File size: 6,055 Bytes
448e6d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
## Overview
Original dataset [here](https://github.com/decompositional-semantics-initiative/DNC).

This dataset has been proposed in [Collecting Diverse Natural Language Inference Problems for Sentence Representation Evaluation](https://www.aclweb.org/anthology/D18-1007/).


## Dataset curation
This version of the dataset does not include the `type-of-inference` "KG" as its label set is 
`[1, 2, 3, 4, 5]` while here we focus on NLI-related label sets, i.e. `[entailed, not-entailed]`.
For this reason, I named the dataset DNLI for _Diverse_ NLI, as in [Liu et al 2020](https://aclanthology.org/2020.conll-1.48/), instead of DNC.

This version of the dataset contains columns from the `*_data.json` and the `*_metadata.json` files available in the repo.
In the original repo, each data file has the following keys and values:

- `context`: The context sentence for the NLI pair. The context is already tokenized.
- `hypothesis`: The hypothesis sentence for the NLI pair. The hypothesis is already tokenized.
- `label`: The label for the NLI pair
- `label-set`: The set of possible labels for the specific NLI pair
- `binary-label`: A `True` or `False` label. See the paper for details on how we convert the `label` into a binary label.
- `split`: This can be `train`, `dev`, or `test`.
- `type-of-inference`: A string indicating what type of inference is tested in this example.
- `pair-id`: A unique integer id for the NLI pair. The `pair-id` is used to find the corresponding metadata for any given NLI pair

while each metadata file has the following columns

- `pair-id`: A unique integer id for the NLI pair. 
- `corpus`: The original corpus where this example came from.
- `corpus-sent-id`: The id of the sentence (or example) in the original dataset that we recast.
- `corpus-license`: The license for the data from the original dataset.
- `creation-approach`: Determines the method used to recast this example. Options are `automatic`, `manual`, or `human-labeled`.
- `misc`: A dictionary of other relevant information. This is an optional field.

The files are merged on the `pair-id` key. I **do not** include the `misc` column as it is not essential for NLI.

NOTE: the label mapping is **not** the custom (i.e., 3 class) for NLI tasks. They used a binary target and I encoded them
with the following mapping `{"not-entailed": 0, "entailed": 1}`.

NOTE: some instances are present in multiple splits (matching performed by exact matching on "context", "hypothesis", and "label").

## Code to create the dataset
```python
import pandas as pd
from datasets import Dataset, ClassLabel, Value, Features, DatasetDict, Sequence
from pathlib import Path


paths = {
    "train": "<path_to_folder>/DNC-master/train",
    "dev": "<path_to_folder>/DNC-master/dev",
    "test": "<path_to_folder>/DNC-master/test",
}

# read all data files
dfs = []
for split, path in paths.items():
    for f_name in Path(path).rglob("*_data.json"):
        df = pd.read_json(str(f_name))
        df["file_split_data"] = split
        dfs.append(df)
data = pd.concat(dfs, ignore_index=False, axis=0)

# read all metadata files
meta_dfs = []
for split, path in paths.items():
    for f_name in Path(path).rglob("*_metadata.json"):
        df = pd.read_json(str(f_name))
        meta_dfs.append(df)
metadata = pd.concat(meta_dfs, ignore_index=False, axis=0)

# merge
dataset = pd.merge(data, metadata, on="pair-id", how="left")

# check that the split column reflects file splits
assert sum(dataset["split"] != dataset["file_split_data"]) == 0
dataset = dataset.drop(columns=["file_split_data"])

# fix `binary-label` column
dataset.loc[~dataset["label"].isin(["entailed", "not-entailed"]), "binary-label"] = False
dataset.loc[dataset["label"].isin(["entailed", "not-entailed"]), "binary-label"] = True

# fix datatype
dataset["corpus-sent-id"] = dataset["corpus-sent-id"].astype(str)

# order columns as shown in the README.md
columns = [
    "context",
    "hypothesis",
    "label",
    "label-set",
    "binary-label",
    "split",
    "type-of-inference",
    "pair-id",
    "corpus",
    "corpus-sent-id",
    "corpus-license",
    "creation-approach",
    "misc",
]
dataset = dataset.loc[:, columns]

# remove misc column
dataset = dataset.drop(columns=["misc"])

# remove KG for NLI
dataset.loc[(dataset["label"].isin([1, 2, 3, 4, 5])), "type-of-inference"].value_counts()
# > the only split with label-set [1, 2, 3, 4, 5], so remove as we focus on NLI
dataset = dataset.loc[~(dataset["type-of-inference"] == "KG")]

# encode labels
dataset["label"] = dataset["label"].map({"not-entailed": 0, "entailed": 1})

# fill NA in label-set
dataset["label-set"] = dataset["label-set"].ffill()

features = Features(
    {
        "context": Value(dtype="string"),
        "hypothesis": Value(dtype="string"),
        "label": ClassLabel(num_classes=2, names=["not-entailed", "entailed"]),
        "label-set": Sequence(length=2, feature=Value(dtype="string")),
        "binary-label": Value(dtype="bool"),
        "split": Value(dtype="string"),
        "type-of-inference": Value(dtype="string"),
        "pair-id": Value(dtype="int64"),
        "corpus": Value(dtype="string"),
        "corpus-sent-id": Value(dtype="string"),
        "corpus-license": Value(dtype="string"),
        "creation-approach": Value(dtype="string"),
    }
)

dataset_splits = {}
for split in ("train", "dev", "test"):
    df_split = dataset.loc[dataset["split"] == split]
    dataset_splits[split] = Dataset.from_pandas(df_split, features=features)

dataset_splits = DatasetDict(dataset_splits)
dataset_splits.push_to_hub("pietrolesci/dnli", token="<your token>")

# check overlap between splits
from itertools import combinations
for i, j in combinations(dataset_splits.keys(), 2):
    print(
        f"{i} - {j}: ",
        pd.merge(
            dataset_splits[i].to_pandas(), 
            dataset_splits[j].to_pandas(), 
            on=["context", "hypothesis", "label"], 
            how="inner",
        ).shape[0],
    )
#> train - dev:  127
#> train - test:  55
#> dev - test:  54
```