fact
stringlengths
0
6.66k
type
stringclasses
10 values
imports
stringclasses
399 values
filename
stringclasses
465 values
symbolic_name
stringlengths
1
75
index_level
int64
0
7.85k
s d (m : morphism (C1 -> (C2 -> D)) s d) : morphism (C1 * C2 -> D) (functor_object_of s) (functor_object_of d). Proof. simpl. refine (Build_NaturalTransformation (functor_object_of s) (functor_object_of d) (fun c => m (fst c) (snd c)) _); abstract ( repeat match goal with | [ |- context[components_of ?T ?x o components_of ?U ?x] ] => change (T x o U x) with ((compose (C := (_ -> _)) T U) x) | _ => f_ap | _ => rewrite !commutes | _ => do_exponential4 end ). Defined.
Definition
Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\ExponentialLaws\Law4\Functors.v
functor_morphism_of
2,200
Functor (C1 -> (C2 -> D)) (C1 * C2 -> D). Proof. refine (Build_Functor (C1 -> (C2 -> D)) (C1 * C2 -> D) functor_object_of functor_morphism_of _ _); abstract by path_natural_transformation. Defined.
Definition
Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\ExponentialLaws\Law4\Functors.v
functor
2,201
C1 -> (C2 -> D)%category. Proof. intro c1. refine (Build_Functor C2 D (fun c2 => F (c1, c2)) (fun s2 d2 m2 => F _1 ((identity c1, m2) : morphism (_ * _) (c1, s2) (c1, d2))) _ _); abstract do_exponential4_inverse. Defined.
Definition
Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\ExponentialLaws\Law4\Functors.v
inverse_object_of_object_of
2,202
s d (m : morphism C1 s d) : morphism (C2 -> D) (inverse_object_of_object_of s) (inverse_object_of_object_of d). Proof. refine (Build_NaturalTransformation (inverse_object_of_object_of s) (inverse_object_of_object_of d) (fun c => F _1 ((m, identity c) : morphism (_ * _) (s, c) (d, c))) _); abstract do_exponential4_inverse. Defined.
Definition
Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\ExponentialLaws\Law4\Functors.v
inverse_object_of_morphism_of
2,203
(C1 -> (C2 -> D))%category. Proof. refine (Build_Functor C1 (C2 -> D) inverse_object_of_object_of inverse_object_of_morphism_of _ _); abstract (path_natural_transformation; do_exponential4_inverse). Defined.
Definition
Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\ExponentialLaws\Law4\Functors.v
inverse_object_of
2,204
s d (m : morphism (C1 * C2 -> D) s d) : forall c, morphism (C2 -> D) ((inverse_object_of s) c) ((inverse_object_of d) c). Proof. intro c. refine (Build_NaturalTransformation ((inverse_object_of s) c) ((inverse_object_of d) c) (fun c' => m (c, c')) _). abstract do_exponential4_inverse. Defined.
Definition
Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\ExponentialLaws\Law4\Functors.v
inverse_morphism_of_components_of
2,205
s d (m : morphism (C1 * C2 -> D) s d) : morphism (C1 -> (C2 -> D)) (inverse_object_of s) (inverse_object_of d). Proof. refine (Build_NaturalTransformation (inverse_object_of s) (inverse_object_of d) (inverse_morphism_of_components_of m) _). abstract (path_natural_transformation; do_exponential4_inverse). Defined.
Definition
Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\ExponentialLaws\Law4\Functors.v
inverse_morphism_of
2,206
Functor (C1 * C2 -> D) (C1 -> (C2 -> D)). Proof. refine (Build_Functor (C1 * C2 -> D) (C1 -> (C2 -> D)) inverse_object_of inverse_morphism_of _ _); abstract by path_natural_transformation. Defined.
Definition
Require Import Category.Core Category.Prod FunctorCategory.Core Functor.Core NaturalTransformation.Core NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\ExponentialLaws\Law4\Functors.v
inverse
2,207
c : functor C1 C2 D (inverse C1 C2 D c) = c. Proof. path_functor. abstract ( exp_laws_t; rewrite <- composition_of; exp_laws_t ). Defined.
Lemma
Require Import Category.Core Functor.Core. Require Import Functor.Paths. Require Import Functor.Identity Functor.Composition.Core. Require Import ExponentialLaws.Law4.Functors. Require Import ExponentialLaws.Tactics.
Categories\ExponentialLaws\Law4\Law.v
helper1
2,208
c x : inverse C1 C2 D (functor C1 C2 D c) x = c x. Proof. path_functor. abstract exp_laws_t. Defined.
Lemma
Require Import Category.Core Functor.Core. Require Import Functor.Paths. Require Import Functor.Identity Functor.Composition.Core. Require Import ExponentialLaws.Law4.Functors. Require Import ExponentialLaws.Tactics.
Categories\ExponentialLaws\Law4\Law.v
helper2_helper
2,209
c : inverse C1 C2 D (functor C1 C2 D c) = c. Proof. path_functor. exists (path_forall _ _ (helper2_helper c)). abstract (unfold helper2_helper; exp_laws_t). Defined.
Lemma
Require Import Category.Core Functor.Core. Require Import Functor.Paths. Require Import Functor.Identity Functor.Composition.Core. Require Import ExponentialLaws.Law4.Functors. Require Import ExponentialLaws.Tactics.
Categories\ExponentialLaws\Law4\Law.v
helper2
2,210
functor C1 C2 D o inverse C1 C2 D = 1 /\ inverse C1 C2 D o functor C1 C2 D = 1. Proof. split; path_functor; [ (exists (path_forall _ _ helper1)) | (exists (path_forall _ _ helper2)) ]; unfold helper1, helper2, helper2_helper; exp_laws_t. Qed.
Lemma
Require Import Category.Core Functor.Core. Require Import Functor.Paths. Require Import Functor.Identity Functor.Composition.Core. Require Import ExponentialLaws.Law4.Functors. Require Import ExponentialLaws.Tactics.
Categories\ExponentialLaws\Law4\Law.v
law
2,211
NaturalTransformation (hom_functor C) (hom_functor D o (F^op, F)). Proof. refine (Build_NaturalTransformation (hom_functor C) (hom_functor D o (F^op, F)) (fun (sd : object (C^op * C)) m => (F _1 m)%morphism) _ ). abstract ( repeat (intros [] || intro); simpl in *; repeat (apply path_forall; intro); simpl; rewrite !composition_of; reflexivity ). Defined.
Definition
Require Import Category.Core Functor.Core HomFunctor Category.Morphisms Category.Dual Functor.Dual Category.Prod Functor.Prod NaturalTransformation.Core SetCategory.Core Functor.Composition.Core. Require Import Basics.Trunc Types.Universe HIT.iso HoTT.Truncations.Core.
Categories\Functor\Attributes.v
induced_hom_natural_transformation
2,212
`{IsFull} `{IsFaithful} (H' : forall x y (m : morphism set_cat x y), IsEpimorphism m -> IsMonomorphism m -> IsIsomorphism m) : IsFullyFaithful. Proof. intros ? ?; hnf in * |- . apply H'; eauto. Qed.
Lemma
Require Import Category.Core Functor.Core HomFunctor Category.Morphisms Category.Dual Functor.Dual Category.Prod Functor.Prod NaturalTransformation.Core SetCategory.Core Functor.Composition.Core. Require Import Basics.Trunc Types.Universe HIT.iso HoTT.Truncations.Core.
Categories\Functor\Attributes.v
isfullyfaithful_isfull_isfaithful_helper
2,213
`{H' : IsEquiv _ _ m} : IsIsomorphism (m : morphism set_cat x y). Proof. exists (m^-1)%core; apply path_forall; intro; destruct H'; simpl in *; eauto. Qed.
Lemma
Require Import Category.Core Functor.Core HomFunctor Category.Morphisms Category.Dual Functor.Dual Category.Prod Functor.Prod NaturalTransformation.Core SetCategory.Core Functor.Composition.Core. Require Import Basics.Trunc Types.Universe HIT.iso HoTT.Truncations.Core.
Categories\Functor\Attributes.v
isisomorphism_isequiv_set_cat
2,214
(Hepi : IsEpimorphism (m : morphism set_cat x y)) (Hmono : IsMonomorphism (m : morphism set_cat x y)) : @IsEquiv _ _ m (* NB: This depends on the (arguably accidental) fact that `ismono` and `isepi` from HoTT core are *definitionally* identical to the specialization of `IsMonomorphism` and `IsEpimorphism` to the category of sets.
Definition
Require Import Category.Core Functor.Core HomFunctor Category.Morphisms Category.Dual Functor.Dual Category.Prod Functor.Prod NaturalTransformation.Core SetCategory.Core Functor.Composition.Core. Require Import Basics.Trunc Types.Universe HIT.iso HoTT.Truncations.Core.
Categories\Functor\Attributes.v
isequiv_isepimorphism_ismonomorphism
2,215
Record
Require Import Category.Core.
Categories\Functor\Core.v
Functor
2,216
C D (F : Functor C D) : Functor C^op D^op := Build_Functor (C^op) (D^op) (object_of F) (fun s d (m : morphism C^op s d) => (F _1 m)%morphism) (fun d' d s m1 m2 => composition_of F s d d' m2 m1) (identity_of F).
Definition
Import Category.Dual.CategoryDualNotations. Require Import Category.Core Functor.Core.
Categories\Functor\Dual.v
opposite
2,217
C D (F : Functor C D) : (F^op)^op = F := idpath.
Definition
Import Category.Dual.CategoryDualNotations. Require Import Category.Core Functor.Core.
Categories\Functor\Dual.v
opposite_involutive
2,218
C : Functor C C := Build_Functor C C (fun x => x) (fun _ _ x => x) (fun _ _ _ _ _ => idpath) (fun _ => idpath).
Definition
Require Import Category.Core Functor.Core.
Categories\Functor\Identity.v
identity
2,219
functor_sig_T <~> Functor C D. Proof. issig. Defined.
Lemma
Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics.
Categories\Functor\Paths.v
equiv_sig_functor
2,220
(F G : Functor C D) : path_functor'_T F G <~> (@equiv_inv _ _ _ equiv_sig_functor F = @equiv_inv _ _ _ equiv_sig_functor G). Proof. etransitivity; [ | by apply equiv_path_sigma ]. eapply @equiv_functor_sigma. repeat match goal with | [ |- context[(@equiv_inv ?A ?B ?f ?H ?F).1] ] => change ((@equiv_inv A B f H F).1) with (object_of F) end. Time exact (isequiv_idmap (object_of F = object_of G)). Abort. >> *)
Definition
Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics.
Categories\Functor\Paths.v
equiv_path_functor_uncurried_sig
2,221
(F G : Functor C D) : path_functor'_T F G -> F = G. Proof. intros [? ?]. destruct F, G; simpl in *. path_induction; simpl. f_ap; eapply @center; abstract exact _. Defined.
Definition
Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics.
Categories\Functor\Paths.v
path_functor_uncurried
2,222
F G HO HM : ap object_of (@path_functor_uncurried F G (HO; HM)) = HO. Proof. destruct F, G; simpl in *. path_induction_hammer. Qed.
Lemma
Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics.
Categories\Functor\Paths.v
path_functor_uncurried_fst
2,223
F : @path_functor_uncurried F F (idpath; idpath) = idpath. Proof. destruct F; simpl in *. rewrite !(contr idpath). reflexivity. Qed.
Lemma
Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics.
Categories\Functor\Paths.v
path_functor_uncurried_idpath
2,224
(F G : Functor C D) : F = G -> path_functor'_T F G := fun H' => (ap object_of H'; (transport_compose _ object_of _ _) ^ @ apD (@morphism_of _ _) H')%path.
Definition
Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics.
Categories\Functor\Paths.v
path_functor_uncurried_inv
2,225
(F G : Functor C D) (HO : object_of F = object_of G) (HM : transport (fun GO => forall s d, morphism C s d -> morphism D (GO s) (GO d)) HO (morphism_of F) = morphism_of G) : F = G := path_functor_uncurried F G (HO; HM).
Definition
Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics.
Categories\Functor\Paths.v
path_functor
2,226
(F G : Functor C D) (HO : object_of F == object_of G) (HM : forall s d m, transport (fun GO => forall s d, morphism C s d -> morphism D (GO s) (GO d)) (path_forall _ _ HO) (morphism_of F) s d m = G _1 m) : F = G. Proof. refine (path_functor F G (path_forall _ _ HO) _). repeat (apply path_forall; intro); apply HM. Defined.
Definition
Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics.
Categories\Functor\Paths.v
path_functor_pointwise
2,227
(F G : Functor C D) : path_functor'_T F G <~> F = G := Build_Equiv _ _ (@path_functor_uncurried F G) _.
Definition
Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics.
Categories\Functor\Paths.v
equiv_path_functor_uncurried
2,228
(F G : Functor C D) (p q : F = G) : ap object_of p = ap object_of q -> p = q. Proof. refine ((ap (@path_functor_uncurried F G)^-1)^-1 o _). refine ((path_sigma_uncurried _ _ _) o _); simpl. refine (pr1^-1). Defined.
Definition
Require Import Category.Core Functor.Core. Require Import HoTT.Basics HoTT.Types HoTT.Tactics.
Categories\Functor\Paths.v
path_path_functor_uncurried
2,229
Functor C (C + D) := Build_Functor C (C + D) (@ _ _) (fun _ _ m => m) (fun _ _ _ _ _ => idpath) (fun _ => idpath).
Definition
Require Import Category.Sum Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths HoTT.Tactics Types.Forall. Require Import Basics.Tactics.
Categories\Functor\Sum.v
inl
2,230
Functor D (C + D) := Build_Functor D (C + D) (@ _ _) (fun _ _ m => m) (fun _ _ _ _ _ => idpath) (fun _ => idpath).
Definition
Require Import Category.Sum Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths HoTT.Tactics Types.Forall. Require Import Basics.Tactics.
Categories\Functor\Sum.v
inr
2,231
(F : Functor C D) (F' : Functor C' D) : Functor (C + C') D. Proof. refine (Build_Functor (C + C') D (fun cc' => match cc' with | type_inl c => F c | type_inr c' => F' c' end) (fun s d => match s, d with | type_inl cs, type_inl cd => fun m : morphism _ cs cd => F _1 m | type_inr c's, type_inr c'd => fun m : morphism _ c's c'd => F' _1 m | _, _ => fun m => match m with end end%morphism) _ _); abstract ( repeat (intros [] || intro); simpl in *; auto with functor ). Defined.
Definition
Require Import Category.Sum Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths HoTT.Tactics Types.Forall. Require Import Basics.Tactics.
Categories\Functor\Sum.v
sum
2,232
C D : Functor (C + D) (D + C) := sum (inr _ _) (inl _ _).
Definition
Require Import Category.Sum Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths HoTT.Tactics Types.Forall. Require Import Basics.Tactics.
Categories\Functor\Sum.v
swap
2,233
{C D} c : (swap C D) ((swap D C) c) = c := match c with type_inl _ => idpath | type_inr _ => idpath end.
Definition
Require Import Category.Sum Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths HoTT.Tactics Types.Forall. Require Import Basics.Tactics.
Categories\Functor\Sum.v
swap_involutive_helper
2,234
`{Funext} C D : swap C D o swap D C = 1. Proof. path_functor. exists (path_forall _ _ swap_involutive_helper). repeat (apply (@path_forall _); intro). repeat match goal with | [ |- context[transport (fun x' => forall y, @?C x' y) ?p ?f ?x] ] => simpl rewrite (@transport_forall_constant _ _ C _ _ p f x) end. transport_path_forall_hammer. by repeat match goal with | [ H : Empty |- _ ] => destruct H | [ H : (_ + _) |- _ ] => destruct H | _ => progress hnf in * end. Qed.
Lemma
Require Import Category.Sum Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths HoTT.Tactics Types.Forall. Require Import Basics.Tactics.
Categories\Functor\Sum.v
swap_involutive
2,235
s d d' (m1 : morphism C s d) (m2 : morphism C d d') : c_morphism_of (m2 o m1) = c_morphism_of m2 o c_morphism_of m1 := transport (@paths _ (c_morphism_of (m2 o m1))) (composition_of G _ _ _ _ _) (ap (fun m => G _1 m) (composition_of F _ _ _ m1 m2)).
Definition
Require Import Category.Core Functor.Core.
Categories\Functor\Composition\Core.v
compose_composition_of
2,236
x : c_morphism_of (identity x) = identity (c_object_of x) := transport (@paths _ _) (identity_of G _) (ap (fun m => G _1 m) (identity_of F x)).
Definition
Require Import Category.Core Functor.Core.
Categories\Functor\Composition\Core.v
compose_identity_of
2,237
Functor C E := Build_Functor C E (fun c => G (F c)) (fun _ _ m => G _1 (F _1 m)) compose_composition_of compose_identity_of.
Definition
Require Import Category.Core Functor.Core.
Categories\Functor\Composition\Core.v
compose
2,238
(F : Functor C D) : 1 o F = F. Proof. by path_functor. Defined.
Lemma
Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics.
Categories\Functor\Composition\Laws.v
left_identity
2,239
(F : Functor C D) : F o 1 = F. Proof. by path_functor. Defined.
Lemma
Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics.
Categories\Functor\Composition\Laws.v
right_identity
2,240
F : ap object_of (left_identity F) = idpath := @path_functor_uncurried_fst _ _ _ (1 o F) F 1 1.
Definition
Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics.
Categories\Functor\Composition\Laws.v
left_identity_fst
2,241
F : ap object_of (right_identity F) = idpath := @path_functor_uncurried_fst _ _ _ (F o 1) F 1 1.
Definition
Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics.
Categories\Functor\Composition\Laws.v
right_identity_fst
2,242
(F : Functor B C) (G : Functor C D) (H : Functor D E) : (H o G) o F = H o (G o F). Proof. by path_functor. Defined.
Lemma
Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics.
Categories\Functor\Composition\Laws.v
associativity
2,243
F G H : ap object_of (associativity F G H) = idpath := @path_functor_uncurried_fst _ _ _ ((H o G) o F) (H o (G o F)) 1%path 1%path.
Definition
Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics.
Categories\Functor\Composition\Laws.v
associativity_fst
2,244
C D E (F : Functor C D) (G : Functor D E) : (associativity F 1 G @ ap (compose G) (left_identity F)) = (ap (fun G' : Functor D E => G' o F) (right_identity G)). Proof. coherence_t. Qed.
Lemma
Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics.
Categories\Functor\Composition\Laws.v
triangle
2,245
A B C D E (F : Functor A B) (G : Functor B C) (H : Functor C D) (K : Functor D E) : (associativity F G (K o H) @ associativity (G o F) H K) = (ap (fun KHG => KHG o F) (associativity G H K) @ associativity F (H o G) K @ ap (compose K) (associativity F G H)). Proof. coherence_t. Qed.
Lemma
Require Import Category.Core Functor.Core Functor.Composition.Core Functor.Identity. Require Import Functor.Paths. Require Import Basics.PathGroupoids Basics.Tactics.
Categories\Functor\Composition\Laws.v
pentagon
2,246
(F G : Functor B C) (T U : NaturalTransformation F G) (a : A) (b : B) (f : H a <~=~> b) (H' : T oR H = U oR H) : T b = U b. Proof. apply (ap components_of) in H'. apply apD10 in H'; hnf in H'; simpl in H'. rewrite <- !(path_components_of_isomorphic' f). rewrite H'. reflexivity. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Functorial.Core. Require Import NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Isomorphisms. Require Import Functor.Attributes. Require Import FunctorCategory.Core. Require Import Category.Morphisms. Require Import NaturalTransformation.Paths. Require Import HoTT.Truncations.Core.
Categories\Functor\Composition\Functorial\Attributes.v
isfaithful_precomposition_essentially_surjective_helper
2,247
s d (m : morphism (C -> D) s d) : morphism ((D -> E) -> (C -> E)) (whiskerR_functor _ s) (whiskerR_functor _ d) := Build_NaturalTransformation (whiskerR_functor E s) (whiskerR_functor E d) (fun x => x oL m) (fun _ _ _ => exchange_whisker _ _).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Category.Prod FunctorCategory.Core NaturalTransformation.Composition.Functorial NaturalTransformation.Composition.Laws ExponentialLaws.Law4.Functors. Require Import NaturalTransformation.Paths.
Categories\Functor\Composition\Functorial\Core.v
compose_functor_morphism_of
2,248
object ((C -> D) -> ((D -> E) -> (C -> E))). Proof. refine (Build_Functor (C -> D) ((D -> E) -> (C -> E)) (@whiskerR_functor _ _ _ _) compose_functor_morphism_of _ _); abstract ( path_natural_transformation; rewrite ?composition_of, ?identity_of; reflexivity ). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Category.Prod FunctorCategory.Core NaturalTransformation.Composition.Functorial NaturalTransformation.Composition.Laws ExponentialLaws.Law4.Functors. Require Import NaturalTransformation.Paths.
Categories\Functor\Composition\Functorial\Core.v
compose_functor
2,249
object ((C -> D) * (D -> E) -> (C -> E)) := ExponentialLaws.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Category.Prod FunctorCategory.Core NaturalTransformation.Composition.Functorial NaturalTransformation.Composition.Laws ExponentialLaws.Law4.Functors. Require Import NaturalTransformation.Paths.
Categories\Functor\Composition\Functorial\Core.v
compose_functor_uncurried
2,250
compose_functor' : object ((D -> E) -> ((C -> D) -> (C -> E))) := ExponentialLaws.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Category.Prod FunctorCategory.Core NaturalTransformation.Composition.Functorial NaturalTransformation.Composition.Laws ExponentialLaws.Law4.Functors. Require Import NaturalTransformation.Paths.
Categories\Functor\Composition\Functorial\Core.v
compose_functor'
2,251
s d (m : morphism (C -> D) s d) : morphism (C' -> D') (pointwise_object_of s) (pointwise_object_of d) := Eval simpl in G oL m oR F.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core NaturalTransformation.Paths Functor.Composition.Core NaturalTransformation.Composition.Core.
Categories\Functor\Pointwise\Core.v
pointwise_morphism_of
2,252
s d (m : morphism (C -> D) s d) : morphism (C -> D') (pointwise_whiskerL_object_of s) (pointwise_whiskerL_object_of d) := Eval simpl in G oL m.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core NaturalTransformation.Paths Functor.Composition.Core NaturalTransformation.Composition.Core.
Categories\Functor\Pointwise\Core.v
pointwise_whiskerL_morphism_of
2,253
s d (m : morphism (C -> D) s d) : morphism (C' -> D) (pointwise_whiskerR_object_of s) (pointwise_whiskerR_object_of d) := Eval simpl in m oR F.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core NaturalTransformation.Paths Functor.Composition.Core NaturalTransformation.Composition.Core.
Categories\Functor\Pointwise\Core.v
pointwise_whiskerR_morphism_of
2,254
Functor (C -> D) (C' -> D'). Proof. refine (Build_Functor (C -> D) (C' -> D') (fun x => pointwise_object_of x) pointwise_morphism_of _ _); abstract (intros; simpl; path_natural_transformation; auto with functor). Defined.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core NaturalTransformation.Paths Functor.Composition.Core NaturalTransformation.Composition.Core.
Categories\Functor\Pointwise\Core.v
pointwise
2,255
Functor (C -> D) (C -> D'). Proof. refine (Build_Functor (C -> D) (C -> D') (fun x => pointwise_whiskerL_object_of x) pointwise_whiskerL_morphism_of _ _); abstract (intros; simpl; path_natural_transformation; auto with functor). Defined.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core NaturalTransformation.Paths Functor.Composition.Core NaturalTransformation.Composition.Core.
Categories\Functor\Pointwise\Core.v
pointwise_whiskerL
2,256
Functor (C -> D) (C' -> D). Proof. refine (Build_Functor (C -> D) (C' -> D) (fun x => pointwise_whiskerR_object_of x) pointwise_whiskerR_morphism_of _ _); abstract (intros; simpl; path_natural_transformation; auto with functor). Defined.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core NaturalTransformation.Paths Functor.Composition.Core NaturalTransformation.Composition.Core.
Categories\Functor\Pointwise\Core.v
pointwise_whiskerR
2,257
(x : Functor C D) : 1 o x o 1 = x. Proof. path_functor. Defined.
Lemma
Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics.
Categories\Functor\Pointwise\Properties.v
identity_of_helper_helper
2,258
x : ap object_of (identity_of_helper_helper x) = idpath := path_functor_uncurried_fst _ _ _.
Definition
Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics.
Categories\Functor\Pointwise\Properties.v
identity_of_helper_helper_object_of
2,259
(fun x : Functor C D => 1 o x o 1) = idmap. Proof. apply path_forall; intro x. apply identity_of_helper_helper. Defined.
Lemma
Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics.
Categories\Functor\Pointwise\Properties.v
identity_of_helper
2,260
pointwise (identity C) (identity D) = identity _. Proof. path_functor. exists identity_of_helper. unfold identity_of_helper. abstract functor_pointwise_t identity_of_helper_helper identity_of_helper_helper_object_of. Defined.
Lemma
Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics.
Categories\Functor\Pointwise\Properties.v
identity_of
2,261
(x : Functor C'' D) : G' o G o x o (F' o F) = G' o (G o x o F') o F. Proof. path_functor. Defined.
Lemma
Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics.
Categories\Functor\Pointwise\Properties.v
composition_of_helper_helper
2,262
x : ap object_of (composition_of_helper_helper x) = idpath := path_functor_uncurried_fst _ _ _.
Definition
Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics.
Categories\Functor\Pointwise\Properties.v
composition_of_helper_helper_object_of
2,263
(fun x => G' o G o x o (F' o F)) = (fun x => G' o (G o x o F') o F). Proof. apply path_forall; intro x. apply composition_of_helper_helper. Defined.
Lemma
Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics.
Categories\Functor\Pointwise\Properties.v
composition_of_helper
2,264
pointwise (F' o F) (G' o G) = pointwise F G' o pointwise F' G. Proof. path_functor. exists composition_of_helper. unfold composition_of_helper. abstract functor_pointwise_t composition_of_helper_helper composition_of_helper_helper_object_of. Defined.
Lemma
Require Import Category.Core Functor.Core Functor.Pointwise.Core NaturalTransformation.Core NaturalTransformation.Paths Functor.Composition.Core Functor.Identity Functor.Paths. Require Import PathGroupoids Types.Forall HoTT.Tactics. Require Import Basics.Tactics.
Categories\Functor\Pointwise\Properties.v
composition_of
2,265
Functor (C * D) C := Build_Functor (C * D) C (@ _ _) (fun _ _ => @ _ _) (fun _ _ _ _ _ => idpath) (fun _ => idpath).
Definition
Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core. Require Import Types.Prod.
Categories\Functor\Prod\Core.v
fst
2,266
Functor (C * D) D := Build_Functor (C * D) D (@ _ _) (fun _ _ => @ _ _) (fun _ _ _ _ _ => idpath) (fun _ => idpath).
Definition
Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core. Require Import Types.Prod.
Categories\Functor\Prod\Core.v
snd
2,267
(F : Functor C D) (F' : Functor C D') : Functor C (D * D') := Build_Functor C (D * D') (fun c => (F c, F' c)) (fun s d m => (F _1 m, F' _1 m)) (fun _ _ _ _ _ => path_prod' (composition_of F _ _ _ _ _) (composition_of F' _ _ _ _ _)) (fun _ => path_prod' (identity_of F _) (identity_of F' _)).
Definition
Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core. Require Import Types.Prod.
Categories\Functor\Prod\Core.v
prod
2,268
Functor (C * C') (D * D') := (F o fst) * (F' o snd).
Definition
Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core. Require Import Types.Prod.
Categories\Functor\Prod\Core.v
pair
2,269
(d : D) : Functor C E. Proof. refine (Build_Functor C E (fun c => F (c, d)) (fun _ _ m => @morphism_of _ _ F (_, _) (_, _) (m, identity d)) _ _); abstract t. Defined.
Definition
Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core. Require Import Types.Prod.
Categories\Functor\Prod\Core.v
induced_fst
2,270
(c : C) : Functor D E. Proof. refine (Build_Functor D E (fun d => F (c, d)) (fun _ _ m => @morphism_of _ _ F (_, _) (_, _) (identity c, m)) _ _); abstract t. Defined.
Definition
Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core. Require Import Types.Prod.
Categories\Functor\Prod\Core.v
induced_snd
2,271
s d (m : morphism ((C -> D) * (C -> D')) s d) : morphism (_ -> _) (fst s * snd s)%functor (fst d * snd d)%functor := fst_type m * snd_type m.
Definition
Require Import Category.Core Functor.Core Functor.Prod.Core FunctorCategory.Core Category.Prod NaturalTransformation.Prod NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Paths.
Categories\Functor\Prod\Functorial.v
functor_morphism_of
2,272
s d d' (m1 : morphism ((C -> D) * (C -> D')) s d) (m2 : morphism ((C -> D) * (C -> D')) d d') : functor_morphism_of (m2 o m1) = functor_morphism_of m2 o functor_morphism_of m1. Proof. path_natural_transformation; reflexivity. Qed.
Definition
Require Import Category.Core Functor.Core Functor.Prod.Core FunctorCategory.Core Category.Prod NaturalTransformation.Prod NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Paths.
Categories\Functor\Prod\Functorial.v
functor_composition_of
2,273
(x : object ((C -> D) * (C -> D'))) : functor_morphism_of (identity x) = identity _. Proof. path_natural_transformation; reflexivity. Qed.
Definition
Require Import Category.Core Functor.Core Functor.Prod.Core FunctorCategory.Core Category.Prod NaturalTransformation.Prod NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Paths.
Categories\Functor\Prod\Functorial.v
functor_identity_of
2,274
object ((C -> D) * (C -> D') -> (C -> D * D')) := Build_Functor ((C -> D) * (C -> D')) (C -> D * D') _ functor_morphism_of functor_composition_of functor_identity_of.
Definition
Require Import Category.Core Functor.Core Functor.Prod.Core FunctorCategory.Core Category.Prod NaturalTransformation.Prod NaturalTransformation.Composition.Core. Require Import NaturalTransformation.Paths.
Categories\Functor\Prod\Functorial.v
functor
2,275
fst o (a * b) = a. Proof. path_functor; trivial. Defined.
Lemma
Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core Functor.Prod.Core. Require Import Functor.Paths. Require Import Types.Prod HoTT.Tactics Types.Forall Types.Sigma. Require Import Basics.Tactics.
Categories\Functor\Prod\Universal.v
compose_fst_prod
2,276
snd o (a * b) = b. Proof. path_functor; trivial. Defined.
Lemma
Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core Functor.Prod.Core. Require Import Functor.Paths. Require Import Types.Prod HoTT.Tactics Types.Forall Types.Sigma. Require Import Basics.Tactics.
Categories\Functor\Prod\Universal.v
compose_snd_prod
2,277
c : (a * b) c = F c. Proof. pose proof (ap (fun F => object_of F c) H1). pose proof (ap (fun F => object_of F c) H2). simpl in *. path_induction. apply eta_prod. Defined.
Lemma
Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core Functor.Prod.Core. Require Import Functor.Paths. Require Import Types.Prod HoTT.Tactics Types.Forall Types.Sigma. Require Import Basics.Tactics.
Categories\Functor\Prod\Universal.v
unique_helper
2,278
transport (fun GO : C -> prod_type A B => forall s d : C, morphism C s d -> prod_type (morphism A (fst_type (GO s)) (fst_type (GO d))) (morphism B (snd_type (GO s)) (snd_type (GO d)))) (path_forall (a * b) F unique_helper) (fun (s d : C) (m : morphism C s d) => pair_type (a _1 m) (b _1 m)) = morphism_of F. Proof. repeat (apply path_forall; intro). repeat match goal with | _ => reflexivity | _ => progress simpl | _ => rewrite !transport_forall_constant end. transport_path_forall_hammer. unfold unique_helper. repeat match goal with | [ H : _ = _ |- _ ] => case H; simpl; clear H end. repeat match goal with | [ |- context[@morphism_of ?C ?D ?F ?s ?d ?m] ] => destruct (@morphism_of C D F s d m); clear m | [ |- context[@object_of ?C ?D ?F ?x] ] => destruct (@object_of C D F x); clear x end. reflexivity. Qed.
Lemma
Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core Functor.Prod.Core. Require Import Functor.Paths. Require Import Types.Prod HoTT.Tactics Types.Forall Types.Sigma. Require Import Basics.Tactics.
Categories\Functor\Prod\Universal.v
unique_helper2
2,279
a * b = F. Proof. path_functor. exists (path_forall _ _ unique_helper). apply unique_helper2. Defined.
Lemma
Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core Functor.Prod.Core. Require Import Functor.Paths. Require Import Types.Prod HoTT.Tactics Types.Forall Types.Sigma. Require Import Basics.Tactics.
Categories\Functor\Prod\Universal.v
unique
2,280
(F G : Functor C (A * B)) (H1 : fst o F = fst o G) (H2 : snd o F = snd o G) : F = G. Proof. etransitivity; [ symmetry | ]; apply unique; try eassumption; reflexivity. Defined.
Definition
Require Import Category.Core Functor.Core Category.Prod Functor.Composition.Core Functor.Prod.Core. Require Import Functor.Paths. Require Import Types.Prod HoTT.Tactics Types.Forall Types.Sigma. Require Import Basics.Tactics.
Categories\Functor\Prod\Universal.v
path_prod
2,281
PreCategory := @Build_PreCategory (Functor C D) (@NaturalTransformation C D) (@identity C D) (@compose C D) (@associativity _ C D) (@left_identity _ C D) (@right_identity _ C D) _.
Definition
Require Import Category.Strict Functor.Core NaturalTransformation.Core Functor.Paths. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Identity NaturalTransformation.Composition.Laws NaturalTransformation.Paths.
Categories\FunctorCategory\Core.v
functor_category
2,282
`{Funext} C `{IsStrictCategory D} : IsStrictCategory (C -> D). Proof. typeclasses eauto. Defined.
Lemma
Require Import Category.Strict Functor.Core NaturalTransformation.Core Functor.Paths. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Identity NaturalTransformation.Composition.Laws NaturalTransformation.Paths.
Categories\FunctorCategory\Core.v
isstrict_functor_category
2,283
(C D : PreCategory) : Functor (C -> D) (C^op -> D^op)^op := Build_Functor (C -> D) ((C^op -> D^op)^op) (fun F => F^op)%functor (fun _ _ T => T^op)%natural_transformation (fun _ _ _ _ _ => idpath) (fun _ => idpath).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Identity. Require Import FunctorCategory.Core. Require Import Functor.Paths. Require Import HoTT.Tactics.
Categories\FunctorCategory\Dual.v
opposite_functor
2,284
C D : opposite_functor C D o (opposite_functor C^op D^op)^op = 1 /\ (opposite_functor C^op D^op)^op o opposite_functor C D = 1. Proof. op_t C D. Qed.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Dual Functor.Dual NaturalTransformation.Dual. Require Import Functor.Identity. Require Import FunctorCategory.Core. Require Import Functor.Paths. Require Import HoTT.Tactics.
Categories\FunctorCategory\Dual.v
opposite_functor_law
2,285
object ((cat^op * cat) -> cat) := Eval cbv zeta in let object_of := (fun CD => (((fst CD).
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Pointwise.Core Functor.Pointwise.Properties Category.Dual Category.Prod Cat.Core ExponentialLaws.Law4.Functors.
Categories\FunctorCategory\Functorial.v
functor_uncurried
2,286
object (cat^op -> (cat -> cat)) := ExponentialLaws.
Definition
Require Import Category.Core Functor.Core FunctorCategory.Core Functor.Pointwise.Core Functor.Pointwise.Properties Category.Dual Category.Prod Cat.Core ExponentialLaws.Law4.Functors.
Categories\FunctorCategory\Functorial.v
functor
2,287
`{Funext} (C D : PreCategory) F G := @Isomorphic (C -> D) F G.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Paths FunctorCategory.Core Category.Morphisms NaturalTransformation.Core. Require Import Basics.Tactics.
Categories\FunctorCategory\Morphisms.v
NaturalIsomorphism
2,288
`{Funext} `{@IsIsomorphism (C -> D) F G T} x : IsIsomorphism (T x). Proof. exists (T^-1 x). - exact (apD10 (ap components_of left_inverse) x). - exact (apD10 (ap components_of right_inverse) x). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Paths FunctorCategory.Core Category.Morphisms NaturalTransformation.Core. Require Import Basics.Tactics.
Categories\FunctorCategory\Morphisms.v
isisomorphism_components_of
2,289
C D (F G : Functor C D) (T : NaturalTransformation F G) `{forall x, IsIsomorphism (T x)} : NaturalTransformation G F. Proof. exists (fun x => (T x)^-1); abstract ( intros; iso_move_inverse; first [ apply commutes | symmetry; apply commutes ] ). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Paths FunctorCategory.Core Category.Morphisms NaturalTransformation.Core. Require Import Basics.Tactics.
Categories\FunctorCategory\Morphisms.v
inverse
2,290
`{Funext} C D F G (T : NaturalTransformation F G) `{forall x, IsIsomorphism (T x)} : @IsIsomorphism (C -> D) F G T. Proof. exists (inverse _); abstract ( path_natural_transformation; first [ apply left_inverse | apply right_inverse ] ). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Paths FunctorCategory.Core Category.Morphisms NaturalTransformation.Core. Require Import Basics.Tactics.
Categories\FunctorCategory\Morphisms.v
isisomorphism_natural_transformation
2,291
(F G : object (C -> D)) (T : F = G) : NaturalTransformation F G. Proof. refine (Build_NaturalTransformation' F G (fun x => idtoiso _ (ap10 (ap object_of T) x)) _ _); intros; case T; simpl; [ exact (left_identity _ _ _ _ @ (right_identity _ _ _ _)^) | exact (right_identity _ _ _ _ @ (left_identity _ _ _ _)^) ]. Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Paths FunctorCategory.Core Category.Morphisms NaturalTransformation.Core. Require Import Basics.Tactics.
Categories\FunctorCategory\Morphisms.v
idtoiso_natural_transformation
2,292
(F G : object (C -> D)) (T : F = G) : F <~=~> G. Proof. exists (idtoiso_natural_transformation T). exists (idtoiso_natural_transformation (T^)%path); abstract (path_natural_transformation; case T; simpl; auto with morphism). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Paths FunctorCategory.Core Category.Morphisms NaturalTransformation.Core. Require Import Basics.Tactics.
Categories\FunctorCategory\Morphisms.v
idtoiso
2,293
(F G : object (C -> D)) (T : F = G) : Category.Morphisms.idtoiso _ T = idtoiso T. Proof. case T. expand; f_ap. exact (center _). Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Paths FunctorCategory.Core Category.Morphisms NaturalTransformation.Core. Require Import Basics.Tactics.
Categories\FunctorCategory\Morphisms.v
eta_idtoiso
2,294
Record
Require Import FunctorCategory.Morphisms. Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core Pseudofunctor.RewriteLaws. Require Import Category.Morphisms Cat.Morphisms. Require Import Functor.Composition.Core. Require Import Functor.Identity. Require Import FunctorCategory.Core. Require Import Basics Types HoTT.Tactics.
Categories\Grothendieck\PseudofunctorToCat.v
Pair
2,295
s d d' (m1 : morphism d d') (m2 : morphism s d) : morphism s d'. Proof. exists (m1.1 o m2.1). refine (m1.2 o ((p_morphism_of F m1.1) _1 m2.2 o _)). apply (p_composition_of F). Defined.
Definition
Require Import FunctorCategory.Morphisms. Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core Pseudofunctor.RewriteLaws. Require Import Category.Morphisms Cat.Morphisms. Require Import Functor.Composition.Core. Require Import Functor.Identity. Require Import FunctorCategory.Core. Require Import Basics Types HoTT.Tactics.
Categories\Grothendieck\PseudofunctorToCat.v
compose
2,296
s : morphism s s. Proof. exists 1. apply (p_identity_of F). Defined.
Definition
Require Import FunctorCategory.Morphisms. Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core Pseudofunctor.RewriteLaws. Require Import Category.Morphisms Cat.Morphisms. Require Import Functor.Composition.Core. Require Import Functor.Identity. Require Import FunctorCategory.Core. Require Import Basics Types HoTT.Tactics.
Categories\Grothendieck\PseudofunctorToCat.v
identity
2,297
forall {x x0 : C} {x2 : Category.Core.morphism C x x0} {x1 : C} {x5 : Category.Core.morphism C x0 x1} {x4 : C} {x7 : Category.Core.morphism C x1 x4} {p p0 : PreCategory} {f : Category.Core.morphism C x x4 -> Functor p0 p} {p1 p2 : PreCategory} {f0 : Functor p2 p} {f1 : Functor p1 p2} {f2 : Functor p0 p2} {f3 : Functor p0 p1} {f4 : Functor p1 p} {x16 : Category.Core.morphism (_ -> _) (f (x7 o x5 o x2)) (f4 o f3)%functor} {x15 : Category.Core.morphism (_ -> _) f2 (f1 o f3)%functor} {H2 : IsIsomorphism x15} {x11 : Category.Core.morphism (_ -> _) (f (x7 o (x5 o x2))) (f0 o f2)%functor} {H1 : IsIsomorphism x11} {x9 : Category.Core.morphism (_ -> _) f4 (f0 o f1)%functor} {fst_hyp : x7 o x5 o x2 = x7 o (x5 o x2)} (rew_hyp : forall x3 : p0, (idtoiso (p0 -> p) (ap f fst_hyp) : Category.Core.morphism _ _ _) x3 = x11^-1 x3 o (f0 _1 (x15^-1 x3) o (1 o (x9 (f3 x3) o x16 x3)))) {H0' : IsIsomorphism x16} {H1' : IsIsomorphism x9} {x13 : p} {x3 : p0} {x6 : p1} {x10 : p2} {x14 : Category.Core.morphism p (f0 x10) x13} {x12 : Category.Core.morphism p2 (f1 x6) x10} {x8 : Category.Core.morphism p1 (f3 x3) x6}, exist (fun f5 : Category.Core.morphism C x x4 => Category.Core.morphism p ((f f5) x3) x13) (x7 o x5 o x2) (x14 o (f0 _1 x12 o x9 x6) o (f4 _1 x8 o x16 x3)) = (x7 o (x5 o x2); x14 o (f0 _1 (x12 o (f1 _1 x8 o x15 x3)) o x11 x3)). Proof. helper_t assoc_before_commutes_tac. assoc_fin_tac. Qed.
Lemma
Require Import FunctorCategory.Morphisms. Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core Pseudofunctor.RewriteLaws. Require Import Category.Morphisms Cat.Morphisms. Require Import Functor.Composition.Core. Require Import Functor.Identity. Require Import FunctorCategory.Core. Require Import Basics Types HoTT.Tactics.
Categories\Grothendieck\PseudofunctorToCat.v
pseudofunctor_to_cat_assoc_helper
2,298
forall {x1 x2 : C} {f : Category.Core.morphism C x2 x1} {p p0 : PreCategory} {f0 : Category.Core.morphism C x2 x1 -> Functor p0 p} {f1 : Functor p p} {x0 : Category.Core.morphism (_ -> _) (f0 (1 o f)) (f1 o f0 f)%functor} {x : Category.Core.morphism (_ -> _) f1 1%functor} {fst_hyp : 1 o f = f} (rewrite_hyp : forall x3 : p0, (idtoiso (p0 -> p) (ap f0 fst_hyp) : Category.Core.morphism _ _ _) x3 = 1 o (x ((f0 f) x3) o x0 x3)) {H0' : IsIsomorphism x0} {H1' : IsIsomorphism x} {x3 : p} {x4 : p0} {f' : Category.Core.morphism p ((f0 f) x4) x3}, exist (fun f2 : Category.Core.morphism C x2 x1 => Category.Core.morphism p ((f0 f2) x4) x3) (1 o f) (x x3 o (f1 _1 f' o x0 x4)) = (f; f'). Proof. helper_t idtac. Qed.
Lemma
Require Import FunctorCategory.Morphisms. Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core Pseudofunctor.RewriteLaws. Require Import Category.Morphisms Cat.Morphisms. Require Import Functor.Composition.Core. Require Import Functor.Identity. Require Import FunctorCategory.Core. Require Import Basics Types HoTT.Tactics.
Categories\Grothendieck\PseudofunctorToCat.v
pseudofunctor_to_cat_left_identity_helper
2,299