fact
stringlengths 0
6.66k
| type
stringclasses 10
values | imports
stringclasses 399
values | filename
stringclasses 465
values | symbolic_name
stringlengths 1
75
| index_level
int64 0
7.85k
|
---|---|---|---|---|---|
s d (m : morphism (C1 -> (C2 -> D)) s d) : morphism (C1 * C2 -> D) (functor_object_of s) (functor_object_of d). Proof. simpl. refine (Build_NaturalTransformation (functor_object_of s) (functor_object_of d) (fun c => m (fst c) (snd c)) _); abstract ( repeat match goal with | [ |- context[components_of ?T ?x o components_of ?U ?x] ] => change (T x o U x) with ((compose (C := (_ -> _)) T U) x) | _ => f_ap | _ => rewrite !commutes | _ => do_exponential4 end ). Defined. | Definition | Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics. | Categories\ExponentialLaws\Law4\Functors.v | functor_morphism_of | 2,200 |
Functor (C1 -> (C2 -> D)) (C1 * C2 -> D). Proof. refine (Build_Functor (C1 -> (C2 -> D)) (C1 * C2 -> D) functor_object_of functor_morphism_of _ _); abstract by path_natural_transformation. Defined. | Definition | Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics. | Categories\ExponentialLaws\Law4\Functors.v | functor | 2,201 |
C1 -> (C2 -> D)%category. Proof. intro c1. refine (Build_Functor C2 D (fun c2 => F (c1, c2)) (fun s2 d2 m2 => F _1 ((identity c1, m2) : morphism (_ * _) (c1, s2) (c1, d2))) _ _); abstract do_exponential4_inverse. Defined. | Definition | Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics. | Categories\ExponentialLaws\Law4\Functors.v | inverse_object_of_object_of | 2,202 |
s d (m : morphism C1 s d) : morphism (C2 -> D) (inverse_object_of_object_of s) (inverse_object_of_object_of d). Proof. refine (Build_NaturalTransformation (inverse_object_of_object_of s) (inverse_object_of_object_of d) (fun c => F _1 ((m, identity c) : morphism (_ * _) (s, c) (d, c))) _); abstract do_exponential4_inverse. Defined. | Definition | Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics. | Categories\ExponentialLaws\Law4\Functors.v | inverse_object_of_morphism_of | 2,203 |
(C1 -> (C2 -> D))%category. Proof. refine (Build_Functor C1 (C2 -> D) inverse_object_of_object_of inverse_object_of_morphism_of _ _); abstract (path_natural_transformation; do_exponential4_inverse). Defined. | Definition | Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics. | Categories\ExponentialLaws\Law4\Functors.v | inverse_object_of | 2,204 |
s d (m : morphism (C1 * C2 -> D) s d) : forall c, morphism (C2 -> D) ((inverse_object_of s) c) ((inverse_object_of d) c). Proof. intro c. refine (Build_NaturalTransformation ((inverse_object_of s) c) ((inverse_object_of d) c) (fun c' => m (c, c')) _). abstract do_exponential4_inverse. Defined. | Definition | Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics. | Categories\ExponentialLaws\Law4\Functors.v | inverse_morphism_of_components_of | 2,205 |
s d (m : morphism (C1 * C2 -> D) s d) : morphism (C1 -> (C2 -> D)) (inverse_object_of s) (inverse_object_of d). Proof. refine (Build_NaturalTransformation (inverse_object_of s) (inverse_object_of d) (inverse_morphism_of_components_of m) _). abstract (path_natural_transformation; do_exponential4_inverse). Defined. | Definition | Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics. | Categories\ExponentialLaws\Law4\Functors.v | inverse_morphism_of | 2,206 |
Functor (C1 * C2 -> D) (C1 -> (C2 -> D)). Proof. refine (Build_Functor (C1 * C2 -> D) (C1 -> (C2 -> D)) inverse_object_of inverse_morphism_of _ _); abstract by path_natural_transformation. Defined. | Definition | Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics. | Categories\ExponentialLaws\Law4\Functors.v | inverse | 2,207 |
c : functor C1 C2 D (inverse C1 C2 D c) = c. Proof. path_functor. abstract ( exp_laws_t; rewrite <- composition_of; exp_laws_t ). Defined. | Lemma | Require Import Category.Core Functor.Core. Require Import Functor.Paths. Require Import Functor.Identity Functor.Composition.Core. Require Import ExponentialLaws.Law4.Functors. Require Import ExponentialLaws.Tactics. | Categories\ExponentialLaws\Law4\Law.v | helper1 | 2,208 |
c x : inverse C1 C2 D (functor C1 C2 D c) x = c x. Proof. path_functor. abstract exp_laws_t. Defined. | Lemma | Require Import Category.Core Functor.Core. Require Import Functor.Paths. Require Import Functor.Identity Functor.Composition.Core. Require Import ExponentialLaws.Law4.Functors. Require Import ExponentialLaws.Tactics. | Categories\ExponentialLaws\Law4\Law.v | helper2_helper | 2,209 |
c : inverse C1 C2 D (functor C1 C2 D c) = c. Proof. path_functor. exists (path_forall _ _ (helper2_helper c)). abstract (unfold helper2_helper; exp_laws_t). Defined. | Lemma | Require Import Category.Core Functor.Core. Require Import Functor.Paths. Require Import Functor.Identity Functor.Composition.Core. Require Import ExponentialLaws.Law4.Functors. Require Import ExponentialLaws.Tactics. | Categories\ExponentialLaws\Law4\Law.v | helper2 | 2,210 |
functor C1 C2 D o inverse C1 C2 D = 1 /\ inverse C1 C2 D o functor C1 C2 D = 1. Proof. split; path_functor; [ (exists (path_forall _ _ helper1)) | (exists (path_forall _ _ helper2)) ]; unfold helper1, helper2, helper2_helper; exp_laws_t. Qed. | Lemma | Require Import Category.Core Functor.Core. Require Import Functor.Paths. Require Import Functor.Identity Functor.Composition.Core. Require Import ExponentialLaws.Law4.Functors. Require Import ExponentialLaws.Tactics. | Categories\ExponentialLaws\Law4\Law.v | law | 2,211 |
NaturalTransformation (hom_functor C) (hom_functor D o (F^op, F)). Proof. refine (Build_NaturalTransformation (hom_functor C) (hom_functor D o (F^op, F)) (fun (sd : object (C^op * C)) m => (F _1 m)%morphism) _ ). abstract ( repeat (intros [] || intro); simpl in *; repeat (apply path_forall; intro); simpl; rewrite !composition_of; reflexivity ). Defined. | Definition | Require Import Category.Core Functor.Core HomFunctor Category.Morphisms Category.Dual Functor.Dual Category.Prod Functor.Prod NaturalTransformation.Core SetCategory.Core Functor.Composition.Core. Require Import Basics.Trunc Types.Universe HIT.iso HoTT.Truncations.Core. | Categories\Functor\Attributes.v | induced_hom_natural_transformation | 2,212 |
`{IsFull} `{IsFaithful} (H' : forall x y (m : morphism set_cat x y), IsEpimorphism m -> IsMonomorphism m -> IsIsomorphism m) : IsFullyFaithful. Proof. intros ? ?; hnf in * |- . apply H'; eauto. Qed. | Lemma | Require Import Category.Core Functor.Core HomFunctor Category.Morphisms Category.Dual Functor.Dual Category.Prod Functor.Prod NaturalTransformation.Core SetCategory.Core Functor.Composition.Core. Require Import Basics.Trunc Types.Universe HIT.iso HoTT.Truncations.Core. | Categories\Functor\Attributes.v | isfullyfaithful_isfull_isfaithful_helper | 2,213 |
`{H' : IsEquiv _ _ m} : IsIsomorphism (m : morphism set_cat x y). Proof. exists (m^-1)%core; apply path_forall; intro; destruct H'; simpl in *; eauto. Qed. | Lemma | Require Import Category.Core Functor.Core HomFunctor Category.Morphisms Category.Dual Functor.Dual Category.Prod Functor.Prod NaturalTransformation.Core SetCategory.Core Functor.Composition.Core. Require Import Basics.Trunc Types.Universe HIT.iso HoTT.Truncations.Core. | Categories\Functor\Attributes.v | isisomorphism_isequiv_set_cat | 2,214 |
(Hepi : IsEpimorphism (m : morphism set_cat x y)) (Hmono : IsMonomorphism (m : morphism set_cat x y)) : @IsEquiv _ _ m (* NB: This depends on the (arguably accidental) fact that `ismono` and `isepi` from HoTT core are *definitionally* identical to the specialization of `IsMonomorphism` and `IsEpimorphism` to the category of sets. | Definition | Require Import Category.Core Functor.Core HomFunctor Category.Morphisms Category.Dual Functor.Dual Category.Prod Functor.Prod NaturalTransformation.Core SetCategory.Core Functor.Composition.Core. Require Import Basics.Trunc Types.Universe HIT.iso HoTT.Truncations.Core. | Categories\Functor\Attributes.v | isequiv_isepimorphism_ismonomorphism | 2,215 |
Record | Require Import Category.Core. | Categories\Functor\Core.v | Functor | 2,216 |
|
C D (F : Functor C D) : Functor C^op D^op := Build_Functor (C^op) (D^op) (object_of F) (fun s d (m : morphism C^op s d) => (F _1 m)%morphism) (fun d' d s m1 m2 => composition_of F s d d' m2 m1) (identity_of F). | Definition | Import Category.Dual.CategoryDualNotations. Require Import Category.Core Functor.Core. | Categories\Functor\Dual.v | opposite | 2,217 |
C D (F : Functor C D) : (F^op)^op = F := idpath. | Definition | Import Category.Dual.CategoryDualNotations. Require Import Category.Core Functor.Core. | Categories\Functor\Dual.v | opposite_involutive | 2,218 |
C : Functor C C := Build_Functor C C (fun x => x) (fun _ _ x => x) (fun _ _ _ _ _ => idpath) (fun _ => idpath). | Definition | Require Import Category.Core Functor.Core. | Categories\Functor\Identity.v | identity | 2,219 |
functor_sig_T <~> Functor C D. Proof. issig. Defined. | Lemma | Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics. | Categories\Functor\Paths.v | equiv_sig_functor | 2,220 |
(F G : Functor C D) : path_functor'_T F G <~> (@equiv_inv _ _ _ equiv_sig_functor F = @equiv_inv _ _ _ equiv_sig_functor G). Proof. etransitivity; [ | by apply equiv_path_sigma ]. eapply @equiv_functor_sigma. repeat match goal with | [ |- context[(@equiv_inv ?A ?B ?f ?H ?F).1] ] => change ((@equiv_inv A B f H F).1) with (object_of F) end. Time exact (isequiv_idmap (object_of F = object_of G)). Abort. >> *) | Definition | Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics. | Categories\Functor\Paths.v | equiv_path_functor_uncurried_sig | 2,221 |
(F G : Functor C D) : path_functor'_T F G -> F = G. Proof. intros [? ?]. destruct F, G; simpl in *. path_induction; simpl. f_ap; eapply @center; abstract exact _. Defined. | Definition | Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics. | Categories\Functor\Paths.v | path_functor_uncurried | 2,222 |
F G HO HM : ap object_of (@path_functor_uncurried F G (HO; HM)) = HO. Proof. destruct F, G; simpl in *. path_induction_hammer. Qed. | Lemma | Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics. | Categories\Functor\Paths.v | path_functor_uncurried_fst | 2,223 |
F : @path_functor_uncurried F F (idpath; idpath) = idpath. Proof. destruct F; simpl in *. rewrite !(contr idpath). reflexivity. Qed. | Lemma | Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics. | Categories\Functor\Paths.v | path_functor_uncurried_idpath | 2,224 |
(F G : Functor C D) : F = G -> path_functor'_T F G := fun H' => (ap object_of H'; (transport_compose _ object_of _ _) ^ @ apD (@morphism_of _ _) H')%path. | Definition | Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics. | Categories\Functor\Paths.v | path_functor_uncurried_inv | 2,225 |
(F G : Functor C D) (HO : object_of F = object_of G) (HM : transport (fun GO => forall s d, morphism C s d -> morphism D (GO s) (GO d)) HO (morphism_of F) = morphism_of G) : F = G := path_functor_uncurried F G (HO; HM). | Definition | Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics. | Categories\Functor\Paths.v | path_functor | 2,226 |
(F G : Functor C D) (HO : object_of F == object_of G) (HM : forall s d m, transport (fun GO => forall s d, morphism C s d -> morphism D (GO s) (GO d)) (path_forall _ _ HO) (morphism_of F) s d m = G _1 m) : F = G. Proof. refine (path_functor F G (path_forall _ _ HO) _). repeat (apply path_forall; intro); apply HM. Defined. | Definition | Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics. | Categories\Functor\Paths.v | path_functor_pointwise | 2,227 |
(F G : Functor C D) : path_functor'_T F G <~> F = G := Build_Equiv _ _ (@path_functor_uncurried F G) _. | Definition | Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics. | Categories\Functor\Paths.v | equiv_path_functor_uncurried | 2,228 |
(F G : Functor C D) (p q : F = G) : ap object_of p = ap object_of q -> p = q. Proof. refine ((ap (@path_functor_uncurried F G)^-1)^-1 o _). refine ((path_sigma_uncurried _ _ _) o _); simpl. refine (pr1^-1). Defined. | Definition | Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics. | Categories\Functor\Paths.v | path_path_functor_uncurried | 2,229 |
Functor C (C + D) := Build_Functor C (C + D) (@ _ _) (fun _ _ m => m) (fun _ _ _ _ _ => idpath) (fun _ => idpath). | Definition | Require Import Category.Sum Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths HoTT.Tactics Types.Forall. Require Import Basics.Tactics. | Categories\Functor\Sum.v | inl | 2,230 |
Functor D (C + D) := Build_Functor D (C + D) (@ _ _) (fun _ _ m => m) (fun _ _ _ _ _ => idpath) (fun _ => idpath). | Definition | Require Import Category.Sum Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths HoTT.Tactics Types.Forall. Require Import Basics.Tactics. | Categories\Functor\Sum.v | inr | 2,231 |
(F : Functor C D) (F' : Functor C' D) : Functor (C + C') D. Proof. refine (Build_Functor (C + C') D (fun cc' => match cc' with | type_inl c => F c | type_inr c' => F' c' end) (fun s d => match s, d with | type_inl cs, type_inl cd => fun m : morphism _ cs cd => F _1 m | type_inr c's, type_inr c'd => fun m : morphism _ c's c'd => F' _1 m | _, _ => fun m => match m with end end%morphism) _ _); abstract ( repeat (intros [] || intro); simpl in *; auto with functor ). Defined. | Definition | Require Import Category.Sum Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths HoTT.Tactics Types.Forall. Require Import Basics.Tactics. | Categories\Functor\Sum.v | sum | 2,232 |
C D : Functor (C + D) (D + C) := sum (inr _ _) (inl _ _). | Definition | Require Import Category.Sum Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths HoTT.Tactics Types.Forall. Require Import Basics.Tactics. | Categories\Functor\Sum.v | swap | 2,233 |
{C D} c : (swap C D) ((swap D C) c) = c := match c with type_inl _ => idpath | type_inr _ => idpath end. | Definition | Require Import Category.Sum Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths HoTT.Tactics Types.Forall. Require Import Basics.Tactics. | Categories\Functor\Sum.v | swap_involutive_helper | 2,234 |
`{Funext} C D : swap C D o swap D C = 1. Proof. path_functor. exists (path_forall _ _ swap_involutive_helper). repeat (apply (@path_forall _); intro). repeat match goal with | [ |- context[transport (fun x' => forall y, @?C x' y) ?p ?f ?x] ] => simpl rewrite (@transport_forall_constant _ _ C _ _ p f x) end. transport_path_forall_hammer. by repeat match goal with | [ H : Empty |- _ ] => destruct H | [ H : (_ + _) |- _ ] => destruct H | _ => progress hnf in * end. Qed. | Lemma | Require Import Category.Sum Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths HoTT.Tactics Types.Forall. Require Import Basics.Tactics. | Categories\Functor\Sum.v | swap_involutive | 2,235 |
s d d' (m1 : morphism C s d) (m2 : morphism C d d') : c_morphism_of (m2 o m1) = c_morphism_of m2 o c_morphism_of m1 := transport (@paths _ (c_morphism_of (m2 o m1))) (composition_of G _ _ _ _ _) (ap (fun m => G _1 m) (composition_of F _ _ _ m1 m2)). | Definition | Require Import Category.Core Functor.Core. | Categories\Functor\Composition\Core.v | compose_composition_of | 2,236 |
x : c_morphism_of (identity x) = identity (c_object_of x) := transport (@paths _ _) (identity_of G _) (ap (fun m => G _1 m) (identity_of F x)). | Definition | Require Import Category.Core Functor.Core. | Categories\Functor\Composition\Core.v | compose_identity_of | 2,237 |
Functor C E := Build_Functor C E (fun c => G (F c)) (fun _ _ m => G _1 (F _1 m)) compose_composition_of compose_identity_of. | Definition | Require Import Category.Core Functor.Core. | Categories\Functor\Composition\Core.v | compose | 2,238 |
(F : Functor C D) : 1 o F = F. Proof. by path_functor. Defined. | Lemma | Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics. | Categories\Functor\Composition\Laws.v | left_identity | 2,239 |
(F : Functor C D) : F o 1 = F. Proof. by path_functor. Defined. | Lemma | Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics. | Categories\Functor\Composition\Laws.v | right_identity | 2,240 |
F : ap object_of (left_identity F) = idpath := @path_functor_uncurried_fst _ _ _ (1 o F) F 1 1. | Definition | Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics. | Categories\Functor\Composition\Laws.v | left_identity_fst | 2,241 |
F : ap object_of (right_identity F) = idpath := @path_functor_uncurried_fst _ _ _ (F o 1) F 1 1. | Definition | Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics. | Categories\Functor\Composition\Laws.v | right_identity_fst | 2,242 |
(F : Functor B C) (G : Functor C D) (H : Functor D E) : (H o G) o F = H o (G o F). Proof. by path_functor. Defined. | Lemma | Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics. | Categories\Functor\Composition\Laws.v | associativity | 2,243 |
F G H : ap object_of (associativity F G H) = idpath := @path_functor_uncurried_fst _ _ _ ((H o G) o F) (H o (G o F)) 1%path 1%path. | Definition | Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics. | Categories\Functor\Composition\Laws.v | associativity_fst | 2,244 |
C D E (F : Functor C D) (G : Functor D E) : (associativity F 1 G @ ap (compose G) (left_identity F)) = (ap (fun G' : Functor D E => G' o F) (right_identity G)). Proof. coherence_t. Qed. | Lemma | Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics. | Categories\Functor\Composition\Laws.v | triangle | 2,245 |
A B C D E (F : Functor A B) (G : Functor B C) (H : Functor C D) (K : Functor D E) : (associativity F G (K o H) @ associativity (G o F) H K) = (ap (fun KHG => KHG o F) (associativity G H K) @ associativity F (H o G) K @ ap (compose K) (associativity F G H)). Proof. coherence_t. Qed. | Lemma | Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics. | Categories\Functor\Composition\Laws.v | pentagon | 2,246 |
(F G : Functor B C) (T U : NaturalTransformation F G) (a : A) (b : B) (f : H a <~=~> b) (H' : T oR H = U oR H) : T b = U b. Proof. apply (ap components_of) in H'. apply apD10 in H'; hnf in H'; simpl in H'. rewrite <- !(path_components_of_isomorphic' f). rewrite H'. reflexivity. Qed. | Lemma | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Functorial.Core. Require Import NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Isomorphisms. Require Import Functor.Attributes. Require Import FunctorCategory.Core. Require Import Category.Morphisms. Require Import NaturalTransformation.Paths. Require Import HoTT.Truncations.Core. | Categories\Functor\Composition\Functorial\Attributes.v | isfaithful_precomposition_essentially_surjective_helper | 2,247 |
s d (m : morphism (C -> D) s d) : morphism ((D -> E) -> (C -> E)) (whiskerR_functor _ s) (whiskerR_functor _ d) := Build_NaturalTransformation (whiskerR_functor E s) (whiskerR_functor E d) (fun x => x oL m) (fun _ _ _ => exchange_whisker _ _). | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Category.Prod FunctorCategory.Core NaturalTransformation.Composition.Functorial NaturalTransformation.Composition.Laws ExponentialLaws.Law4.Functors. Require Import NaturalTransformation.Paths. | Categories\Functor\Composition\Functorial\Core.v | compose_functor_morphism_of | 2,248 |
object ((C -> D) -> ((D -> E) -> (C -> E))). Proof. refine (Build_Functor (C -> D) ((D -> E) -> (C -> E)) (@whiskerR_functor _ _ _ _) compose_functor_morphism_of _ _); abstract ( path_natural_transformation; rewrite ?composition_of, ?identity_of; reflexivity ). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Category.Prod FunctorCategory.Core NaturalTransformation.Composition.Functorial NaturalTransformation.Composition.Laws ExponentialLaws.Law4.Functors. Require Import NaturalTransformation.Paths. | Categories\Functor\Composition\Functorial\Core.v | compose_functor | 2,249 |
object ((C -> D) * (D -> E) -> (C -> E)) := ExponentialLaws. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Category.Prod FunctorCategory.Core NaturalTransformation.Composition.Functorial NaturalTransformation.Composition.Laws ExponentialLaws.Law4.Functors. Require Import NaturalTransformation.Paths. | Categories\Functor\Composition\Functorial\Core.v | compose_functor_uncurried | 2,250 |
compose_functor' : object ((D -> E) -> ((C -> D) -> (C -> E))) := ExponentialLaws. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Category.Prod FunctorCategory.Core NaturalTransformation.Composition.Functorial NaturalTransformation.Composition.Laws ExponentialLaws.Law4.Functors. Require Import NaturalTransformation.Paths. | Categories\Functor\Composition\Functorial\Core.v | compose_functor' | 2,251 |
s d (m : morphism (C -> D) s d) : morphism (C' -> D') (pointwise_object_of s) (pointwise_object_of d) := Eval simpl in G oL m oR F. | Definition | Require Import Category.Core Functor.Core FunctorCategory.Core NaturalTransformation.Paths Functor.Composition.Core NaturalTransformation.Composition.Core. | Categories\Functor\Pointwise\Core.v | pointwise_morphism_of | 2,252 |
s d (m : morphism (C -> D) s d) : morphism (C -> D') (pointwise_whiskerL_object_of s) (pointwise_whiskerL_object_of d) := Eval simpl in G oL m. | Definition | Require Import Category.Core Functor.Core FunctorCategory.Core NaturalTransformation.Paths Functor.Composition.Core NaturalTransformation.Composition.Core. | Categories\Functor\Pointwise\Core.v | pointwise_whiskerL_morphism_of | 2,253 |
s d (m : morphism (C -> D) s d) : morphism (C' -> D) (pointwise_whiskerR_object_of s) (pointwise_whiskerR_object_of d) := Eval simpl in m oR F. | Definition | Require Import Category.Core Functor.Core FunctorCategory.Core NaturalTransformation.Paths Functor.Composition.Core NaturalTransformation.Composition.Core. | Categories\Functor\Pointwise\Core.v | pointwise_whiskerR_morphism_of | 2,254 |
Functor (C -> D) (C' -> D'). Proof. refine (Build_Functor (C -> D) (C' -> D') (fun x => pointwise_object_of x) pointwise_morphism_of _ _); abstract (intros; simpl; path_natural_transformation; auto with functor). Defined. | Definition | Require Import Category.Core Functor.Core FunctorCategory.Core NaturalTransformation.Paths Functor.Composition.Core NaturalTransformation.Composition.Core. | Categories\Functor\Pointwise\Core.v | pointwise | 2,255 |
Functor (C -> D) (C -> D'). Proof. refine (Build_Functor (C -> D) (C -> D') (fun x => pointwise_whiskerL_object_of x) pointwise_whiskerL_morphism_of _ _); abstract (intros; simpl; path_natural_transformation; auto with functor). Defined. | Definition | Require Import Category.Core Functor.Core FunctorCategory.Core NaturalTransformation.Paths Functor.Composition.Core NaturalTransformation.Composition.Core. | Categories\Functor\Pointwise\Core.v | pointwise_whiskerL | 2,256 |
Functor (C -> D) (C' -> D). Proof. refine (Build_Functor (C -> D) (C' -> D) (fun x => pointwise_whiskerR_object_of x) pointwise_whiskerR_morphism_of _ _); abstract (intros; simpl; path_natural_transformation; auto with functor). Defined. | Definition | Require Import Category.Core Functor.Core FunctorCategory.Core NaturalTransformation.Paths Functor.Composition.Core NaturalTransformation.Composition.Core. | Categories\Functor\Pointwise\Core.v | pointwise_whiskerR | 2,257 |
(x : Functor C D) : 1 o x o 1 = x. Proof. path_functor. Defined. | Lemma | Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics. | Categories\Functor\Pointwise\Properties.v | identity_of_helper_helper | 2,258 |
x : ap object_of (identity_of_helper_helper x) = idpath := path_functor_uncurried_fst _ _ _. | Definition | Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics. | Categories\Functor\Pointwise\Properties.v | identity_of_helper_helper_object_of | 2,259 |
(fun x : Functor C D => 1 o x o 1) = idmap. Proof. apply path_forall; intro x. apply identity_of_helper_helper. Defined. | Lemma | Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics. | Categories\Functor\Pointwise\Properties.v | identity_of_helper | 2,260 |
pointwise (identity C) (identity D) = identity _. Proof. path_functor. exists identity_of_helper. unfold identity_of_helper. abstract functor_pointwise_t identity_of_helper_helper identity_of_helper_helper_object_of. Defined. | Lemma | Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics. | Categories\Functor\Pointwise\Properties.v | identity_of | 2,261 |
(x : Functor C'' D) : G' o G o x o (F' o F) = G' o (G o x o F') o F. Proof. path_functor. Defined. | Lemma | Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics. | Categories\Functor\Pointwise\Properties.v | composition_of_helper_helper | 2,262 |
x : ap object_of (composition_of_helper_helper x) = idpath := path_functor_uncurried_fst _ _ _. | Definition | Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics. | Categories\Functor\Pointwise\Properties.v | composition_of_helper_helper_object_of | 2,263 |
(fun x => G' o G o x o (F' o F)) = (fun x => G' o (G o x o F') o F). Proof. apply path_forall; intro x. apply composition_of_helper_helper. Defined. | Lemma | Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics. | Categories\Functor\Pointwise\Properties.v | composition_of_helper | 2,264 |
pointwise (F' o F) (G' o G) = pointwise F G' o pointwise F' G. Proof. path_functor. exists composition_of_helper. unfold composition_of_helper. abstract functor_pointwise_t composition_of_helper_helper composition_of_helper_helper_object_of. Defined. | Lemma | Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics. | Categories\Functor\Pointwise\Properties.v | composition_of | 2,265 |
Functor (C * D) C := Build_Functor (C * D) C (@ _ _) (fun _ _ => @ _ _) (fun _ _ _ _ _ => idpath) (fun _ => idpath). | Definition | Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core. Require Import Types.Prod. | Categories\Functor\Prod\Core.v | fst | 2,266 |
Functor (C * D) D := Build_Functor (C * D) D (@ _ _) (fun _ _ => @ _ _) (fun _ _ _ _ _ => idpath) (fun _ => idpath). | Definition | Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core. Require Import Types.Prod. | Categories\Functor\Prod\Core.v | snd | 2,267 |
(F : Functor C D) (F' : Functor C D') : Functor C (D * D') := Build_Functor C (D * D') (fun c => (F c, F' c)) (fun s d m => (F _1 m, F' _1 m)) (fun _ _ _ _ _ => path_prod' (composition_of F _ _ _ _ _) (composition_of F' _ _ _ _ _)) (fun _ => path_prod' (identity_of F _) (identity_of F' _)). | Definition | Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core. Require Import Types.Prod. | Categories\Functor\Prod\Core.v | prod | 2,268 |
Functor (C * C') (D * D') := (F o fst) * (F' o snd). | Definition | Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core. Require Import Types.Prod. | Categories\Functor\Prod\Core.v | pair | 2,269 |
(d : D) : Functor C E. Proof. refine (Build_Functor C E (fun c => F (c, d)) (fun _ _ m => @morphism_of _ _ F (_, _) (_, _) (m, identity d)) _ _); abstract t. Defined. | Definition | Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core. Require Import Types.Prod. | Categories\Functor\Prod\Core.v | induced_fst | 2,270 |
(c : C) : Functor D E. Proof. refine (Build_Functor D E (fun d => F (c, d)) (fun _ _ m => @morphism_of _ _ F (_, _) (_, _) (identity c, m)) _ _); abstract t. Defined. | Definition | Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core. Require Import Types.Prod. | Categories\Functor\Prod\Core.v | induced_snd | 2,271 |
s d (m : morphism ((C -> D) * (C -> D')) s d) : morphism (_ -> _) (fst s * snd s)%functor (fst d * snd d)%functor := fst_type m * snd_type m. | Definition | Require Import Category.Core Functor.Core Functor.Prod.Core FunctorCategory.Core Category.Prod NaturalTransformation.Prod NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Paths. | Categories\Functor\Prod\Functorial.v | functor_morphism_of | 2,272 |
s d d' (m1 : morphism ((C -> D) * (C -> D')) s d) (m2 : morphism ((C -> D) * (C -> D')) d d') : functor_morphism_of (m2 o m1) = functor_morphism_of m2 o functor_morphism_of m1. Proof. path_natural_transformation; reflexivity. Qed. | Definition | Require Import Category.Core Functor.Core Functor.Prod.Core FunctorCategory.Core Category.Prod NaturalTransformation.Prod NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Paths. | Categories\Functor\Prod\Functorial.v | functor_composition_of | 2,273 |
(x : object ((C -> D) * (C -> D'))) : functor_morphism_of (identity x) = identity _. Proof. path_natural_transformation; reflexivity. Qed. | Definition | Require Import Category.Core Functor.Core Functor.Prod.Core FunctorCategory.Core Category.Prod NaturalTransformation.Prod NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Paths. | Categories\Functor\Prod\Functorial.v | functor_identity_of | 2,274 |
object ((C -> D) * (C -> D') -> (C -> D * D')) := Build_Functor ((C -> D) * (C -> D')) (C -> D * D') _ functor_morphism_of functor_composition_of functor_identity_of. | Definition | Require Import Category.Core Functor.Core Functor.Prod.Core FunctorCategory.Core Category.Prod NaturalTransformation.Prod NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Paths. | Categories\Functor\Prod\Functorial.v | functor | 2,275 |
fst o (a * b) = a. Proof. path_functor; trivial. Defined. | Lemma | Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core Functor.Prod.Core. Require Import Functor.Paths. Require Import Types.Prod HoTT.Tactics Types.Forall Types.Sigma. Require Import Basics.Tactics. | Categories\Functor\Prod\Universal.v | compose_fst_prod | 2,276 |
snd o (a * b) = b. Proof. path_functor; trivial. Defined. | Lemma | Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core Functor.Prod.Core. Require Import Functor.Paths. Require Import Types.Prod HoTT.Tactics Types.Forall Types.Sigma. Require Import Basics.Tactics. | Categories\Functor\Prod\Universal.v | compose_snd_prod | 2,277 |
c : (a * b) c = F c. Proof. pose proof (ap (fun F => object_of F c) H1). pose proof (ap (fun F => object_of F c) H2). simpl in *. path_induction. apply eta_prod. Defined. | Lemma | Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core Functor.Prod.Core. Require Import Functor.Paths. Require Import Types.Prod HoTT.Tactics Types.Forall Types.Sigma. Require Import Basics.Tactics. | Categories\Functor\Prod\Universal.v | unique_helper | 2,278 |
transport (fun GO : C -> prod_type A B => forall s d : C, morphism C s d -> prod_type (morphism A (fst_type (GO s)) (fst_type (GO d))) (morphism B (snd_type (GO s)) (snd_type (GO d)))) (path_forall (a * b) F unique_helper) (fun (s d : C) (m : morphism C s d) => pair_type (a _1 m) (b _1 m)) = morphism_of F. Proof. repeat (apply path_forall; intro). repeat match goal with | _ => reflexivity | _ => progress simpl | _ => rewrite !transport_forall_constant end. transport_path_forall_hammer. unfold unique_helper. repeat match goal with | [ H : _ = _ |- _ ] => case H; simpl; clear H end. repeat match goal with | [ |- context[@morphism_of ?C ?D ?F ?s ?d ?m] ] => destruct (@morphism_of C D F s d m); clear m | [ |- context[@object_of ?C ?D ?F ?x] ] => destruct (@object_of C D F x); clear x end. reflexivity. Qed. | Lemma | Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core Functor.Prod.Core. Require Import Functor.Paths. Require Import Types.Prod HoTT.Tactics Types.Forall Types.Sigma. Require Import Basics.Tactics. | Categories\Functor\Prod\Universal.v | unique_helper2 | 2,279 |
a * b = F. Proof. path_functor. exists (path_forall _ _ unique_helper). apply unique_helper2. Defined. | Lemma | Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core Functor.Prod.Core. Require Import Functor.Paths. Require Import Types.Prod HoTT.Tactics Types.Forall Types.Sigma. Require Import Basics.Tactics. | Categories\Functor\Prod\Universal.v | unique | 2,280 |
(F G : Functor C (A * B)) (H1 : fst o F = fst o G) (H2 : snd o F = snd o G) : F = G. Proof. etransitivity; [ symmetry | ]; apply unique; try eassumption; reflexivity. Defined. | Definition | Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core Functor.Prod.Core. Require Import Functor.Paths. Require Import Types.Prod HoTT.Tactics Types.Forall Types.Sigma. Require Import Basics.Tactics. | Categories\Functor\Prod\Universal.v | path_prod | 2,281 |
PreCategory := @Build_PreCategory (Functor C D) (@NaturalTransformation C D) (@identity C D) (@compose C D) (@associativity _ C D) (@left_identity _ C D) (@right_identity _ C D) _. | Definition | Require Import Category.Strict Functor.Core NaturalTransformation.Core Functor.Paths. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Identity NaturalTransformation.Composition.Laws NaturalTransformation.Paths. | Categories\FunctorCategory\Core.v | functor_category | 2,282 |
`{Funext} C `{IsStrictCategory D} : IsStrictCategory (C -> D). Proof. typeclasses eauto. Defined. | Lemma | Require Import Category.Strict Functor.Core NaturalTransformation.Core Functor.Paths. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Identity NaturalTransformation.Composition.Laws NaturalTransformation.Paths. | Categories\FunctorCategory\Core.v | isstrict_functor_category | 2,283 |
(C D : PreCategory) : Functor (C -> D) (C^op -> D^op)^op := Build_Functor (C -> D) ((C^op -> D^op)^op) (fun F => F^op)%functor (fun _ _ T => T^op)%natural_transformation (fun _ _ _ _ _ => idpath) (fun _ => idpath). | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Identity. Require Import FunctorCategory.Core. Require Import Functor.Paths. Require Import HoTT.Tactics. | Categories\FunctorCategory\Dual.v | opposite_functor | 2,284 |
C D : opposite_functor C D o (opposite_functor C^op D^op)^op = 1 /\ (opposite_functor C^op D^op)^op o opposite_functor C D = 1. Proof. op_t C D. Qed. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Identity. Require Import FunctorCategory.Core. Require Import Functor.Paths. Require Import HoTT.Tactics. | Categories\FunctorCategory\Dual.v | opposite_functor_law | 2,285 |
object ((cat^op * cat) -> cat) := Eval cbv zeta in let object_of := (fun CD => (((fst CD). | Definition | Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Pointwise.Core Functor.Pointwise.Properties Category.Dual Category.Prod Cat.Core ExponentialLaws.Law4.Functors. | Categories\FunctorCategory\Functorial.v | functor_uncurried | 2,286 |
object (cat^op -> (cat -> cat)) := ExponentialLaws. | Definition | Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Pointwise.Core Functor.Pointwise.Properties Category.Dual Category.Prod Cat.Core ExponentialLaws.Law4.Functors. | Categories\FunctorCategory\Functorial.v | functor | 2,287 |
`{Funext} (C D : PreCategory) F G := @Isomorphic (C -> D) F G. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Paths FunctorCategory.Core Category.Morphisms NaturalTransformation.Core. Require Import Basics.Tactics. | Categories\FunctorCategory\Morphisms.v | NaturalIsomorphism | 2,288 |
`{Funext} `{@IsIsomorphism (C -> D) F G T} x : IsIsomorphism (T x). Proof. exists (T^-1 x). - exact (apD10 (ap components_of left_inverse) x). - exact (apD10 (ap components_of right_inverse) x). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Paths FunctorCategory.Core Category.Morphisms NaturalTransformation.Core. Require Import Basics.Tactics. | Categories\FunctorCategory\Morphisms.v | isisomorphism_components_of | 2,289 |
C D (F G : Functor C D) (T : NaturalTransformation F G) `{forall x, IsIsomorphism (T x)} : NaturalTransformation G F. Proof. exists (fun x => (T x)^-1); abstract ( intros; iso_move_inverse; first [ apply commutes | symmetry; apply commutes ] ). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Paths FunctorCategory.Core Category.Morphisms NaturalTransformation.Core. Require Import Basics.Tactics. | Categories\FunctorCategory\Morphisms.v | inverse | 2,290 |
`{Funext} C D F G (T : NaturalTransformation F G) `{forall x, IsIsomorphism (T x)} : @IsIsomorphism (C -> D) F G T. Proof. exists (inverse _); abstract ( path_natural_transformation; first [ apply left_inverse | apply right_inverse ] ). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Paths FunctorCategory.Core Category.Morphisms NaturalTransformation.Core. Require Import Basics.Tactics. | Categories\FunctorCategory\Morphisms.v | isisomorphism_natural_transformation | 2,291 |
(F G : object (C -> D)) (T : F = G) : NaturalTransformation F G. Proof. refine (Build_NaturalTransformation' F G (fun x => idtoiso _ (ap10 (ap object_of T) x)) _ _); intros; case T; simpl; [ exact (left_identity _ _ _ _ @ (right_identity _ _ _ _)^) | exact (right_identity _ _ _ _ @ (left_identity _ _ _ _)^) ]. Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Paths FunctorCategory.Core Category.Morphisms NaturalTransformation.Core. Require Import Basics.Tactics. | Categories\FunctorCategory\Morphisms.v | idtoiso_natural_transformation | 2,292 |
(F G : object (C -> D)) (T : F = G) : F <~=~> G. Proof. exists (idtoiso_natural_transformation T). exists (idtoiso_natural_transformation (T^)%path); abstract (path_natural_transformation; case T; simpl; auto with morphism). Defined. | Definition | Require Import Category.Core Functor.Core NaturalTransformation.Paths FunctorCategory.Core Category.Morphisms NaturalTransformation.Core. Require Import Basics.Tactics. | Categories\FunctorCategory\Morphisms.v | idtoiso | 2,293 |
(F G : object (C -> D)) (T : F = G) : Category.Morphisms.idtoiso _ T = idtoiso T. Proof. case T. expand; f_ap. exact (center _). Qed. | Lemma | Require Import Category.Core Functor.Core NaturalTransformation.Paths FunctorCategory.Core Category.Morphisms NaturalTransformation.Core. Require Import Basics.Tactics. | Categories\FunctorCategory\Morphisms.v | eta_idtoiso | 2,294 |
Record | Require Import FunctorCategory.Morphisms. Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core Pseudofunctor.RewriteLaws. Require Import Category.Morphisms Cat.Morphisms. Require Import Functor.Composition.Core. Require Import Functor.Identity. Require Import FunctorCategory.Core. Require Import Basics Types HoTT.Tactics. | Categories\Grothendieck\PseudofunctorToCat.v | Pair | 2,295 |
|
s d d' (m1 : morphism d d') (m2 : morphism s d) : morphism s d'. Proof. exists (m1.1 o m2.1). refine (m1.2 o ((p_morphism_of F m1.1) _1 m2.2 o _)). apply (p_composition_of F). Defined. | Definition | Require Import FunctorCategory.Morphisms. Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core Pseudofunctor.RewriteLaws. Require Import Category.Morphisms Cat.Morphisms. Require Import Functor.Composition.Core. Require Import Functor.Identity. Require Import FunctorCategory.Core. Require Import Basics Types HoTT.Tactics. | Categories\Grothendieck\PseudofunctorToCat.v | compose | 2,296 |
s : morphism s s. Proof. exists 1. apply (p_identity_of F). Defined. | Definition | Require Import FunctorCategory.Morphisms. Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core Pseudofunctor.RewriteLaws. Require Import Category.Morphisms Cat.Morphisms. Require Import Functor.Composition.Core. Require Import Functor.Identity. Require Import FunctorCategory.Core. Require Import Basics Types HoTT.Tactics. | Categories\Grothendieck\PseudofunctorToCat.v | identity | 2,297 |
forall {x x0 : C} {x2 : Category.Core.morphism C x x0} {x1 : C} {x5 : Category.Core.morphism C x0 x1} {x4 : C} {x7 : Category.Core.morphism C x1 x4} {p p0 : PreCategory} {f : Category.Core.morphism C x x4 -> Functor p0 p} {p1 p2 : PreCategory} {f0 : Functor p2 p} {f1 : Functor p1 p2} {f2 : Functor p0 p2} {f3 : Functor p0 p1} {f4 : Functor p1 p} {x16 : Category.Core.morphism (_ -> _) (f (x7 o x5 o x2)) (f4 o f3)%functor} {x15 : Category.Core.morphism (_ -> _) f2 (f1 o f3)%functor} {H2 : IsIsomorphism x15} {x11 : Category.Core.morphism (_ -> _) (f (x7 o (x5 o x2))) (f0 o f2)%functor} {H1 : IsIsomorphism x11} {x9 : Category.Core.morphism (_ -> _) f4 (f0 o f1)%functor} {fst_hyp : x7 o x5 o x2 = x7 o (x5 o x2)} (rew_hyp : forall x3 : p0, (idtoiso (p0 -> p) (ap f fst_hyp) : Category.Core.morphism _ _ _) x3 = x11^-1 x3 o (f0 _1 (x15^-1 x3) o (1 o (x9 (f3 x3) o x16 x3)))) {H0' : IsIsomorphism x16} {H1' : IsIsomorphism x9} {x13 : p} {x3 : p0} {x6 : p1} {x10 : p2} {x14 : Category.Core.morphism p (f0 x10) x13} {x12 : Category.Core.morphism p2 (f1 x6) x10} {x8 : Category.Core.morphism p1 (f3 x3) x6}, exist (fun f5 : Category.Core.morphism C x x4 => Category.Core.morphism p ((f f5) x3) x13) (x7 o x5 o x2) (x14 o (f0 _1 x12 o x9 x6) o (f4 _1 x8 o x16 x3)) = (x7 o (x5 o x2); x14 o (f0 _1 (x12 o (f1 _1 x8 o x15 x3)) o x11 x3)). Proof. helper_t assoc_before_commutes_tac. assoc_fin_tac. Qed. | Lemma | Require Import FunctorCategory.Morphisms. Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core Pseudofunctor.RewriteLaws. Require Import Category.Morphisms Cat.Morphisms. Require Import Functor.Composition.Core. Require Import Functor.Identity. Require Import FunctorCategory.Core. Require Import Basics Types HoTT.Tactics. | Categories\Grothendieck\PseudofunctorToCat.v | pseudofunctor_to_cat_assoc_helper | 2,298 |
forall {x1 x2 : C} {f : Category.Core.morphism C x2 x1} {p p0 : PreCategory} {f0 : Category.Core.morphism C x2 x1 -> Functor p0 p} {f1 : Functor p p} {x0 : Category.Core.morphism (_ -> _) (f0 (1 o f)) (f1 o f0 f)%functor} {x : Category.Core.morphism (_ -> _) f1 1%functor} {fst_hyp : 1 o f = f} (rewrite_hyp : forall x3 : p0, (idtoiso (p0 -> p) (ap f0 fst_hyp) : Category.Core.morphism _ _ _) x3 = 1 o (x ((f0 f) x3) o x0 x3)) {H0' : IsIsomorphism x0} {H1' : IsIsomorphism x} {x3 : p} {x4 : p0} {f' : Category.Core.morphism p ((f0 f) x4) x3}, exist (fun f2 : Category.Core.morphism C x2 x1 => Category.Core.morphism p ((f0 f2) x4) x3) (1 o f) (x x3 o (f1 _1 f' o x0 x4)) = (f; f'). Proof. helper_t idtac. Qed. | Lemma | Require Import FunctorCategory.Morphisms. Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core Pseudofunctor.RewriteLaws. Require Import Category.Morphisms Cat.Morphisms. Require Import Functor.Composition.Core. Require Import Functor.Identity. Require Import FunctorCategory.Core. Require Import Basics Types HoTT.Tactics. | Categories\Grothendieck\PseudofunctorToCat.v | pseudofunctor_to_cat_left_identity_helper | 2,299 |