fact
stringlengths
0
6.66k
type
stringclasses
10 values
imports
stringclasses
399 values
filename
stringclasses
465 values
symbolic_name
stringlengths
1
75
index_level
int64
0
7.85k
(M : IsInitialMorphism Ap) : morphism C X (U (IsInitialMorphism_object M)) := CommaCategory.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
IsInitialMorphism_morphism
1,900
(M : IsInitialMorphism Ap) (Y : D) (f : morphism C X (U Y)) : morphism D (IsInitialMorphism_object M) Y := CommaCategory.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
IsInitialMorphism_property_morphism
1,901
(M : IsInitialMorphism Ap) (Y : D) (f : morphism C X (U Y)) : (U _1 (IsInitialMorphism_property_morphism M Y f)) o IsInitialMorphism_morphism M = f := concat (CommaCategory.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
IsInitialMorphism_property_morphism_property
1,902
(M : IsInitialMorphism Ap) (Y : D) (f : morphism C X (U Y)) m' (H : U _1 m' o IsInitialMorphism_morphism M = f) : IsInitialMorphism_property_morphism M Y f = m' := ap (@CommaCategory.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
IsInitialMorphism_property_morphism_unique
1,903
(M : IsInitialMorphism Ap) (Y : D) (f : morphism C X (U Y)) : Contr { m : morphism D (IsInitialMorphism_object M) Y | U _1 m o IsInitialMorphism_morphism M = f } := Build_Contr _ (IsInitialMorphism_property_morphism M Y f; IsInitialMorphism_property_morphism_property M Y f) (fun m' => path_sigma _ (IsInitialMorphism_property_morphism M Y f; IsInitialMorphism_property_morphism_property M Y f) m' (@IsInitialMorphism_property_morphism_unique M Y f m'.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
IsInitialMorphism_property
1,904
(Ap : object (U / X)) : Type := @IsInitialMorphism (C^op) _ X (U^op) (op_object Ap).
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
IsTerminalMorphism
1,905
forall (A : D)(* := CommaCategory.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
Build_IsTerminalMorphism
1,906
forall (A : D) (p : morphism C (U A) X) (Ap := CommaCategory.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
Build_IsTerminalMorphism_curried
1,907
forall (univ : { A : D | { p : morphism C (U A) X | let Ap := CommaCategory.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
Build_IsTerminalMorphism_uncurried
1,908
D := @IsInitialMorphism_object C^op D^op X U^op (op_object Ap) M.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
IsTerminalMorphism_object
1,909
morphism C (U IsTerminalMorphism_object) X := @IsInitialMorphism_morphism C^op D^op X U^op (op_object Ap) M.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
IsTerminalMorphism_morphism
1,910
forall (Y : D) (f : morphism C (U Y) X), Contr { m : morphism D Y IsTerminalMorphism_object | IsTerminalMorphism_morphism o U _1 m = f } := @IsInitialMorphism_property C^op D^op X U^op (op_object Ap) M.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
IsTerminalMorphism_property
1,911
forall (Y : D) (f : morphism C (U Y) X), morphism D Y IsTerminalMorphism_object := @IsInitialMorphism_property_morphism C^op D^op X U^op (op_object Ap) M.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
IsTerminalMorphism_property_morphism
1,912
forall (Y : D) (f : morphism C (U Y) X), IsTerminalMorphism_morphism o (U _1 (IsTerminalMorphism_property_morphism Y f)) = f := @IsInitialMorphism_property_morphism_property C^op D^op X U^op (op_object Ap) M.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
IsTerminalMorphism_property_morphism_property
1,913
forall (Y : D) (f : morphism C (U Y) X) m' (H : IsTerminalMorphism_morphism o U _1 m' = f), IsTerminalMorphism_property_morphism Y f = m' := @IsInitialMorphism_property_morphism_unique C^op D^op X U^op (op_object Ap) M.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
IsTerminalMorphism_property_morphism_unique
1,914
A : Functor A^op (A -> set_cat) := ExponentialLaws.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics.
Categories\Yoneda.v
coyoneda
1,915
A : Functor A (A^op -> set_cat) := coyoneda A^op.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics.
Categories\Yoneda.v
yoneda
1,916
Functor (A -> set_cat) (A -> set_cat) := (compose_functor _ _ set_cat (coyoneda A)^op) o (yoneda (A -> set_cat)).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics.
Categories\Yoneda.v
coyoneda_functor
1,917
F : morphism (_ -> _) (coyoneda_functor A F) F. Proof. refine (Build_NaturalTransformation (coyoneda_functor A F) F (fun a phi => phi a 1%morphism) _). simpl. abstract ( repeat (intro || apply path_forall); simpl in *; match goal with | [ T : NaturalTransformation _ _ |- _ ] => simpl rewrite <- (fun s d m => apD10 (commutes T s d m)) end; rewrite ?left_identity, ?right_identity; reflexivity ). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics.
Categories\Yoneda.v
coyoneda_natural_transformation_helper
1,918
morphism (_ -> _) (coyoneda_functor A) 1. Proof. hnf. simpl. let F := match goal with |- NaturalTransformation ?F ?G => constr:(F) end in let G := match goal with |- NaturalTransformation ?F ?G => constr:(G) end in refine (Build_NaturalTransformation F G coyoneda_natural_transformation_helper _). simpl. abstract (repeat first [ intro | progress path_natural_transformation | reflexivity ]). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics.
Categories\Yoneda.v
coyoneda_natural_transformation
1,919
`{Funext} A (F : object (A -> set_cat)) a : morphism set_cat (F a) (coyoneda_functor A F a). Proof. intro Fa. hnf. simpl in *. let F0 := match goal with |- NaturalTransformation ?F ?G => constr:(F) end in let G0 := match goal with |- NaturalTransformation ?F ?G => constr:(G) end in refine (Build_NaturalTransformation F0 G0 (fun a' : A => (fun f : morphism A a a' => F _1 f Fa)) _ ). simpl. abstract ( repeat first [ reflexivity | intro | apply path_forall | progress rewrite ?composition_of, ?identity_of ] ). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics.
Categories\Yoneda.v
coyoneda_lemma_morphism_inverse
1,920
Functor (A^op -> set_cat) (A^op -> set_cat) := coyoneda_functor A^op.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics.
Categories\Yoneda.v
yoneda_functor
1,921
morphism (_ -> _) 1 (yoneda_functor A) := @morphism_inverse _ _ _ _ (coyoneda_lemma A^op).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics.
Categories\Yoneda.v
yoneda_natural_transformation
1,922
(A : PreCategory) : IsFullyFaithful (coyoneda A). Proof. intros a b. pose proof (@isisomorphism_inverse _ _ _ _ (@isisomorphism_components_of _ _ _ _ _ _ (@isisomorphism_components_of _ _ _ _ _ _ (@coyoneda_lemma _ A) (@coyoneda _ A b)) a)) as H'. simpl in *. unfold coyoneda_lemma_morphism_inverse in *; simpl in *. unfold Functors.inverse_object_of_morphism_of in *; simpl in *. let m := match type of H' with IsIsomorphism ?m => constr:(m) end in apply isisomorphism_set_cat_natural_transformation_paths with (T1 := m). - simpl. clear H'. intros; apply path_forall; intro; rewrite left_identity, right_identity; reflexivity. - destruct H' as [m' H0' H1']. (exists m'). + exact H0'. + exact H1'. Qed.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics.
Categories\Yoneda.v
coyoneda_embedding
1,923
(A : PreCategory) : IsFullyFaithful (yoneda A). Proof. intros a b. pose proof (@coyoneda_embedding A^op a b) as CYE. unfold yoneda. let T := type of CYE in let T' := (eval simpl in T) in pose proof ((fun x : T => (x : T')) CYE) as CYE'. let G := match goal with |- ?G => constr:(G) end in let G' := (eval simpl in G) in exact ((fun x : G' => (x : G)) CYE'). Qed.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import SetCategory. Require Import Functor.Attributes. Require Import Functor.Composition.Functorial. Require Import Functor.Identity. Require Import HomFunctor. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import HoTT.Tactics.
Categories\Yoneda.v
yoneda_embedding
1,924
C D (F : Functor C D) (G : Functor D C) (A : F -| G) : G^op -| F^op := @Build_AdjunctionUnitCounit _ _ (G^op) (F^op) ((counit A)^op) ((unit A)^op) (unit_counit_equation_2 A) (unit_counit_equation_1 A).
Definition
Require Import Category.Core Functor.Core. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.UnitCounit Adjoint.Core.
Categories\Adjoint\Dual.v
opposite
1,925
C D (F : Functor C D) (G : Functor D C) (A : F -| G) : (A^op)^op = A := idpath.
Definition
Require Import Category.Core Functor.Core. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.UnitCounit Adjoint.Core.
Categories\Adjoint\Dual.v
opposite_involutive
1,926
Record
Require Import Category.Core Functor.Core. Require Import Adjoint.UnitCounit. Require Import Functor.Dual. Require Import Functor.Prod.Core. Require Import HomFunctor. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity.
Categories\Adjoint\Hom.v
AdjunctionHom
1,927
adjunction_naturalityT. Proof. pose proof (ap10 (commutes A (c, d) (c, d') (1%morphism, g))^ f) as H'; simpl in *. rewrite ?identity_of, ?left_identity, ?right_identity in H'. exact H'. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences.
Categories\Adjoint\HomCoercions.v
adjunction_naturality
1,928
adjunction_naturality' : adjunction_naturalityT'. Proof. pose proof (ap10 (commutes A (c', d) (c, d) (g, 1%morphism))^ f) as H'; simpl in *. rewrite ?identity_of, ?left_identity, ?right_identity in H'. exact H'. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences.
Categories\Adjoint\HomCoercions.v
adjunction_naturality'
1,929
9.
Proposition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences.
Categories\Adjoint\HomCoercions.v
9.4.
1,930
(A : AdjunctionHom F G) (c : C) (d : D) (f : morphism C c (G d)) : IsHProp {g : morphism D (F c) d & G _1 g o A (c, F c) 1 = f}. Proof. apply hprop_allpath. intros [g0 H0] [g1 H1]; apply path_sigma_hprop; simpl. destruct H1. rewrite !adjunction_naturality in H0. rewrite !right_identity in H0. change (idmap g0 = idmap g1). rewrite <- (ap10 (@left_inverse _ _ _ (A (c, d)) _)). simpl rewrite H0. let k := constr:(ap10 (@left_inverse _ _ _ (A (c, d)) _)) in simpl rewrite k. reflexivity. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences.
Categories\Adjoint\HomCoercions.v
adjunction_unit__of__adjunction_hom_helper
1,931
(A : AdjunctionHom F G) (s d : C) (m : morphism C s d) : A (d, F d) 1 o m = G _1 (F _1 m) o A (s, F s) 1. Proof. simpl; rewrite adjunction_naturality', adjunction_naturality. rewrite ?left_identity, ?right_identity. reflexivity. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences.
Categories\Adjoint\HomCoercions.v
adjunction_unit__of__adjunction_hom__mate_of__commutes
1,932
(A : AdjunctionHom F G) : AdjunctionUnit F G. Proof. exists (Build_NaturalTransformation 1 (G o F) (fun c => A (c, F c) 1) (adjunction_unit__of__adjunction_hom__mate_of__commutes A)). simpl in *. intros c d f. apply contr_inhabited_hprop. - apply adjunction_unit__of__adjunction_hom_helper. - exact ((A (c, d))^-1%morphism f; ((adjunction_naturality A _ _ _ _ _) @ (ap (A (c, d)) (right_identity _ _ _ _)) @ (ap10 (@right_inverse _ _ _ (A (c, d)) _) f))%path). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences.
Categories\Adjoint\HomCoercions.v
adjunction_unit__of__adjunction_hom
1,933
(c : C) (d : D) : morphism C c (G d) <~> morphism D (F c) d. Proof. refine (equiv_adjointify (fun f => (@center _ (T.2 _ _ f)).1) (fun g => G _1 g o T.1 c) _ _); intro. - match goal with | [ |- @pr1 ?A ?P ?x = ?y ] => change (x.1 = (exist P y idpath).1) end. apply (ap pr1). apply contr. - match goal with | [ |- context[?x.1] ] => apply x.2 end. Defined.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences.
Categories\Adjoint\HomCoercions.v
equiv_hom_set_adjunction
1,934
(T : AdjunctionUnit F G) sc sd dc dd (mc : morphism C dc sc) (md : morphism D sd dd) : (fun x : morphism D (F sc) sd => G _1 (md o x o F _1 mc) o T .1 dc) = (fun x : morphism D (F sc) sd => G _1 md o (G _1 x o T .1 sc) o mc). Proof. apply path_forall; intro. rewrite !composition_of, !associativity. simpl rewrite (commutes T.1). reflexivity. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences.
Categories\Adjoint\HomCoercions.v
adjunction_hom__of__adjunction_unit__commutes
1,935
(T : AdjunctionUnit F G) : AdjunctionHom F G. Proof. constructor. (eexists (Build_NaturalTransformation _ _ _ _)). apply (@isisomorphism_natural_transformation _); simpl. exact (fun cd => @isiso_isequiv _ _ _ _ (equiv_isequiv (equiv_hom_set_adjunction T (fst cd) (snd cd))^-1)). Unshelve. simpl. intros. exact (adjunction_hom__of__adjunction_unit__commutes T _ _ _ _ _ _). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences.
Categories\Adjoint\HomCoercions.v
adjunction_hom__of__adjunction_unit
1,936
`{Funext} C D F G := @AdjunctionUnit C D F G.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences.
Categories\Adjoint\HomCoercions.v
AdjunctionUnitWithFunext
1,937
`{Funext} C D F G := @AdjunctionCounit C D F G.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences.
Categories\Adjoint\HomCoercions.v
AdjunctionCounitWithFunext
1,938
`{Funext} C D F G := @AdjunctionUnitCounit C D F G.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences.
Categories\Adjoint\HomCoercions.v
AdjunctionUnitCounitWithFunext
1,939
`{Funext} C D F G (A : AdjunctionUnitWithFunext _ _) : AdjunctionHom _ _ := @adjunction_hom__of__adjunction_unit _ C D F G A.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences.
Categories\Adjoint\HomCoercions.v
adjunction_hom__of__adjunction_unit_Funext
1,940
`{Funext} C D F G (A : AdjunctionCounitWithFunext _ _) : AdjunctionHom _ _ := @adjunction_hom__of__adjunction_unit _ C D F G (adjunction_unit_counit__of__adjunction_counit A).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences.
Categories\Adjoint\HomCoercions.v
AdjunctionHomOfAdjunctionCounit_Funext
1,941
`{Funext} C D F G (A : AdjunctionUnitCounitWithFunext _ _) : AdjunctionHom _ _ := @adjunction_hom__of__adjunction_unit _ C D F G A.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Hom. Require Import Category.Morphisms. Require Import Functor.Composition.Core. Require Import FunctorCategory.Morphisms. Require Import Functor.Identity. Require Import SetCategory.Morphisms. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Equivalences.
Categories\Adjoint\HomCoercions.v
adjunction_hom__of__adjunction_unitCounit_Funext
1,942
C : @Adjunction C C 1 1 := @Build_AdjunctionUnitCounit C C 1 1 1 1 (fun _ => identity_identity _ _) (fun _ => identity_identity _ _).
Definition
Require Import Category.Core. Require Import Functor.Identity NaturalTransformation.Identity. Require Import Adjoint.UnitCounit Adjoint.Core.
Categories\Adjoint\Identity.v
identity
1,943
adjunction_sig <~> (F -| G). Proof. issig. Defined.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core Functor.Identity. Require Import Adjoint.UnitCounit Adjoint.Core NaturalTransformation.Paths. Require Import Types Trunc. Require Import Basics.Tactics.
Categories\Adjoint\Paths.v
equiv_sig_adjunction
1,944
path_adjunction' (A A' : F -| G) : unit A = unit A' -> counit A = counit A' -> A = A'. Proof. intros. destruct A, A'; simpl in *. path_induction. f_ap; exact (center _). Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core Functor.Identity. Require Import Adjoint.UnitCounit Adjoint.Core NaturalTransformation.Paths. Require Import Types Trunc. Require Import Basics.Tactics.
Categories\Adjoint\Paths.v
path_adjunction'
1,945
(A A' : F -| G) : components_of (unit A) == components_of (unit A') -> components_of (counit A) == components_of (counit A') -> A = A'. Proof. intros. apply '; apply path_natural_transformation; assumption. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core Functor.Identity. Require Import Adjoint.UnitCounit Adjoint.Core NaturalTransformation.Paths. Require Import Types Trunc. Require Import Basics.Tactics.
Categories\Adjoint\Paths.v
path_adjunction
1,946
NaturalTransformation (identity (E -> C)) ((pointwise (identity E) G) o (pointwise (identity E) F)). Proof. pose proof (A : AdjunctionUnit _ _) as A''. refine (_ o (((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.identity_of _ _))^-1)%morphism : morphism _ _ _)). refine (_ o NaturalTransformation.Pointwise.pointwise_r (Functor.Identity.identity E) (proj1 A'')). refine (((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.composition_of (Functor.Identity.identity E) F (Functor.Identity.identity E) G)) : morphism _ _ _) o _). refine (NaturalTransformation.Pointwise.pointwise_l _ _). exact (NaturalTransformation.Composition.Laws.left_identity_natural_transformation_2 _). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions. Require Import Functor.Pointwise.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import FunctorCategory.Core. Import NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import NaturalTransformation.Paths Functor.Paths. Require Import Basics.PathGroupoids HoTT.Tactics Types.Arrow.
Categories\Adjoint\Pointwise.v
unit_l
1,947
NaturalTransformation (pointwise (identity E) F o pointwise (identity E) G) (identity (E -> D)). Proof. pose proof (A : AdjunctionCounit _ _) as A''. refine ((((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.identity_of _ _)))%morphism : morphism _ _ _) o _). refine (NaturalTransformation.Pointwise.pointwise_r (Functor.Identity.identity E) (proj1 A'') o _). refine (_ o (((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.composition_of (Functor.Identity.identity E) G (Functor.Identity.identity E) F))^-1)%morphism : morphism _ _ _)). refine (NaturalTransformation.Pointwise.pointwise_l _ _). exact (NaturalTransformation.Composition.Laws.left_identity_natural_transformation_1 _). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions. Require Import Functor.Pointwise.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import FunctorCategory.Core. Import NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import NaturalTransformation.Paths Functor.Paths. Require Import Basics.PathGroupoids HoTT.Tactics Types.Arrow.
Categories\Adjoint\Pointwise.v
counit_l
1,948
pointwise (identity E) F -| pointwise (identity E) G. Proof. exists unit_l counit_l; abstract ( path_natural_transformation; intros; destruct A; simpl in *; repeat match goal with | _ => progress simpl | _ => progress autorewrite with adjoint_pointwise | [ |- context[ap object_of (path_functor_uncurried ?F ?G (?HO; ?HM))] ] => rewrite (@path_functor_uncurried_fst _ _ _ F G HO HM) | _ => progress unfold Functor.Pointwise.Properties.identity_of | _ => progress unfold Functor.Pointwise.Properties.composition_of | _ => progress unfold Functor.Pointwise.Properties.identity_of_helper | _ => progress unfold Functor.Pointwise.Properties.composition_of_helper | _ => progress unfold Functor.Pointwise.Properties.identity_of_helper_helper | _ => progress unfold Functor.Pointwise.Properties.composition_of_helper_helper | [ H : _ |- _ ] => apply H end ). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions. Require Import Functor.Pointwise.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import FunctorCategory.Core. Import NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import NaturalTransformation.Paths Functor.Paths. Require Import Basics.PathGroupoids HoTT.Tactics Types.Arrow.
Categories\Adjoint\Pointwise.v
pointwise_l
1,949
NaturalTransformation (identity (C -> E)) ((pointwise F (identity E)) o (pointwise G (identity E))). Proof. pose proof (A : AdjunctionUnit _ _) as A''. refine (_ o (((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.identity_of _ _))^-1)%morphism : morphism _ _ _)). refine (_ o NaturalTransformation.Pointwise.pointwise_l (proj1 A'') (Functor.Identity.identity E)). refine (((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.composition_of G (Functor.Identity.identity E) F (Functor.Identity.identity E))) : morphism _ _ _) o _). refine (NaturalTransformation.Pointwise.pointwise_r _ _). exact (NaturalTransformation.Composition.Laws.left_identity_natural_transformation_2 _). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions. Require Import Functor.Pointwise.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import FunctorCategory.Core. Import NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import NaturalTransformation.Paths Functor.Paths. Require Import Basics.PathGroupoids HoTT.Tactics Types.Arrow.
Categories\Adjoint\Pointwise.v
unit_r
1,950
NaturalTransformation (pointwise G (identity E) o pointwise F (identity E)) (identity (D -> E)). Proof. pose proof (A : AdjunctionCounit _ _) as A''. refine ((((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.identity_of _ _)))%morphism : morphism _ _ _) o _). refine (NaturalTransformation.Pointwise.pointwise_l (proj1 A'') (Functor.Identity.identity E) o _). refine (_ o (((idtoiso (C := (_ -> _)) (Functor.Pointwise.Properties.composition_of F (Functor.Identity.identity E) G (Functor.Identity.identity E)))^-1)%morphism : morphism _ _ _)). refine (NaturalTransformation.Pointwise.pointwise_r _ _). exact (NaturalTransformation.Composition.Laws.left_identity_natural_transformation_1 _). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions. Require Import Functor.Pointwise.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import FunctorCategory.Core. Import NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import NaturalTransformation.Paths Functor.Paths. Require Import Basics.PathGroupoids HoTT.Tactics Types.Arrow.
Categories\Adjoint\Pointwise.v
counit_r
1,951
pointwise G (identity E) -| pointwise F (identity E). Proof. exists unit_r counit_r; abstract ( path_natural_transformation; intros; destruct A; simpl in *; repeat match goal with | _ => reflexivity | _ => progress simpl | _ => progress autorewrite with adjoint_pointwise | [ |- context[ap object_of (path_functor_uncurried ?F ?G (?HO; ?HM))] ] => rewrite (@path_functor_uncurried_fst _ _ _ F G HO HM) | _ => progress unfold Functor.Pointwise.Properties.identity_of | _ => progress unfold Functor.Pointwise.Properties.composition_of | _ => progress unfold Functor.Pointwise.Properties.identity_of_helper | _ => progress unfold Functor.Pointwise.Properties.composition_of_helper | _ => progress unfold Functor.Pointwise.Properties.identity_of_helper_helper | _ => progress unfold Functor.Pointwise.Properties.composition_of_helper_helper | _ => rewrite <- composition_of; progress rewrite_hyp end ). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions. Require Import Functor.Pointwise.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import FunctorCategory.Core. Import NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import NaturalTransformation.Paths Functor.Paths. Require Import Basics.PathGroupoids HoTT.Tactics Types.Arrow.
Categories\Adjoint\Pointwise.v
pointwise_r
1,952
{ T : NaturalTransformation 1 (G o F) | forall (c : C) (d : D) (f : morphism C c (G d)), Contr { g : morphism D (F c) d | G _1 g o T c = f } }.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Composition.Core Functor.Identity.
Categories\Adjoint\UnitCounit.v
AdjunctionUnit
1,953
{ U : NaturalTransformation (F o G) 1 | forall (c : C) (d : D) (g : morphism D (F c) d), Contr { f : morphism C c (G d) | U d o F _1 f = g } }.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Composition.Core Functor.Identity.
Categories\Adjoint\UnitCounit.v
AdjunctionCounit
1,954
(A : AdjunctionUnit G^op F^op) : AdjunctionCounit F G := exist (fun U : NaturalTransformation (F o G) 1 => forall (c : C) (d : D) (g : morphism D (F c) d), Contr {f : morphism C c (G d) | U d o F _1 f = g }) (A.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Composition.Core Functor.Identity.
Categories\Adjoint\UnitCounit.v
adjunction_counit__op__adjunction_unit
1,955
(A : AdjunctionUnit G F) : AdjunctionCounit F^op G^op := exist (fun U : NaturalTransformation (F^op o G^op) 1 => forall (c : C^op) (d : D^op) (g : morphism D^op ((F^op)%functor c) d), Contr {f : morphism C^op c ((G^op)%functor d) | U d o F^op _1 f = g }) (A.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Composition.Core Functor.Identity.
Categories\Adjoint\UnitCounit.v
adjunction_counit__op__adjunction_unit__inv
1,956
(A : AdjunctionCounit G^op F^op) : AdjunctionUnit F G := exist (fun T : NaturalTransformation 1 (G o F) => forall (c : C) (d : D) (f : morphism C c (G d)), Contr { g : morphism D (F c) d | G _1 g o T c = f }) (A.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Composition.Core Functor.Identity.
Categories\Adjoint\UnitCounit.v
adjunction_unit__op__adjunction_counit
1,957
(A : AdjunctionCounit G F) : AdjunctionUnit F^op G^op := exist (fun T : NaturalTransformation 1 (G^op o F^op) => forall (c : C^op) (d : D^op) (f : morphism C^op c ((G^op)%functor d)), Contr {g : morphism D^op ((F^op)%functor c) d | G^op _1 g o T c = f }) (A.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Composition.Core Functor.Identity.
Categories\Adjoint\UnitCounit.v
adjunction_unit__op__adjunction_counit__inv
1,958
Record
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Composition.Core Functor.Identity.
Categories\Adjoint\UnitCounit.v
AdjunctionUnitCounit
1,959
C D F G (A : @AdjunctionUnitCounit C D F G) : AdjunctionUnit F G. Proof. exists (unit A). intros c d f. apply contr_inhabited_hprop; [ apply hprop_allpath | (exists (counit A d o F _1 f)); abstract unit_counit_of_t ]. intros [? ?] [? ?]. apply path_sigma_uncurried. let A := match goal with |- @sig ?A ?P => constr:(A) end in let H := fresh in assert (H : A); [ | exists H; exact (center _) ]. simpl. let x := match goal with |- ?x = ?y => constr:(x) end in let y := match goal with |- ?x = ?y => constr:(y) end in rewrite <- (right_identity _ _ _ x), <- (right_identity _ _ _ y), <- !(unit_counit_equation_1 A), <- ?associativity; repeat simpl rewrite <- (commutes (counit A)); (try_associativity_quick rewrite <- !composition_of); repeat apply ap; etransitivity; [ | symmetry ]; eassumption. Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import HoTT.Tactics Basics.Trunc Types.Sigma. Require Import Basics.Tactics.
Categories\Adjoint\UnitCounitCoercions.v
adjunction_unit__of__adjunction_unit_counit
1,960
C D F G (A : @AdjunctionUnitCounit C D F G) : AdjunctionCounit F G := adjunction_counit__op__adjunction_unit (adjunction_unit__of__adjunction_unit_counit A^op).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import HoTT.Tactics Basics.Trunc Types.Sigma. Require Import Basics.Tactics.
Categories\Adjoint\UnitCounitCoercions.v
adjunction_counit__of__adjunction_unit_counit
1,961
(A : AdjunctionUnit F G) s d (m : morphism D s d) (eta := A.1) (eps := fun X => (@center _ (A.2 (G X) X 1)).1) : G _1 (eps d o F _1 (G _1 m)) o eta (G s) = G _1 m -> G _1 (m o eps s) o eta (G s) = G _1 m -> eps d o F _1 (G _1 m) = m o eps s. Proof. intros. transitivity (@center _ (A.2 _ _ (G _1 m))).1; [ symmetry | ]; let x := match goal with |- _ = ?x => constr:(x) end in refine ((fun H => ap pr1 (@contr _ (A.2 _ _ (G _1 m)) (x; H))) _); assumption. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import HoTT.Tactics Basics.Trunc Types.Sigma. Require Import Basics.Tactics.
Categories\Adjoint\UnitCounitCoercions.v
counit_natural_transformation__of__adjunction_unit_helper
1,962
(A : AdjunctionUnit F G) : NaturalTransformation (F o G) 1. Proof. refine (Build_NaturalTransformation (F o G) 1 (fun d => (@center _ (A.2 (G d) d 1)).1) _). abstract ( to_unit_counit_nt counit_natural_transformation__of__adjunction_unit_helper ltac:(fun H => try_associativity_quick rewrite <- H) ). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import HoTT.Tactics Basics.Trunc Types.Sigma. Require Import Basics.Tactics.
Categories\Adjoint\UnitCounitCoercions.v
counit_natural_transformation__of__adjunction_unit
1,963
(A : AdjunctionUnit F G) (Y : C) (eta := A.1) (eps := fun X => (@center _ (A.2 (G X) X 1)).1) : G _1 (eps (F Y) o F _1 (eta Y)) o eta Y = eta Y -> eps (F Y) o F _1 (eta Y) = 1. Proof. intros. etransitivity; [ symmetry | ]; simpl_do_clear ltac:(fun H => apply H) (fun y H => (@contr _ (A.2 _ _ (A.1 Y)) (y; H))..1); try assumption. simpl. rewrite ?identity_of, ?left_identity, ?right_identity; reflexivity. Qed.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import HoTT.Tactics Basics.Trunc Types.Sigma. Require Import Basics.Tactics.
Categories\Adjoint\UnitCounitCoercions.v
zig__of__adjunction_unit
1,964
(A : AdjunctionUnit F G) : AdjunctionUnitCounit F G. Proof. exists A.1 (counit_natural_transformation__of__adjunction_unit A); simpl; intros; try match goal with | [ |- context[?x.1] ] => exact x.2 end; []. abstract (to_unit_counit_nt zig__of__adjunction_unit ltac:(fun H => try_associativity_quick rewrite <- H)). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import HoTT.Tactics Basics.Trunc Types.Sigma. Require Import Basics.Tactics.
Categories\Adjoint\UnitCounitCoercions.v
adjunction_unit_counit__of__adjunction_unit
1,965
C D F G (A : @AdjunctionCounit C D F G) : AdjunctionUnitCounit F G := ((adjunction_unit_counit__of__adjunction_unit (adjunction_unit__op__adjunction_counit__inv A))^op)%adjunction.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Adjoint.UnitCounit Adjoint.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import HoTT.Tactics Basics.Trunc Types.Sigma. Require Import Basics.Tactics.
Categories\Adjoint\UnitCounitCoercions.v
adjunction_unit_counit__of__adjunction_counit
1,966
((_, _); (AH o AG) o AF) = ((_, _); AH o (AG o AF)) :> AdjunctionWithFunctors B E. Proof. apply path_sigma_uncurried; simpl. (exists (path_prod' (Functor.Composition.Laws. _ _ _) (symmetry _ _ (Functor.Composition.Laws. _ _ _)))); Adjoint.Composition.LawsTactic.law_t. Qed.
Lemma
Require Import Category.Core Functor.Core. Require Import Adjoint.Composition.Core Adjoint.Core. Require Import Types.Sigma Types.Prod.
Categories\Adjoint\Composition\AssociativityLaw.v
associativity
1,967
NaturalTransformation 1 ((G o G') o (F' o F)). Proof. pose (unit A) as eta. pose (unit A') as eta'. refine ((fun (T : NaturalTransformation _ _) (U : NaturalTransformation _ _) => T o (G oL eta' oR F) o U o eta) _ _); NaturalTransformation.Composition.Laws.nt_solve_associator. Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Functor.Identity. Require Import Adjoint.UnitCounit Adjoint.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Adjoint\Composition\Core.v
compose_unit
1,968
NaturalTransformation ((F' o F) o (G o G')) 1. Proof. pose (counit A) as eps. pose (counit A') as eps'. refine ((fun (T : NaturalTransformation _ _) (U : NaturalTransformation _ _) => eps' o U o (F' oL eps oR G') o T) _ _); NaturalTransformation.Composition.Laws.nt_solve_associator. Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Functor.Identity. Require Import Adjoint.UnitCounit Adjoint.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Adjoint\Composition\Core.v
compose_counit
1,969
F' o F -| G o G'. Proof. exists compose_unit compose_counit; simpl; abstract ( repeat match goal with | _ => intro | _ => reflexivity | _ => progress rewrite ?identity_of, ?left_identity, ?right_identity | _ => rewrite <- ?composition_of, unit_counit_equation_1 | _ => rewrite <- ?composition_of, unit_counit_equation_2 | [ A : _ -| _ |- _ = 1%morphism ] => (etransitivity; [ | apply (unit_counit_equation_1 A) ]; try_associativity_quick f_ap) | [ A : _ -| _ |- _ = 1%morphism ] => (etransitivity; [ | apply (unit_counit_equation_2 A) ]; try_associativity_quick f_ap) | _ => repeat (try_associativity_quick rewrite <- !composition_of); progress repeat apply ap; rewrite ?composition_of | [ |- context[components_of ?T] ] => (try_associativity_quick simpl rewrite <- (commutes T)); try_associativity_quick (apply concat_right_identity || apply concat_left_identity) | [ |- context[components_of ?T] ] => (try_associativity_quick simpl rewrite (commutes T)); try_associativity_quick (apply concat_right_identity || apply concat_left_identity) end ). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Functor.Identity. Require Import Adjoint.UnitCounit Adjoint.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Adjoint\Composition\Core.v
compose
1,970
((_, _); 1 o A) = ((_, _); A) :> AdjunctionWithFunctors C D. Proof. apply path_sigma_uncurried; simpl. (exists (path_prod' (Functor.Composition.Laws. _) (Functor.Composition.Laws.right_identity _))). Adjoint.Composition.LawsTactic.law_t. Qed.
Lemma
Require Import Category.Core Functor.Core. Require Import Adjoint.Composition.Core Adjoint.Core Adjoint.Identity. Require Import Types.Sigma Types.Prod.
Categories\Adjoint\Composition\IdentityLaws.v
left_identity
1,971
((_, _); A o 1) = ((_, _); A) :> AdjunctionWithFunctors C D. Proof. apply path_sigma_uncurried; simpl. (exists (path_prod' (Functor.Composition.Laws. _) (Functor.Composition.Laws.left_identity _))). Adjoint.Composition.LawsTactic.law_t. Qed.
Lemma
Require Import Category.Core Functor.Core. Require Import Adjoint.Composition.Core Adjoint.Core Adjoint.Identity. Require Import Types.Sigma Types.Prod.
Categories\Adjoint\Composition\IdentityLaws.v
right_identity
1,972
Functor (sig_obj (D -> C) (fun G => { F : Functor C D & F -| G })) (sig_obj ((C -> D)^op * (D -> C)) (fun FG => fst FG -| snd FG)) := Build_Functor (sig_obj (D -> C) (fun G => { F : Functor C D & F -| G })) (sig_obj ((C -> D)^op * (D -> C)) (fun FG => fst FG -| snd FG)) (fun GFA => ((GFA.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual. Require Import FunctorCategory.Core. Require Import Category.Sigma.OnObjects Category.Prod. Require Import Adjoint.Core. Require Import Adjoint.Functorial.Parts Adjoint.Functorial.Laws. Require Import HoTT.Types.Prod.
Categories\Adjoint\Functorial\Core.v
left_functor_nondep
1,973
Functor (sig_obj (C -> D) (fun F => { G : Functor D C & F -| G })) (sig_obj ((C -> D) * (D -> C)^op) (fun FG => fst FG -| snd FG)) := Build_Functor (sig_obj (C -> D) (fun F => { G : Functor D C & F -| G })) (sig_obj ((C -> D) * (D -> C)^op) (fun FG => fst FG -| snd FG)) (fun GFA => ((GFA.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual. Require Import FunctorCategory.Core. Require Import Category.Sigma.OnObjects Category.Prod. Require Import Adjoint.Core. Require Import Adjoint.Functorial.Parts Adjoint.Functorial.Laws. Require Import HoTT.Types.Prod.
Categories\Adjoint\Functorial\Core.v
right_functor_nondep
1,974
@left_morphism_of C C 1 D D 1 G F A G F A 1 = ((left_identity_natural_transformation_2 _) o (right_identity_natural_transformation_1 _))%natural_transformation. Proof. t. Qed.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Adjoint\Functorial\Laws.v
left_identity_of
1,975
@left_morphism_of_nondep C D G F A G F A 1 = 1%natural_transformation. Proof. t. Qed.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Adjoint\Functorial\Laws.v
left_identity_of_nondep
1,976
(@left_morphism_of _ _ _ _ _ _ _ _ A _ _ A'' ((associator_1 _ _ _) o (T' oR DF) o (associator_2 _ _ _) o (CF' oL T) o (associator_1 _ _ _))) = (associator_2 _ _ _) o (DF' oL left_morphism_of A A' T) o (associator_1 _ _ _) o (left_morphism_of A' A'' T' oR CF) o (associator_2 _ _ _). Proof. t. Qed.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Adjoint\Functorial\Laws.v
left_composition_of
1,977
(@left_morphism_of_nondep _ _ _ _ A _ _ A'' (T' o T)) = ((left_morphism_of_nondep A A' T) o (left_morphism_of_nondep A' A'' T')). Proof. t. Qed.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Adjoint\Functorial\Laws.v
left_composition_of_nondep
1,978
@right_morphism_of C C 1 D D 1 F G A F G A 1 = ((right_identity_natural_transformation_2 _) o (left_identity_natural_transformation_1 _))%natural_transformation := ap (@NaturalTransformation.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Adjoint\Functorial\Laws.v
right_identity_of
1,979
@right_morphism_of_nondep C D F G A F G A 1 = 1%natural_transformation := ap (@NaturalTransformation.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Adjoint\Functorial\Laws.v
right_identity_of_nondep
1,980
right_morphism_of A A'' ((associator_2 DF' DF F) o ((DF' oL T) o ((associator_1 DF' F' CF) o ((T' oR CF) o (associator_2 F'' CF' CF))))) = (associator_1 G'' DF' DF) o ((right_morphism_of A' A'' T' oR DF) o ((associator_2 CF' G' DF) o ((CF' oL right_morphism_of A A' T) o (associator_1 CF' CF G)))) := ap (@NaturalTransformation.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Adjoint\Functorial\Laws.v
right_composition_of
1,981
(@right_morphism_of_nondep _ _ _ _ A'' _ _ A (T' o T)) = ((right_morphism_of_nondep A' A T) o (right_morphism_of_nondep A'' A' T')) := ap (@NaturalTransformation.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity. Require Import NaturalTransformation.Paths. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual. Require Import Adjoint.Functorial.Parts. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Adjoint\Functorial\Laws.v
right_composition_of_nondep
1,982
NaturalTransformation (F' o CF) (DF o F). Proof. refine ((_) o (counit A' oR (DF o F)) o _ o (F' oL ((T oR F) o _ o (CF oL unit A) o _)))%natural_transformation; nt_solve_associator. Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual.
Categories\Adjoint\Functorial\Parts.v
left_morphism_of
1,983
NaturalTransformation F' F. Proof. refine (_ o (@left_morphism_of C C 1 D D 1 G F A G' F' A' (_ o T o _)) o _)%natural_transformation; nt_solve_associator. Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual.
Categories\Adjoint\Functorial\Parts.v
left_morphism_of_nondep
1,984
C C' CF D D' DF (F : Functor C D) (G : Functor D C) (A : F -| G) (F' : Functor C' D') (G' : Functor D' C') (A' : F' -| G') (T : NaturalTransformation (F' o CF) (DF o F)) : NaturalTransformation (CF o G) (G' o DF) := (@left_morphism_of _ _ DF^op _ _ CF^op F^op G^op A^op F'^op G'^op A'^op T^op)^op.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual.
Categories\Adjoint\Functorial\Parts.v
right_morphism_of
1,985
C D (F : Functor C D) (G : Functor D C) (A : F -| G) (F' : Functor C D) (G' : Functor D C) (A' : F' -| G') (T : NaturalTransformation F' F) : NaturalTransformation G G' := (@left_morphism_of_nondep _ _ F^op G^op A^op F'^op G'^op A'^op T^op)^op.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import Functor.Dual NaturalTransformation.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.Dual.
Categories\Adjoint\Functorial\Parts.v
right_morphism_of_nondep
1,986
object (Y / G) := @CommaCategory.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors.
Categories\Adjoint\UniversalMorphisms\Core.v
initial_morphism__of__adjunction
1,987
IsInitialMorphism initial_morphism__of__adjunction := Build_IsInitialMorphism _ _ _ _ ((A : AdjunctionUnit _ _).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors.
Categories\Adjoint\UniversalMorphisms\Core.v
is_initial_morphism__of__adjunction
1,988
object (F / X) := Eval simpl in dual_functor (! X)^op F^op (initial_morphism__of__adjunction A^op X).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors.
Categories\Adjoint\UniversalMorphisms\Core.v
terminal_morphism__of__adjunction
1,989
IsTerminalMorphism terminal_morphism__of__adjunction := is_initial_morphism__of__adjunction A^op X.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors.
Categories\Adjoint\UniversalMorphisms\Core.v
is_terminal_morphism__of__adjunction
1,990
Y : mor_of Y Y 1 = 1. Proof. simpl. erewrite IsInitialMorphism_property_morphism_unique; [ reflexivity | ]. rewrite ?, ?left_identity, ?right_identity. reflexivity. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors.
Categories\Adjoint\UniversalMorphisms\Core.v
identity_of
1,991
x y z g f : mor_of _ _ (f o g) = mor_of y z f o mor_of x y g. Proof. simpl. erewrite IsInitialMorphism_property_morphism_unique; [ reflexivity | ]. rewrite ?. repeat try_associativity_quick rewrite IsInitialMorphism_property_morphism_property. reflexivity. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors.
Categories\Adjoint\UniversalMorphisms\Core.v
composition_of
1,992
Functor C D := Build_Functor C D (fun x => obj_of x) (fun s d m => mor_of s d m) composition_of identity_of.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors.
Categories\Adjoint\UniversalMorphisms\Core.v
functor__of__initial_morphism
1,993
functor__of__initial_morphism -| G. Proof. refine (adjunction_unit_counit__of__adjunction_unit _). eexists (Build_NaturalTransformation 1 (G o functor__of__initial_morphism) (fun x => IsInitialMorphism_morphism (@HM x)) (fun s d m => symmetry _ _ (IsInitialMorphism_property_morphism_property (@HM s) _ _))). simpl. exact (fun c => @IsInitialMorphism_property _ _ c G (M c) (@HM c)). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors.
Categories\Adjoint\UniversalMorphisms\Core.v
adjunction__of__initial_morphism
1,994
Functor D C := (@functor__of__initial_morphism (D^op) (C^op) (F^op) (fun x : D => dual_functor F !x (M x)) HM)^op.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors.
Categories\Adjoint\UniversalMorphisms\Core.v
functor__of__terminal_morphism
1,995
F -| functor__of__terminal_morphism := ((@adjunction__of__initial_morphism (D^op) (C^op) (F^op) (fun x : D => dual_functor F !x (M x)) HM)^op)%adjunction.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Identity Functor.Composition.Core. Require Import Functor.Dual Category.Dual. Require Import Adjoint.Core Adjoint.UnitCounit Adjoint.UnitCounitCoercions Adjoint.Dual. Import Comma.Core. Require Import UniversalProperties Comma.Dual InitialTerminalCategory.Core InitialTerminalCategory.Functors.
Categories\Adjoint\UniversalMorphisms\Core.v
adjunction__of__terminal_morphism
1,996
PreCategory := @Build_PreCategory { C : PreCategory | P C } (fun C D => Functor C.
Definition
Require Import Category.Objects InitialTerminalCategory.Core InitialTerminalCategory.Functors Functor.Core Category.Strict Functor.Paths. Require Import Functor.Identity Functor.Composition.Core Functor.Composition.Laws.
Categories\Cat\Core.v
sub_pre_cat
1,997
`{Funext} : PreCategory := sub_pre_cat (fun C => IsStrictCategory C).
Definition
Require Import Category.Objects InitialTerminalCategory.Core InitialTerminalCategory.Functors Functor.Core Category.Strict Functor.Paths. Require Import Functor.Identity Functor.Composition.Core Functor.Composition.Laws.
Categories\Cat\Core.v
strict_cat
1,998
`(IsTerminalCategory one) (HT : P one) : IsTerminalObject (sub_pre_cat P HF) (one; HT). Proof. typeclasses eauto. Defined.
Lemma
Require Import Category.Objects InitialTerminalCategory.Core InitialTerminalCategory.Functors Functor.Core Category.Strict Functor.Paths. Require Import Functor.Identity Functor.Composition.Core Functor.Composition.Laws.
Categories\Cat\Core.v
is_terminal_object__is_terminal_category
1,999