fact
stringlengths
0
6.66k
type
stringclasses
10 values
imports
stringclasses
399 values
filename
stringclasses
465 values
symbolic_name
stringlengths
1
75
index_level
int64
0
7.85k
Functor sig_obj A := Build_Functor sig_obj A (@pr1_type _ _) (fun s d m => m) (fun _ _ _ _ _ => idpath) (fun _ => idpath).
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core Category.Sigma.Core. Require Import Functor.Paths. Import Functor.Identity.FunctorIdentityNotations. Import Functor.Composition.Core.FunctorCompositionCoreNotations.
Categories\Category\Sigma\OnObjects.v
pr1_obj
2,100
PreCategory := @sig A Pobj (fun _ _ _ => Unit) _ (fun _ => tt) (fun _ _ _ _ _ _ _ => tt).
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core Category.Sigma.Core. Require Import Functor.Paths. Import Functor.Identity.FunctorIdentityNotations. Import Functor.Composition.Core.FunctorCompositionCoreNotations.
Categories\Category\Sigma\OnObjects.v
sig_obj_as_sig
2,101
Functor sig_obj_as_sig sig_obj := Build_Functor sig_obj_as_sig sig_obj (fun x => x) (fun _ _ => @pr1_type _ _) (fun _ _ _ _ _ => idpath) (fun _ => idpath).
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core Category.Sigma.Core. Require Import Functor.Paths. Import Functor.Identity.FunctorIdentityNotations. Import Functor.Composition.Core.FunctorCompositionCoreNotations.
Categories\Category\Sigma\OnObjects.v
sig_functor_obj
2,102
Functor sig_obj sig_obj_as_sig := Build_Functor sig_obj sig_obj_as_sig (fun x => x) (fun _ _ m => exist _ m tt) (fun _ _ _ _ _ => idpath) (fun _ => idpath).
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core Category.Sigma.Core. Require Import Functor.Paths. Import Functor.Identity.FunctorIdentityNotations. Import Functor.Composition.Core.FunctorCompositionCoreNotations.
Categories\Category\Sigma\OnObjects.v
sig_functor_obj_inv
2,103
`{Funext} : sig_functor_obj o sig_functor_obj_inv = 1 /\ sig_functor_obj_inv o sig_functor_obj = 1. Proof. split; path_functor; trivial. apply path_forall; intros []. apply path_forall; intros []. apply path_forall; intros [? []]. reflexivity. Qed.
Lemma
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core Category.Sigma.Core. Require Import Functor.Paths. Import Functor.Identity.FunctorIdentityNotations. Import Functor.Composition.Core.FunctorCompositionCoreNotations.
Categories\Category\Sigma\OnObjects.v
sig_obj_eq
2,104
pr1_obj o sig_functor_obj = pr1' := idpath.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core Category.Sigma.Core. Require Import Functor.Paths. Import Functor.Identity.FunctorIdentityNotations. Import Functor.Composition.Core.FunctorCompositionCoreNotations.
Categories\Category\Sigma\OnObjects.v
sig_obj_compat
2,105
{s d} : @Isomorphic A' s d -> @Isomorphic A s d. Proof. refine ((issig_full_isomorphic A _ _) o _ o (issig_full_isomorphic A' _ _)^-1). exact (functor_sigma pr1_type (fun _ => functor_sigma pr1_type (fun _ => functor_sigma pr1_path (fun _ => pr1_path)))). Defined.
Definition
Require Import Category.Core Category.Morphisms. Require Import Category.Univalent. Require Import Category.Sigma.Core Category.Sigma.OnObjects Category.Sigma.OnMorphisms. Require Import HoTT.Types HoTT.Basics.
Categories\Category\Sigma\Univalent.v
iscategory_sig_mor_helper
2,106
`{A'_cat : IsCategory A'} : IsCategory A. Proof. intros s d. refine (isequiv_homotopic (iscategory_sig_mor_helper o (@idtoiso A' _ _)) _). intro x; apply path_isomorphic; cbn. destruct x; reflexivity. Defined.
Definition
Require Import Category.Core Category.Morphisms. Require Import Category.Univalent. Require Import Category.Sigma.Core Category.Sigma.OnObjects Category.Sigma.OnMorphisms. Require Import HoTT.Types HoTT.Basics.
Categories\Category\Sigma\Univalent.v
iscategory_from_sig_mor
2,107
Record
Require Import Functor.Core NaturalTransformation.Core. Require Import Category.Strict. Require Import Functor.Identity NaturalTransformation.Identity. Require Import NaturalTransformation.Paths NaturalTransformation.Composition.Core. Require Import Functor.Paths. Require Import HoTT.Basics HoTT.Types.
Categories\CategoryOfSections\Core.v
SectionOfFunctor
2,108
section_of_functor_sig' : section_of_functor_sig <~> SectionOfFunctor. Proof. issig. Defined.
Lemma
Require Import Functor.Core NaturalTransformation.Core. Require Import Category.Strict. Require Import Functor.Identity NaturalTransformation.Identity. Require Import NaturalTransformation.Paths NaturalTransformation.Composition.Core. Require Import Functor.Paths. Require Import HoTT.Basics HoTT.Types.
Categories\CategoryOfSections\Core.v
section_of_functor_sig'
2,109
PreCategory. Proof. refine (@Build_PreCategory SectionOfFunctor (fun F G => NaturalTransformation F G) (fun F => 1) (fun _ _ _ T U => T o U) _ _ _ _); abstract (path_natural_transformation; auto with morphism). Defined.
Definition
Require Import Functor.Core NaturalTransformation.Core. Require Import Category.Strict. Require Import Functor.Identity NaturalTransformation.Identity. Require Import NaturalTransformation.Paths NaturalTransformation.Composition.Core. Require Import Functor.Paths. Require Import HoTT.Basics HoTT.Types.
Categories\CategoryOfSections\Core.v
category_of_sections
2,110
Record
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
object
2,111
object_sig_T <~> object. Proof. issig. Defined.
Lemma
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
issig_object
2,112
path_object' (x y : object) : forall (Ha : x.(a) = y.(a)) (Hb : x.(b) = y.(b)), transport (fun X => morphism C (S X) _) Ha (transport (fun Y => morphism C _ (T Y)) Hb x.(f)) = y.(f) -> x = y. Proof. destruct x, y; simpl. intros; path_induction; reflexivity. Defined.
Lemma
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
path_object'
2,113
ap_a_path_object' x y Ha Hb Hf : ap (@a) (@path_object' x y Ha Hb Hf) = Ha. Proof. destruct x, y; simpl in *. destruct Ha, Hb, Hf; simpl in *. reflexivity. Qed.
Lemma
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
ap_a_path_object'
2,114
ap_b_path_object' x y Ha Hb Hf : ap (@b) (@path_object' x y Ha Hb Hf) = Hb. Proof. destruct x, y; simpl in *. destruct Ha, Hb, Hf; simpl in *. reflexivity. Qed.
Lemma
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
ap_b_path_object'
2,115
(abf a'b'f' : object) :=
Record
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
morphism
2,116
abf a'b'f' g h p : morphism abf a'b'f' := @' abf a'b'f' g h p p^.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
Build_morphism
2,117
issig_morphism' abf a'b'f' : (morphism_sig_T' abf a'b'f') <~> morphism abf a'b'f'. Proof. issig. Defined.
Lemma
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
issig_morphism'
2,118
{T0} `{IsHSet T0} (a b : T0) (pf : a = b) : Contr (b = a). Proof. destruct pf. apply contr_inhabited_hprop; try reflexivity. typeclasses eauto. Qed.
Lemma
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
issig_morphism_helper
2,119
abf a'b'f' : (morphism_sig_T abf a'b'f') <~> morphism abf a'b'f'. Proof. etransitivity; [ | exact (' abf a'b'f') ]. repeat (apply equiv_functor_sigma_id; intro). symmetry; apply equiv_sigma_contr; intro. apply issig_morphism_helper; assumption. Defined.
Lemma
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
issig_morphism
2,120
abf a'b'f' (gh g'h' : morphism abf a'b'f') : gh.(g) = g'h'.(g) -> gh.(h) = g'h'.(h) -> gh = g'h'. Proof. destruct gh, g'h'; simpl. intros; path_induction. f_ap. all:exact (center _). Qed.
Lemma
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
path_morphism
2,121
s d d' (gh : morphism d d') (g'h' : morphism s d) : morphism s d' := Build_morphism' s d' (gh.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
compose
2,122
x : morphism x x := Build_morphism' x x ( (x.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
identity
2,123
A B C (S : Functor A C) (T : Functor B C) : PreCategory. Proof. refine (@Build_PreCategory (@object _ _ _ S T) (@morphism _ _ _ S T) (@identity _ _ _ S T) (@compose _ _ _ S T) _ _ _ _ ); abstract path_comma_t. Defined.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
comma_category
2,124
(x y : comma_category) : x ≅ y -> x = y. Proof. intro i. destruct i as [i [i' ? ?]]. hnf in *. destruct i, i'. simpl in *. Global Instance comma_category_IsCategory `{IsCategory A, IsCategory B} : IsCategory comma_category. Proof. hnf. unfold IsStrictCategory in *. typeclasses eauto. Qed.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
comma_category_isotoid
2,125
comma_category S (!a).
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
slice_category
2,126
comma_category (!a) S.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
coslice_category
2,127
slice_category a (Functor.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
slice_category_over
2,128
coslice_category a (Functor.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
coslice_category_over
2,129
comma_category (Functor.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
arrow_category
2,130
CC_Functor' (C : PreCategory) (D : PreCategory) := Functor C D.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Functor.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Require Import Category.Strict. Import Functor.Identity.FunctorIdentityNotations. Module Import CommaCategory.
Categories\Comma\Core.v
CC_Functor'
2,131
Functor (S / T) ((T^op / S^op)^op) := Build_Functor (S / T) ((T^op / S^op)^op) (fun x => obj_of x) (fun s d m => mor_of s d m) (fun _ _ _ _ _ => 1%path) (fun _ => 1%path).
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core Functor.Identity. Import Comma.Core.
Categories\Comma\Dual.v
dual_functor
2,132
A B C (S : Functor A C) (T : Functor B C) : dual_functor S T o (dual_functor T^op S^op)^op = 1 /\ (dual_functor T^op S^op)^op o dual_functor S T = 1 := (idpath, idpath)%core.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core Functor.Identity. Import Comma.Core.
Categories\Comma\Dual.v
dual_functor_involutive
2,133
(S / T) -> (S' / T') := fun x => CommaCategory.
Definition
Require Import Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Composition.Laws. Require Import Functor.Paths. Require Import Category.Strict. Import Comma.Core. Import Functor.Identity.FunctorIdentityNotations NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import HoTT.Tactics PathGroupoids Types.Forall.
Categories\Comma\Functorial.v
functorial_morphism_of_object_of
2,134
s d (m : morphism (S / T) s d) : morphism (S' / T') (functorial_morphism_of_object_of s) (functorial_morphism_of_object_of d). Proof. simpl in *. refine (CommaCategory.Build_morphism (functorial_morphism_of_object_of s) (functorial_morphism_of_object_of d) (AF _1 (CommaCategory.g m)) (BF _1 (CommaCategory.h m)) _). unfold functorial_morphism_of_object_of; simpl. clear. abstract helper (exact (CommaCategory.p m)) (commutes TA) (commutes TB). Defined.
Definition
Require Import Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Composition.Laws. Require Import Functor.Paths. Require Import Category.Strict. Import Comma.Core. Import Functor.Identity.FunctorIdentityNotations NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import HoTT.Tactics PathGroupoids Types.Forall.
Categories\Comma\Functorial.v
functorial_morphism_of_morphism_of
2,135
Functor (S / T) (S' / T'). Proof. refine (Build_Functor (S / T) (S' / T') functorial_morphism_of_object_of functorial_morphism_of_morphism_of _ _); abstract ( intros; apply CommaCategory.path_morphism; simpl; auto with functor ). Defined.
Definition
Require Import Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Composition.Laws. Require Import Functor.Paths. Require Import Category.Strict. Import Comma.Core. Import Functor.Identity.FunctorIdentityNotations NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import HoTT.Tactics PathGroupoids Types.Forall.
Categories\Comma\Functorial.v
functorial_morphism_of
2,136
x : @functorial_morphism_of_object_of _ _ _ S T 1 1 1 1 1 x = x. Proof. let A := match goal with |- ?A = ?B => constr:(A) end in let B := match goal with |- ?A = ?B => constr:(B) end in refine (@CommaCategory.path_object' _ _ _ _ _ A B 1%path 1%path _). exact (Category.Core.right_identity _ _ _ _ @ Category.Core.left_identity _ _ _ _)%path. Defined.
Definition
Require Import Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Composition.Laws. Require Import Functor.Paths. Require Import Category.Strict. Import Comma.Core. Import Functor.Identity.FunctorIdentityNotations NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import HoTT.Tactics PathGroupoids Types.Forall.
Categories\Comma\Functorial.v
functorial_identity_of_helper
2,137
`{Funext} : @functorial_morphism_of _ _ _ S T 1 1 1 1 1 = 1%functor. Proof. path_functor; simpl. exists (path_forall _ _ functorial_identity_of_helper). simpl. functorial_helper_t functorial_identity_of_helper. Qed.
Definition
Require Import Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Composition.Laws. Require Import Functor.Paths. Require Import Category.Strict. Import Comma.Core. Import Functor.Identity.FunctorIdentityNotations NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import HoTT.Tactics PathGroupoids Types.Forall.
Categories\Comma\Functorial.v
functorial_identity_of
2,138
x : (functorial_morphism_of TA' TB' o functorial_morphism_of TA TB)%functor x = functorial_morphism_of TA'' TB'' x. Proof. let A := match goal with |- ?A = ?B => constr:(A) end in let B := match goal with |- ?A = ?B => constr:(B) end in refine (@CommaCategory.path_object' _ _ _ _ _ A B 1%path 1%path _). subst AF'' BF'' CF'' TA'' TB''. simpl in *. abstract ( autorewrite with morphism; simpl; helper (exact idpath) (commutes TA') (commutes TB') ). Defined.
Definition
Require Import Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Composition.Laws. Require Import Functor.Paths. Require Import Category.Strict. Import Comma.Core. Import Functor.Identity.FunctorIdentityNotations NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import HoTT.Tactics PathGroupoids Types.Forall.
Categories\Comma\Functorial.v
functorial_composition_of_helper
2,139
`{Funext} : (functorial_morphism_of TA' TB' o functorial_morphism_of TA TB)%functor = functorial_morphism_of TA'' TB''. Proof. path_functor; simpl. exists (path_forall _ _ functorial_composition_of_helper). functorial_helper_t functorial_composition_of_helper. Qed.
Definition
Require Import Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Composition.Laws. Require Import Functor.Paths. Require Import Category.Strict. Import Comma.Core. Import Functor.Identity.FunctorIdentityNotations NaturalTransformation.Identity.NaturalTransformationIdentityNotations. Require Import HoTT.Tactics PathGroupoids Types.Forall.
Categories\Comma\Functorial.v
functorial_composition_of
2,140
s d (m : morphism ((A -> C)^op * (B -> C)) s d) (x : fst s / snd s) : (fst d / snd d) := CommaCategory.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
comma_category_induced_functor_object_of
2,141
s x : comma_category_induced_functor_object_of (Category.Core.identity s) x = x. Proof. let x1 := match goal with |- ?x1 = ?x2 => constr:(x1) end in let x2 := match goal with |- ?x1 = ?x2 => constr:(x2) end in apply (CommaCategory.path_object' x1 x2 idpath idpath). simpl. abstract (rewrite ?left_identity, ?right_identity; reflexivity). Defined.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
comma_category_induced_functor_object_of_identity
2,142
s d d' (m : morphism ((A -> C)^op * (B -> C)) d d') (m' : morphism ((A -> C)^op * (B -> C)) s d) x : comma_category_induced_functor_object_of (m o m') x = comma_category_induced_functor_object_of m (comma_category_induced_functor_object_of m' x). Proof. let x1 := match goal with |- ?x1 = ?x2 => constr:(x1) end in let x2 := match goal with |- ?x1 = ?x2 => constr:(x2) end in apply (CommaCategory.path_object' x1 x2 idpath idpath). abstract ( destruct m', m, x; simpl in *; rewrite !associativity; reflexivity ). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
comma_category_induced_functor_object_of_compose
2,143
s d m s0 d0 (m0 : morphism (fst s / snd s) s0 d0) : morphism (fst d / snd d) (@comma_category_induced_functor_object_of s d m s0) (@comma_category_induced_functor_object_of s d m d0). Proof. simpl. let s := match goal with |- CommaCategory.morphism ?s ?d => constr:(s) end in let d := match goal with |- CommaCategory.morphism ?s ?d => constr:(d) end in refine (CommaCategory.Build_morphism s d (CommaCategory.g m0) (CommaCategory.h m0) _); simpl in *; clear. abstract ( destruct_head prod; destruct_head CommaCategory.morphism; destruct_head CommaCategory.object; simpl in *; repeat (try_associativity_quick (rewrite <- !commutes || (progress f_ap))); repeat (try_associativity_quick (rewrite !commutes || (progress f_ap))); assumption ). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
comma_category_induced_functor_morphism_of
2,144
s d (m : morphism ((A -> C)^op * (B -> C)) s d) : Functor (fst s / snd s) (fst d / snd d). Proof. refine (Build_Functor (fst s / snd s) (fst d / snd d) (@comma_category_induced_functor_object_of s d m) (@comma_category_induced_functor_morphism_of s d m) _ _ ); abstract ( intros; apply CommaCategory.path_morphism; reflexivity ). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
comma_category_induced_functor
2,145
s d (m : morphism D s d) : NaturalTransformation !s !d. Proof. exists (fun _ : Unit => m); simpl; intros; clear; abstract (autorewrite with category; reflexivity). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
slice_category_induced_functor_nt
2,146
F' a' (m : morphism D a a') (T : NaturalTransformation F' F) : Functor (F / a) (F' / a') := comma_category_induced_functor (s := (F, !a)) (d := (F', !a')) (T, @slice_category_induced_functor_nt a a' m).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
slice_category_induced_functor
2,147
F' T := @slice_category_induced_functor F' a 1 T.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
slice_category_nt_induced_functor
2,148
a' m := @slice_category_induced_functor F a' m 1.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
slice_category_morphism_induced_functor
2,149
F' a' (m : morphism D a' a) (T : NaturalTransformation F F') : Functor (a / F) (a' / F') := comma_category_induced_functor (s := (!a, F)) (d := (!a', F')) (@slice_category_induced_functor_nt a' a m, T).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
coslice_category_induced_functor
2,150
F' T := @coslice_category_induced_functor F' a 1 T.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
coslice_category_nt_induced_functor
2,151
a' m := @coslice_category_induced_functor F a' m 1.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
coslice_category_morphism_induced_functor
2,152
a a' (m : morphism C a a') : Functor (C / a) (C / a') := Eval hnf in slice_category_morphism_induced_functor _ _ _ m.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
slice_category_over_induced_functor
2,153
a a' (m : morphism C a' a) : Functor (a \ C) (a' \ C) := Eval hnf in coslice_category_morphism_induced_functor _ _ _ m.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
coslice_category_over_induced_functor
2,154
a a' (m : morphism cat a a') : Functor (cat / a) (cat / a') := slice_category_over_induced_functor cat a a' m.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
cat_over_induced_functor
2,155
a a' (m : morphism cat a' a) : Functor (a \ cat) (a' \ cat) := coslice_category_over_induced_functor cat a a' m.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual. Require Import Category.Prod. Require Import NaturalTransformation.Identity. Require Import FunctorCategory.Core Cat.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import HoTT.Tactics. Require Import Basics.Tactics.
Categories\Comma\InducedFunctors.v
over_cat_induced_functor
2,156
Functor (S / T) (A * B) := Build_Functor (S / T) (A * B) (fun abf => (CommaCategory.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Prod Functor.Prod.Core. Require Import Functor.Composition.Core Functor.Identity. Require Import InitialTerminalCategory.Functors. Require Import Types.Prod. Import Comma.Core.
Categories\Comma\Projection.v
comma_category_projection
2,157
Functor (arrow_category A) A := Eval simpl in fst o comma_category_projection _ 1.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Prod Functor.Prod.Core. Require Import Functor.Composition.Core Functor.Identity. Require Import InitialTerminalCategory.Functors. Require Import Types.Prod. Import Comma.Core.
Categories\Comma\Projection.v
arrow_category_projection
2,158
(a : A) : Functor (A / a) A := Eval simpl in fst o comma_category_projection 1 _.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Prod Functor.Prod.Core. Require Import Functor.Composition.Core Functor.Identity. Require Import InitialTerminalCategory.Functors. Require Import Types.Prod. Import Comma.Core.
Categories\Comma\Projection.v
slice_category_over_projection
2,159
(a : A) : Functor (a \ A) A := Eval simpl in snd o comma_category_projection _ 1.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Prod Functor.Prod.Core. Require Import Functor.Composition.Core Functor.Identity. Require Import InitialTerminalCategory.Functors. Require Import Types.Prod. Import Comma.Core.
Categories\Comma\Projection.v
coslice_category_over_projection
2,160
Functor (S / a) A := Eval simpl in fst o comma_category_projection S !a.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Prod Functor.Prod.Core. Require Import Functor.Composition.Core Functor.Identity. Require Import InitialTerminalCategory.Functors. Require Import Types.Prod. Import Comma.Core.
Categories\Comma\Projection.v
slice_category_projection
2,161
Functor (a / S) A := Eval simpl in snd o comma_category_projection !a S.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Prod Functor.Prod.Core. Require Import Functor.Composition.Core Functor.Identity. Require Import InitialTerminalCategory.Functors. Require Import Types.Prod. Import Comma.Core.
Categories\Comma\Projection.v
coslice_category_projection
2,162
(ST : object ((A -> C)^op * (B -> C))) : Cat / !((A * B; PAB) : Cat). Proof. exists (Basics.Overture.fst ST / Basics.Overture.snd ST; P_comma _ _) (center _). exact (comma_category_projection (Basics.Overture.fst ST) (Basics.Overture.snd ST)). Defined.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Prod Functor.Prod.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors NatCategory. Require Import FunctorCategory.Core. Require Import Cat.Core. Require Import Functor.Paths. Import Comma.Core. Require Import Comma.InducedFunctors Comma.Projection. Require Import Types.Forall PathGroupoids HoTT.Tactics.
Categories\Comma\ProjectionFunctors.v
comma_category_projection_functor_object_of
2,163
s d (m : morphism ((A -> C)^op * (B -> C)) s d) : morphism (Cat / !((A * B; PAB) : Cat)) (comma_category_projection_functor_object_of s) (comma_category_projection_functor_object_of d). Proof. hnf. refine (CommaCategory.Build_morphism (comma_category_projection_functor_object_of s) (comma_category_projection_functor_object_of d) (comma_category_induced_functor m) (center _) _). simpl. destruct_head_hnf Basics.Overture.prod. path_functor. Defined.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Prod Functor.Prod.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors NatCategory. Require Import FunctorCategory.Core. Require Import Cat.Core. Require Import Functor.Paths. Import Comma.Core. Require Import Comma.InducedFunctors Comma.Projection. Require Import Types.Forall PathGroupoids HoTT.Tactics.
Categories\Comma\ProjectionFunctors.v
comma_category_projection_functor_morphism_of
2,164
x : comma_category_projection_functor_morphism_of (Category.Core.identity x) = 1. Proof. apply CommaCategory.path_morphism; simpl; [ | reflexivity ]. path_functor. exists (path_forall _ _ (comma_category_induced_functor_object_of_identity _)). comma_laws_t. Qed.
Lemma
Require Import Category.Core Functor.Core. Require Import Category.Prod Functor.Prod.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors NatCategory. Require Import FunctorCategory.Core. Require Import Cat.Core. Require Import Functor.Paths. Import Comma.Core. Require Import Comma.InducedFunctors Comma.Projection. Require Import Types.Forall PathGroupoids HoTT.Tactics.
Categories\Comma\ProjectionFunctors.v
comma_category_projection_functor_identity_of
2,165
s d d' m m' : comma_category_projection_functor_morphism_of (@Category.Core.compose _ s d d' m' m) = (comma_category_projection_functor_morphism_of m') o (comma_category_projection_functor_morphism_of m). Proof. apply CommaCategory.path_morphism; simpl; [ | reflexivity ]. path_functor. simpl. exists (path_forall _ _ (comma_category_induced_functor_object_of_compose m' m)). comma_laws_t. Qed.
Lemma
Require Import Category.Core Functor.Core. Require Import Category.Prod Functor.Prod.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors NatCategory. Require Import FunctorCategory.Core. Require Import Cat.Core. Require Import Functor.Paths. Import Comma.Core. Require Import Comma.InducedFunctors Comma.Projection. Require Import Types.Forall PathGroupoids HoTT.Tactics.
Categories\Comma\ProjectionFunctors.v
comma_category_projection_functor_composition_of
2,166
Functor ((A -> C)^op * (B -> C)) (Cat / !((A * B; PAB) : Cat)) := Build_Functor ((A -> C)^op * (B -> C)) (Cat / !((A * B; PAB) : Cat)) comma_category_projection_functor_object_of comma_category_projection_functor_morphism_of comma_category_projection_functor_composition_of comma_category_projection_functor_identity_of.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Prod Functor.Prod.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors NatCategory. Require Import FunctorCategory.Core. Require Import Cat.Core. Require Import Functor.Paths. Import Comma.Core. Require Import Comma.InducedFunctors Comma.Projection. Require Import Types.Forall PathGroupoids HoTT.Tactics.
Categories\Comma\ProjectionFunctors.v
comma_category_projection_functor
2,167
object (((C -> D)^op) -> (D -> (Cat / ((C; PC) : Cat)))). Proof. refine ((ExponentialLaws.Law4.Functors.inverse _ _ _) _). refine (_ o (Functor.Identity.identity (C -> D)^op, inv D)). refine (_ o @comma_category_projection_functor _ P HF C 1 D PC1 P_comma). refine (cat_over_induced_functor _). hnf. exact (ProductLaws.Law1.functor _). Defined.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Prod Functor.Prod.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors NatCategory. Require Import FunctorCategory.Core. Require Import Cat.Core. Require Import Functor.Paths. Import Comma.Core. Require Import Comma.InducedFunctors Comma.Projection. Require Import Types.Forall PathGroupoids HoTT.Tactics.
Categories\Comma\ProjectionFunctors.v
slice_category_projection_functor
2,168
object ((C -> D)^op -> (D -> (Cat / ((C; PC) : Cat)))). Proof. refine ((ExponentialLaws.Law4.Functors.inverse _ _ _) _). refine (_ o (Functor.Identity.identity (C -> D)^op, inv D)). refine (_ o @comma_category_projection_functor _ P HF C 1 D PC1 P_comma). refine (cat_over_induced_functor _). hnf. exact (ProductLaws.Law1.functor _). Defined.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Prod Functor.Prod.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors NatCategory. Require Import FunctorCategory.Core. Require Import Cat.Core. Require Import Functor.Paths. Import Comma.Core. Require Import Comma.InducedFunctors Comma.Projection. Require Import Types.Forall PathGroupoids HoTT.Tactics.
Categories\Comma\ProjectionFunctors.v
coslice_category_projection_functor
2,169
slice_category_projection_functor' : object ((C -> D) -> (D^op -> (Cat / ((C; PC) : Cat)))). Proof. refine ((ExponentialLaws.Law4.Functors.inverse _ _ _) _). refine (_ o (Functor.Identity.identity (C -> D), (inv D)^op)). refine (_ o ProductLaws.Swap.functor _ _). refine (_ o @comma_category_projection_functor _ P HF 1 C D P1C P_comma'). refine (cat_over_induced_functor _). hnf. exact (ProductLaws.Law1.functor' _). Defined.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Prod Functor.Prod.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors NatCategory. Require Import FunctorCategory.Core. Require Import Cat.Core. Require Import Functor.Paths. Import Comma.Core. Require Import Comma.InducedFunctors Comma.Projection. Require Import Types.Forall PathGroupoids HoTT.Tactics.
Categories\Comma\ProjectionFunctors.v
slice_category_projection_functor'
2,170
coslice_category_projection_functor' : object ((C -> D) -> (D^op -> (Cat / ((C; PC) : Cat)))). Proof. refine ((ExponentialLaws.Law4.Functors.inverse _ _ _) _). refine (_ o (Functor.Identity.identity (C -> D), (inv D)^op)). refine (_ o ProductLaws.Swap.functor _ _). refine (_ o @comma_category_projection_functor _ P HF 1 C D P1C P_comma'). refine (cat_over_induced_functor _). hnf. exact (ProductLaws.Law1.functor' _). Defined.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Prod Functor.Prod.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors NatCategory. Require Import FunctorCategory.Core. Require Import Cat.Core. Require Import Functor.Paths. Import Comma.Core. Require Import Comma.InducedFunctors Comma.Projection. Require Import Types.Forall PathGroupoids HoTT.Tactics.
Categories\Comma\ProjectionFunctors.v
coslice_category_projection_functor'
2,171
Functor (0 -> C) 1 := center _.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Identity. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors InitialTerminalCategory.NaturalTransformations. Require Import HoTT.Basics HoTT.Types.
Categories\ExponentialLaws\Law0.v
functor
2,172
Functor 1 (0 -> C) := center _.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Identity. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors InitialTerminalCategory.NaturalTransformations. Require Import HoTT.Basics HoTT.Types.
Categories\ExponentialLaws\Law0.v
inverse
2,173
functor o inverse = 1 /\ inverse o functor = 1 := center _.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Identity. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors InitialTerminalCategory.NaturalTransformations. Require Import HoTT.Basics HoTT.Types.
Categories\ExponentialLaws\Law0.v
law
2,174
functor' : Functor (C -> 0) 0 := center _.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Identity. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors InitialTerminalCategory.NaturalTransformations. Require Import HoTT.Basics HoTT.Types.
Categories\ExponentialLaws\Law0.v
functor'
2,175
inverse' : Functor 0 (C -> 0) := center _.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Identity. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors InitialTerminalCategory.NaturalTransformations. Require Import HoTT.Basics HoTT.Types.
Categories\ExponentialLaws\Law0.v
inverse'
2,176
law' : functor' o inverse' = 1 /\ inverse' o functor' = 1 := center _.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Identity. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors InitialTerminalCategory.NaturalTransformations. Require Import HoTT.Basics HoTT.Types.
Categories\ExponentialLaws\Law0.v
law'
2,177
Functor (0 -> 0) 1 := functor _.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Identity. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors InitialTerminalCategory.NaturalTransformations. Require Import HoTT.Basics HoTT.Types.
Categories\ExponentialLaws\Law0.v
functor00
2,178
Functor 1 (0 -> 0) := inverse _.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Identity. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors InitialTerminalCategory.NaturalTransformations. Require Import HoTT.Basics HoTT.Types.
Categories\ExponentialLaws\Law0.v
inverse00
2,179
functor00 o inverse00 = 1 /\ inverse00 o functor00 = 1 := law _.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Identity. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors InitialTerminalCategory.NaturalTransformations. Require Import HoTT.Basics HoTT.Types.
Categories\ExponentialLaws\Law0.v
law00
2,180
Functor (1 -> C) C := Build_Functor (1 -> C) C (fun F => F (center _)) (fun s d m => m (center _)) (fun _ _ _ _ _ => idpath) (fun _ => idpath).
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Identity NaturalTransformation.Core NaturalTransformation.Paths. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors InitialTerminalCategory.NaturalTransformations. Require Import HoTT.Basics HoTT.Types.
Categories\ExponentialLaws\Law1\Functors.v
functor
2,181
s d (m : morphism C s d) : morphism (1 -> C) (Functors.from_terminal _ s) (Functors.from_terminal _ d). Proof. refine (Build_NaturalTransformation (Functors.from_terminal _ s) (Functors.from_terminal _ d) (fun _ => m) _). simpl; intros. etransitivity; [ apply right_identity | symmetry; apply left_identity ]. Defined.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Identity NaturalTransformation.Core NaturalTransformation.Paths. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors InitialTerminalCategory.NaturalTransformations. Require Import HoTT.Basics HoTT.Types.
Categories\ExponentialLaws\Law1\Functors.v
inverse_morphism_of
2,182
Functor C (1 -> C). Proof. refine (Build_Functor C (1 -> C) (@Functors.from_terminal _ _ _ _ _) inverse_morphism_of _ _ ); abstract (path_natural_transformation; trivial). Defined.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Identity NaturalTransformation.Core NaturalTransformation.Paths. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors InitialTerminalCategory.NaturalTransformations. Require Import HoTT.Basics HoTT.Types.
Categories\ExponentialLaws\Law1\Functors.v
inverse
2,183
functor' : Functor (C -> 1) 1 := Functors.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Identity NaturalTransformation.Core NaturalTransformation.Paths. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors InitialTerminalCategory.NaturalTransformations. Require Import HoTT.Basics HoTT.Types.
Categories\ExponentialLaws\Law1\Functors.v
functor'
2,184
inverse' : Functor 1 (C -> 1) := Functors.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Identity NaturalTransformation.Core NaturalTransformation.Paths. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors InitialTerminalCategory.NaturalTransformations. Require Import HoTT.Basics HoTT.Types.
Categories\ExponentialLaws\Law1\Functors.v
inverse'
2,185
law' : functor' o inverse' = 1 /\ inverse' o functor' = 1 := center _.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Identity NaturalTransformation.Core NaturalTransformation.Paths. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors InitialTerminalCategory.NaturalTransformations. Require Import HoTT.Basics HoTT.Types.
Categories\ExponentialLaws\Law1\Functors.v
law'
2,186
(c : Functor 1 C) : Functors.from_terminal C (c (center _)) = c. Proof. path_functor. exists (path_forall _ _ (fun x => ap (object_of c) (contr _))). abstract ( exp_laws_t; simpl; rewrite <- identity_of; f_ap; symmetry; apply contr ). Defined.
Definition
Require Import Category.Core Functor.Core Functor.Identity Functor.Paths ExponentialLaws.Law1.Functors Functor.Composition.Core. Require Import InitialTerminalCategory.Core. Require Import Basics.Trunc ExponentialLaws.Tactics. Require Import Basics.Tactics.
Categories\ExponentialLaws\Law1\Law.v
helper
2,187
@functor _ one _ C o inverse C = 1 /\ inverse C o @functor _ one _ C = 1. Proof. split; path_functor. exists (path_forall _ _ helper). unfold helper. exp_laws_t. Qed.
Lemma
Require Import Category.Core Functor.Core Functor.Identity Functor.Paths ExponentialLaws.Law1.Functors Functor.Composition.Core. Require Import InitialTerminalCategory.Core. Require Import Basics.Trunc ExponentialLaws.Tactics. Require Import Basics.Tactics.
Categories\ExponentialLaws\Law1\Law.v
law
2,188
Functor (C1 + C2 -> D) ((C1 -> D) * (C2 -> D)) := pointwise (inl C1 C2) 1 * pointwise (inr C1 C2) 1.
Definition
Require Import Functor.Core FunctorCategory.Core Functor.Identity NaturalTransformation.Core Category.Sum Category.Prod Functor.Sum Functor.Prod.Core NaturalTransformation.Sum Functor.Pointwise.Core NaturalTransformation.Paths.
Categories\ExponentialLaws\Law2\Functors.v
functor
2,189
Functor ((C1 -> D) * (C2 -> D)) (C1 + C2 -> D). Proof. refine (Build_Functor ((C1 -> D) * (C2 -> D)) (C1 + C2 -> D) (fun FG => fst FG + snd FG)%functor (fun _ _ m => fst_type m + snd_type m)%natural_transformation _ _); simpl in *; abstract ( repeat (intros [?|?] || intros [? ?]); simpl in *; apply path_natural_transformation; intros [?|?]; reflexivity ). Defined.
Definition
Require Import Functor.Core FunctorCategory.Core Functor.Identity NaturalTransformation.Core Category.Sum Category.Prod Functor.Sum Functor.Prod.Core NaturalTransformation.Sum Functor.Pointwise.Core NaturalTransformation.Paths.
Categories\ExponentialLaws\Law2\Functors.v
inverse
2,190
(c : Functor C1 D * Functor C2 D) : ((1 o (Basics.Overture.fst c + Basics.Overture.snd c) o inl C1 C2)%functor, (1 o (Basics.Overture.fst c + Basics.Overture.snd c) o inr C1 C2)%functor)%core = c. Proof. apply path_prod; simpl; path_functor. Defined.
Lemma
Require Import Functor.Core. Require Import Category.Sum Functor.Sum. Require Import Functor.Paths. Require Import Functor.Identity Functor.Composition.Core. Require Import Types.Prod ExponentialLaws.Tactics. Require Import ExponentialLaws.Law2.Functors.
Categories\ExponentialLaws\Law2\Law.v
helper1
2,191
(c : Functor (C1 + C2) D) x : (1 o c o inl C1 C2 + 1 o c o inr C1 C2) x = c x. Proof. destruct x; reflexivity. Defined.
Lemma
Require Import Functor.Core. Require Import Category.Sum Functor.Sum. Require Import Functor.Paths. Require Import Functor.Identity Functor.Composition.Core. Require Import Types.Prod ExponentialLaws.Tactics. Require Import ExponentialLaws.Law2.Functors.
Categories\ExponentialLaws\Law2\Law.v
helper2_helper
2,192
(c : Functor (C1 + C2) D) : 1 o c o inl C1 C2 + 1 o c o inr C1 C2 = c. Proof. path_functor. (exists (path_forall _ _ (@helper2_helper c))). abstract exp_laws_t. Defined.
Lemma
Require Import Functor.Core. Require Import Category.Sum Functor.Sum. Require Import Functor.Paths. Require Import Functor.Identity Functor.Composition.Core. Require Import Types.Prod ExponentialLaws.Tactics. Require Import ExponentialLaws.Law2.Functors.
Categories\ExponentialLaws\Law2\Law.v
helper2
2,193
functor D C1 C2 o inverse D C1 C2 = 1 /\ inverse D C1 C2 o functor D C1 C2 = 1. Proof. split; path_functor; [ (exists (path_forall _ _ helper1)) | (exists (path_forall _ _ helper2)) ]; exp_laws_t; unfold helper1, helper2; exp_laws_t. Qed.
Lemma
Require Import Functor.Core. Require Import Category.Sum Functor.Sum. Require Import Functor.Paths. Require Import Functor.Identity Functor.Composition.Core. Require Import Types.Prod ExponentialLaws.Tactics. Require Import ExponentialLaws.Law2.Functors.
Categories\ExponentialLaws\Law2\Law.v
law
2,194
Functor (D -> C1 * C2) ((D -> C1) * (D -> C2)) := Build_Functor (D -> C1 * C2) ((D -> C1) * (D -> C2)) (fun H => (fst o H, snd o H)%core) (fun s d m => (fst oL m, snd oL m)%core) (fun _ _ _ _ _ => path_prod' (composition_of_whisker_l _ _ _) (composition_of_whisker_l _ _ _)) (fun _ => path_prod' (whisker_l_right_identity _ _) (whisker_l_right_identity _ _)).
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Category.Prod. Require Import Functor.Prod Functor.Composition.Core NaturalTransformation.Composition.Laws NaturalTransformation.Composition.Core. Require Import Types.Prod.
Categories\ExponentialLaws\Law3\Functors.v
functor
2,195
Functor ((D -> C1) * (D -> C2)) (D -> C1 * C2) := Functor.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Category.Prod. Require Import Functor.Prod Functor.Composition.Core NaturalTransformation.Composition.Laws NaturalTransformation.Composition.Core. Require Import Types.Prod.
Categories\ExponentialLaws\Law3\Functors.v
inverse
2,196
(c : Functor D C1 * Functor D C2) : ((fst o (Basics.Overture.fst c * Basics.Overture.snd c))%functor, (snd o (Basics.Overture.fst c * Basics.Overture.snd c))%functor)%core = c. Proof. apply path_prod; [ apply compose_fst_prod | apply compose_snd_prod ]. Defined.
Lemma
Require Import Category.Core Functor.Core. Require Import Functor.Prod. Require Import Functor.Paths. Require Import Functor.Identity Functor.Composition.Core. Require Import ExponentialLaws.Law3.Functors. Require Import Types.Prod ExponentialLaws.Tactics.
Categories\ExponentialLaws\Law3\Law.v
helper
2,197
functor C1 C2 D o inverse C1 C2 D = 1 /\ inverse C1 C2 D o functor C1 C2 D = 1. Proof. split; path_functor; [ (exists (path_forall _ _ helper)) | (exists (path_forall _ _ (fun _ => Functor.Prod.Universal.unique idpath idpath))) ]; exp_laws_t; unfold helper, compose_fst_prod, compose_snd_prod, Functor.Prod.Universal.unique, Functor.Prod.Universal.unique_helper; exp_laws_t. Qed.
Lemma
Require Import Category.Core Functor.Core. Require Import Functor.Prod. Require Import Functor.Paths. Require Import Functor.Identity Functor.Composition.Core. Require Import ExponentialLaws.Law3.Functors. Require Import Types.Prod ExponentialLaws.Tactics.
Categories\ExponentialLaws\Law3\Law.v
Law
2,198
(C1 -> (C2 -> D))%category -> (C1 * C2 -> D)%category. Proof. intro F; hnf in F |- *. refine (Build_Functor (C1 * C2) D (fun c1c2 => F (fst c1c2) (snd c1c2)) (fun s d m => F (fst d) _1 (snd m) o (F _1 (fst m)) (snd s)) _ _); abstract do_exponential4. Defined.
Definition
Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\ExponentialLaws\Law4\Functors.v
functor_object_of
2,199