## Overview Original dataset [here](https://github.com/decompositional-semantics-initiative/DNC). This dataset has been proposed in [Collecting Diverse Natural Language Inference Problems for Sentence Representation Evaluation](https://www.aclweb.org/anthology/D18-1007/). ## Dataset curation This version of the dataset does not include the `type-of-inference` "KG" as its label set is `[1, 2, 3, 4, 5]` while here we focus on NLI-related label sets, i.e. `[entailed, not-entailed]`. For this reason, I named the dataset DNLI for _Diverse_ NLI, as in [Liu et al 2020](https://aclanthology.org/2020.conll-1.48/), instead of DNC. This version of the dataset contains columns from the `*_data.json` and the `*_metadata.json` files available in the repo. In the original repo, each data file has the following keys and values: - `context`: The context sentence for the NLI pair. The context is already tokenized. - `hypothesis`: The hypothesis sentence for the NLI pair. The hypothesis is already tokenized. - `label`: The label for the NLI pair - `label-set`: The set of possible labels for the specific NLI pair - `binary-label`: A `True` or `False` label. See the paper for details on how we convert the `label` into a binary label. - `split`: This can be `train`, `dev`, or `test`. - `type-of-inference`: A string indicating what type of inference is tested in this example. - `pair-id`: A unique integer id for the NLI pair. The `pair-id` is used to find the corresponding metadata for any given NLI pair while each metadata file has the following columns - `pair-id`: A unique integer id for the NLI pair. - `corpus`: The original corpus where this example came from. - `corpus-sent-id`: The id of the sentence (or example) in the original dataset that we recast. - `corpus-license`: The license for the data from the original dataset. - `creation-approach`: Determines the method used to recast this example. Options are `automatic`, `manual`, or `human-labeled`. - `misc`: A dictionary of other relevant information. This is an optional field. The files are merged on the `pair-id` key. I **do not** include the `misc` column as it is not essential for NLI. NOTE: the label mapping is **not** the custom (i.e., 3 class) for NLI tasks. They used a binary target and I encoded them with the following mapping `{"not-entailed": 0, "entailed": 1}`. NOTE: some instances are present in multiple splits (matching performed by exact matching on "context", "hypothesis", and "label"). ## Code to create the dataset ```python import pandas as pd from datasets import Dataset, ClassLabel, Value, Features, DatasetDict, Sequence from pathlib import Path paths = { "train": "/DNC-master/train", "dev": "/DNC-master/dev", "test": "/DNC-master/test", } # read all data files dfs = [] for split, path in paths.items(): for f_name in Path(path).rglob("*_data.json"): df = pd.read_json(str(f_name)) df["file_split_data"] = split dfs.append(df) data = pd.concat(dfs, ignore_index=False, axis=0) # read all metadata files meta_dfs = [] for split, path in paths.items(): for f_name in Path(path).rglob("*_metadata.json"): df = pd.read_json(str(f_name)) meta_dfs.append(df) metadata = pd.concat(meta_dfs, ignore_index=False, axis=0) # merge dataset = pd.merge(data, metadata, on="pair-id", how="left") # check that the split column reflects file splits assert sum(dataset["split"] != dataset["file_split_data"]) == 0 dataset = dataset.drop(columns=["file_split_data"]) # fix `binary-label` column dataset.loc[~dataset["label"].isin(["entailed", "not-entailed"]), "binary-label"] = False dataset.loc[dataset["label"].isin(["entailed", "not-entailed"]), "binary-label"] = True # fix datatype dataset["corpus-sent-id"] = dataset["corpus-sent-id"].astype(str) # order columns as shown in the README.md columns = [ "context", "hypothesis", "label", "label-set", "binary-label", "split", "type-of-inference", "pair-id", "corpus", "corpus-sent-id", "corpus-license", "creation-approach", "misc", ] dataset = dataset.loc[:, columns] # remove misc column dataset = dataset.drop(columns=["misc"]) # remove KG for NLI dataset.loc[(dataset["label"].isin([1, 2, 3, 4, 5])), "type-of-inference"].value_counts() # > the only split with label-set [1, 2, 3, 4, 5], so remove as we focus on NLI dataset = dataset.loc[~(dataset["type-of-inference"] == "KG")] # encode labels dataset["label"] = dataset["label"].map({"not-entailed": 0, "entailed": 1}) # fill NA in label-set dataset["label-set"] = dataset["label-set"].ffill() features = Features( { "context": Value(dtype="string"), "hypothesis": Value(dtype="string"), "label": ClassLabel(num_classes=2, names=["not-entailed", "entailed"]), "label-set": Sequence(length=2, feature=Value(dtype="string")), "binary-label": Value(dtype="bool"), "split": Value(dtype="string"), "type-of-inference": Value(dtype="string"), "pair-id": Value(dtype="int64"), "corpus": Value(dtype="string"), "corpus-sent-id": Value(dtype="string"), "corpus-license": Value(dtype="string"), "creation-approach": Value(dtype="string"), } ) dataset_splits = {} for split in ("train", "dev", "test"): df_split = dataset.loc[dataset["split"] == split] dataset_splits[split] = Dataset.from_pandas(df_split, features=features) dataset_splits = DatasetDict(dataset_splits) dataset_splits.push_to_hub("pietrolesci/dnli", token="") # check overlap between splits from itertools import combinations for i, j in combinations(dataset_splits.keys(), 2): print( f"{i} - {j}: ", pd.merge( dataset_splits[i].to_pandas(), dataset_splits[j].to_pandas(), on=["context", "hypothesis", "label"], how="inner", ).shape[0], ) #> train - dev: 127 #> train - test: 55 #> dev - test: 54 ```