (unit_counit_equation_2 A) ]; try_associativity_quick f_ap) | _ => repeat (try_associativity_quick rewrite <- !composition_of); progress repeat apply ap; rewrite ?composition_of | [ |- context[components_of ?T] ] => (try_associativity_quick simpl rewrite <- (commutes T)); try_associativity_quick (apply concat_right_identity || apply concat_left_identity) | [ |- context[components_of ?T] ] => (try_associativity_quick simpl rewrite (commutes T)); try_associativity_quick (apply concat_right_identity || apply concat_left_identity) end ). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Functor.Identity. Require Import Adjoint.UnitCounit Adjoint.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics. | Categories\Adjoint\Composition\Core.v | compose | 1,970 |
((_, _); 1 o A) = ((_, _); A) :> AdjunctionWithFunctors C D. Proof. apply path_sigma_uncurried; simpl. (exists (path_prod' (Functor.Composition.Laws. _) (Functor.Composition.Laws.right_identity _))). Adjoint.Composition.LawsTactic.law_t. Qed. | Lemma | Require Import Category.Core Functor.Core. Require Import Adjoint.Composition.Core Adjoint.Core Adjoint.Identity. Require Import Types.Sigma Types.Prod. | Categories\Adjoint\Composition\IdentityLaws.v | left_identity | 1,971 |
((_, _); A o 1) = ((_, _); A) :> AdjunctionWithFunctors C D. Proof. apply path_sigma_uncurried; simpl. (exists (path_prod' (Functor.Composition.Laws. _) (Functor.Composition.Laws.left_identity _))). Adjoint.Composition.LawsTactic.law_t. Qed. | Lemma | Require Import Category.Core Functor.Core. Require Import Adjoint.Composition.Core Adjoint.Core Adjoint.Identity. Require Import Types.Sigma Types.Prod. | Categories\Adjoint\Composition\IdentityLaws.v | right_identity | 1,972 |
Functor (sig_obj (D -> C) (fun G => { F : Functor C D & F -| G })) (sig_obj ((C -> D)^op * (D -> C)) (fun FG => fst FG -| snd FG)) := Build_Functor (sig_obj (D -> C) (fun G => { F : Functor C D & F -| G })) (sig_obj ((C -> D)^op * (D -> C)) (fun FG => fst FG -| snd FG)) (fun GFA => ((GFA. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual. Require Import FunctorCategory.Core. Require Import Category.Sigma.OnObjects Category.Prod. Require Import Adjoint.Core. Require Import Adjoint.Functorial.Parts Adjoint.Functorial.Laws. Require Import HoTT.Types.Prod. | Categories\Adjoint\Functorial\Core.v | left_functor_nondep | 1,973 |
Functor (sig_obj (C -> D) (fun F => { G : Functor D C & F -| G })) (sig_obj ((C -> D) * (D -> C)^op) (fun FG => fst FG -| snd FG)) := Build_Functor (sig_obj (C -> D) (fun F => { G : Functor D C & F -| G })) (sig_obj ((C -> D) * (D -> C)^op) (fun FG => fst FG -| snd FG)) (fun GFA => ((GFA. | Definition | Require Import Category.Core Functor.Core. Require Import Category.Dual. Require Import FunctorCategory.Core. Require Import Category.Sigma.OnObjects Category.Prod. Require Import Adjoint.Core. Require Import Adjoint.Functorial.Parts Adjoint.Functorial.Laws. Require Import HoTT.Types.Prod. | Categories\Adjoint\Functorial\Core.v | right_functor_nondep | 1,974 |
@left_morphism_of C C 1 D D 1 G F A G F A 1 = ((left_identity_natural_transformation_2 _) o (right_identity_natural_transformation_1 _))%natural_transformation. Proof. t. Qed. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics. | Categories\Adjoint\Functorial\Laws.v | left_identity_of | 1,975 |
@left_morphism_of_nondep C D G F A G F A 1 = 1%natural_transformation. Proof. t. Qed. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics. | Categories\Adjoint\Functorial\Laws.v | left_identity_of_nondep | 1,976 |
(@left_morphism_of _ _ _ _ _ _ _ _ A _ _ A'' ((associator_1 _ _ _) o (T' oR DF) o (associator_2 _ _ _) o (CF' oL T) o (associator_1 _ _ _))) = (associator_2 _ _ _) o (DF' oL left_morphism_of A A' T) o (associator_1 _ _ _) o (left_morphism_of A' A'' T' oR CF) o (associator_2 _ _ _). Proof. t. Qed. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics. | Categories\Adjoint\Functorial\Laws.v | left_composition_of | 1,977 |
(@left_morphism_of_nondep _ _ _ _ A _ _ A'' (T' o T)) = ((left_morphism_of_nondep A A' T) o (left_morphism_of_nondep A' A'' T')). Proof. t. Qed. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics. | Categories\Adjoint\Functorial\Laws.v | left_composition_of_nondep | 1,978 |
@right_morphism_of C C 1 D D 1 F G A F G A 1 = ((right_identity_natural_transformation_2 _) o (left_identity_natural_transformation_1 _))%natural_transformation := ap (@NaturalTransformation. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics. | Categories\Adjoint\Functorial\Laws.v | right_identity_of | 1,979 |
@right_morphism_of_nondep C D F G A F G A 1 = 1%natural_transformation := ap (@NaturalTransformation. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics. | Categories\Adjoint\Functorial\Laws.v | right_identity_of_nondep | 1,980 |
right_morphism_of A A'' ((associator_2 DF' DF F) o ((DF' oL T) o ((associator_1 DF' F' CF) o ((T' oR CF) o (associator_2 F'' CF' CF))))) = (associator_1 G'' DF' DF) o ((right_morphism_of A' A'' T' oR DF) o ((associator_2 CF' G' DF) o ((CF' oL right_morphism_of A A' T) o (associator_1 CF' CF G)))) := ap (@NaturalTransformation. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics. | Categories\Adjoint\Functorial\Laws.v | right_composition_of | 1,981 |
(@right_morphism_of_nondep _ _ _ _ A'' _ _ A (T' o T)) = ((right_morphism_of_nondep A' A T) o (right_morphism_of_nondep A'' A' T')) := ap (@NaturalTransformation. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics. | Categories\Adjoint\Functorial\Laws.v | right_composition_of_nondep | 1,982 |
NaturalTransformation (F' o CF) (DF o F). Proof. refine ((_) o (counit A' oR (DF o F)) o _ o (F' oL ((T oR F) o _ o (CF oL unit A) o _)))%natural_transformation; nt_solve_associator. Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. | Categories\Adjoint\Functorial\Parts.v | left_morphism_of | 1,983 |
NaturalTransformation F' F. Proof. refine (_ o (@left_morphism_of C C 1 D D 1 G F A G' F' A' (_ o T o _)) o _)%natural_transformation; nt_solve_associator. Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. | Categories\Adjoint\Functorial\Parts.v | left_morphism_of_nondep | 1,984 |
C C' CF D D' DF (F : Functor C D) (G : Functor D C) (A : F -| G) (F' : Functor C' D') (G' : Functor D' C') (A' : F' -| G') (T : NaturalTransformation (F' o CF) (DF o F)) : NaturalTransformation (CF o G) (G' o DF) := (@left_morphism_of _ _ DF^op _ _ CF^op F^op G^op A^op F'^op G'^op A'^op T^op)^op. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. | Categories\Adjoint\Functorial\Parts.v | right_morphism_of | 1,985 |
C D (F : Functor C D) (G : Functor D C) (A : F -| G) (F' : Functor C D) (G' : Functor D C) (A' : F' -| G') (T : NaturalTransformation F' F) : NaturalTransformation G G' := (@left_morphism_of_nondep _ _ F^op G^op A^op F'^op G'^op A'^op T^op)^op. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. | Categories\Adjoint\Functorial\Parts.v | right_morphism_of_nondep | 1,986 |
object (Y / G) := @CommaCategory. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors. | Categories\Adjoint\UniversalMorphisms\Core.v | initial_morphism__of__adjunction | 1,987 |
IsInitialMorphism initial_morphism__of__adjunction := Build_IsInitialMorphism _ _ _ _ ((A : AdjunctionUnit _ _). | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors. | Categories\Adjoint\UniversalMorphisms\Core.v | is_initial_morphism__of__adjunction | 1,988 |
object (F / X) := Eval simpl in dual_functor (! X)^op F^op (initial_morphism__of__adjunction A^op X). | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors. | Categories\Adjoint\UniversalMorphisms\Core.v | terminal_morphism__of__adjunction | 1,989 |
IsTerminalMorphism terminal_morphism__of__adjunction := is_initial_morphism__of__adjunction A^op X. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors. | Categories\Adjoint\UniversalMorphisms\Core.v | is_terminal_morphism__of__adjunction | 1,990 |
Y : mor_of Y Y 1 = 1. Proof. simpl. erewrite IsInitialMorphism_property_morphism_unique; [ reflexivity | ]. rewrite ?, ?left_identity, ?right_identity. reflexivity. Qed. | Lemma | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors. | Categories\Adjoint\UniversalMorphisms\Core.v | identity_of | 1,991 |
x y z g f : mor_of _ _ (f o g) = mor_of y z f o mor_of x y g. Proof. simpl. erewrite IsInitialMorphism_property_morphism_unique; [ reflexivity | ]. rewrite ?. repeat try_associativity_quick rewrite IsInitialMorphism_property_morphism_property. reflexivity. Qed. | Lemma | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors. | Categories\Adjoint\UniversalMorphisms\Core.v | composition_of | 1,992 |
Functor C D := Build_Functor C D (fun x => obj_of x) (fun s d m => mor_of s d m) composition_of identity_of. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors. | Categories\Adjoint\UniversalMorphisms\Core.v | functor__of__initial_morphism | 1,993 |
functor__of__initial_morphism -| G. Proof. refine (adjunction_unit_counit__of__adjunction_unit _). eexists (Build_NaturalTransformation 1 (G o functor__of__initial_morphism) (fun x => IsInitialMorphism_morphism (@HM x)) (fun s d m => symmetry _ _ (IsInitialMorphism_property_morphism_property (@HM s) _ _))). simpl. exact (fun c => @IsInitialMorphism_property _ _ c G (M c) (@HM c)). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors. | Categories\Adjoint\UniversalMorphisms\Core.v | adjunction__of__initial_morphism | 1,994 |
Functor D C := (@functor__of__initial_morphism (D^op) (C^op) (F^op) (fun x : D => dual_functor F !x (M x)) HM)^op. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors. | Categories\Adjoint\UniversalMorphisms\Core.v | functor__of__terminal_morphism | 1,995 |
F -| functor__of__terminal_morphism := ((@adjunction__of__initial_morphism (D^op) (C^op) (F^op) (fun x : D => dual_functor F !x (M x)) HM)^op)%adjunction. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors. | Categories\Adjoint\UniversalMorphisms\Core.v | adjunction__of__terminal_morphism | 1,996 |
PreCategory := @Build_PreCategory { C : PreCategory | P C } (fun C D => Functor C. | Definition | Require Import Category.Objects InitialTerminalCategory.Core InitialTerminalCategory.Functors Functor.Core Category.Strict Functor.Paths. Require Import Functor.Identity Functor.Composition.Core Functor.Composition.Laws. | Categories\Cat\Core.v | sub_pre_cat | 1,997 |
`{Funext} : PreCategory := sub_pre_cat (fun C => IsStrictCategory C). | Definition | Require Import Category.Objects InitialTerminalCategory.Core InitialTerminalCategory.Functors Functor.Core Category.Strict Functor.Paths. Require Import Functor.Identity Functor.Composition.Core Functor.Composition.Laws. | Categories\Cat\Core.v | strict_cat | 1,998 |
`(IsTerminalCategory one) (HT : P one) : IsTerminalObject (sub_pre_cat P HF) (one; HT). Proof. typeclasses eauto. Defined. | Lemma | Require Import Category.Objects InitialTerminalCategory.Core InitialTerminalCategory.Functors Functor.Core Category.Strict Functor.Paths. Require Import Functor.Identity Functor.Composition.Core Functor.Composition.Laws. | Categories\Cat\Core.v | is_terminal_object__is_terminal_category | 1,999 |