## Overview This dataset has been introduced by "Inference is Everything: Recasting Semantic Resources into a Unified Evaluation Framework", Aaron Steven White, Pushpendre Rastogi, Kevin Duh, Benjamin Van Durme. IJCNLP, 2017. Original data available [here](https://github.com/decompositional-semantics-initiative/DNC/raw/master/inference_is_everything.zip). ## Dataset curation The following processing is applied - `hypothesis_grammatical` and `judgement_valid` columns are filled with `""` when empty - all columns are stripped - the `entailed` column is renamed `label` - `label` column is encoded with the following mapping `{"not-entailed": 0, "entailed": 1}` - columns `rating` and `good_word` are dropped from `fnplus` dataset ## Code to generate the dataset ```python import pandas as pd from datasets import Features, Value, ClassLabel, Dataset, DatasetDict ds = {} for name in ("fnplus", "sprl", "dpr"): # read data with open(f"/{name}_data.txt", "r") as f: data = f.read() data = data.split("\n\n") data = [lines.split("\n") for lines in data] data = [dict([col.split(":", maxsplit=1) for col in line if len(col) > 0]) for line in data] df = pd.DataFrame(data) # fill empty hypothesis_grammatical and judgement_valid df["hypothesis_grammatical"] = df["hypothesis_grammatical"].fillna("") df["judgement_valid"] = df["judgement_valid"].fillna("") # fix dtype df["index"] = df["index"].astype(int) # strip for col in df.select_dtypes(object).columns: df[col] = df[col].str.strip() # rename columns df = df.rename(columns={"entailed": "label"}) # encode labels df["label"] = df["label"].map({"not-entailed": 0, "entailed": 1}) # cast to dataset features = Features({ "provenance": Value(dtype="string", id=None), "index": Value(dtype="int64", id=None), "text": Value(dtype="string", id=None), "hypothesis": Value(dtype="string", id=None), "partof": Value(dtype="string", id=None), "hypothesis_grammatical": Value(dtype="string", id=None), "judgement_valid": Value(dtype="string", id=None), "label": ClassLabel(num_classes=2, names=["not-entailed", "entailed"]), }) # select common columns df = df.loc[:, list(features.keys())] ds[name] = Dataset.from_pandas(df, features=features) ds = DatasetDict(ds) ds.push_to_hub("recast_white", token="") ```