File size: 2,607 Bytes
33e8a13
 
1d8a000
4e69905
33e8a13
 
 
 
 
 
 
 
 
 
 
bc89637
 
 
33e8a13
 
49c1c71
 
9120e54
49c1c71
33e8a13
49c1c71
9120e54
49c1c71
33e8a13
 
 
 
4e69905
33e8a13
 
 
a757a64
33e8a13
 
4e69905
33e8a13
4e69905
33e8a13
 
 
 
 
4e69905
33e8a13
 
90a7387
bc89637
 
 
 
 
 
 
33e8a13
 
bc89637
 
 
 
 
 
 
1d8a000
33e8a13
 
8681eb8
e834dbc
106245e
af26279
1d8a000
8681eb8
1b998eb
 
f39c917
 
106245e
3296ae3
0824cbf
947735c
09a6ad3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
"""ViHOS - Vietnamese Hate and Offensive Spans dataset"""

import pandas as pd

import datasets

_DESCRIPTION = """\
This is a dataset of Vietnamese Hate and Offensive Spans dataset from social media texts.
"""

_HOMEPAGE = "https://huggingface.co/datasets/phusroyal/ViHOS"

_LICENSE = "mit"

_URLS = [
    "https://raw.githubusercontent.com/phusroyal/ViHOS/master/data/Span_Extraction_based_version/dev.csv",
    "https://raw.githubusercontent.com/phusroyal/ViHOS/master/data/Span_Extraction_based_version/train.csv",
    "https://raw.githubusercontent.com/phusroyal/ViHOS/master/data/Test_data/test.csv"
]

class ViHOS_config(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(ViHOS_config, self).__init__(**kwargs)

class ViHOS(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        ViHOS_config(name="ViHOS", version=datasets.Version("2.0.0"), description=_DESCRIPTION),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            
            features=datasets.Features(
                {
                    "content": datasets.Value("string"),
                    "span_ids": datasets.Value("string")
                }
            ),
            
            homepage=_HOMEPAGE,
            
            license=_LICENSE
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URLS)
        
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir[1],
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_dir[0],
                    "split": "dev",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir[2],
                    "split": "test",
                },
            )
        ]    
    def _generate_examples(self, filepath, split):
        
        data = pd.read_csv(filepath, header=None, sep=",", on_bad_lines='skip', skiprows=[0])
        
        for i in range(len(data)):
            content = str(data.loc[i, 1])
            span_ids = str(data.loc[i, 2])
            if span_ids is None:
                span_ids = ''
    
            yield i, {
                "content": content,
                "span_ids": span_ids,
            }