date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
SBrandeis/transformers
src~transformers~models~openai~modeling_tf_openai.py
# coding=utf-8 # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 OpenAI GPT model.""" from dataclasses import dataclass from typing import Optional, Tuple import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import TFBaseModelOutput, TFCausalLMOutput, TFSequenceClassifierOutput from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFConv1D, TFPreTrainedModel, TFSequenceClassificationLoss, TFSequenceSummary, TFSharedEmbeddings, get_initializer, input_processing, keras_serializable, shape_list, ) from ...utils import logging from .configuration_openai import OpenAIGPTConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "OpenAIGPTConfig" _TOKENIZER_FOR_DOC = "OpenAIGPTTokenizer" TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "openai-gpt", # See all OpenAI GPT models at https://huggingface.co/models?filter=openai-gpt ] class TFAttention(tf.keras.layers.Layer): def __init__(self, nx, n_ctx, config, scale=False, **kwargs): super().__init__(**kwargs) n_state = nx # in Attention: n_state=768 (nx=n_embd) # [switch nx => n_state from Block to Attention to keep identical to TF implem] assert ( n_state % config.n_head == 0 ), f"Hidden dimension {n_state} not dividable by number of heads {config.n_head}" self.n_ctx = n_ctx self.n_head = config.n_head self.split_size = n_state self.scale = scale self.output_attentions = config.output_attentions self.c_attn = TFConv1D(n_state * 3, nx, initializer_range=config.initializer_range, name="c_attn") self.c_proj = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_proj") self.attn_dropout = tf.keras.layers.Dropout(config.attn_pdrop) self.resid_dropout = tf.keras.layers.Dropout(config.resid_pdrop) self.pruned_heads = set() def prune_heads(self, heads): pass @staticmethod def causal_attention_mask(nd, ns, dtype): """ 1's in the lower triangle, counting from the lower right corner. Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs. """ i = tf.range(nd)[:, None] j = tf.range(ns) m = i >= j - ns + nd return tf.cast(m, dtype) def _attn(self, q, k, v, attention_mask, head_mask, output_attentions, training=False): # q, k, v have shape [batch, heads, sequence, features] w = tf.matmul(q, k, transpose_b=True) if self.scale: dk = tf.cast(shape_list(k)[-1], tf.float32) # scale attention_scores w = w / tf.math.sqrt(dk) # w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst. _, _, nd, ns = shape_list(w) b = self.causal_attention_mask(nd, ns, dtype=w.dtype) b = tf.reshape(b, [1, 1, nd, ns]) w = w * b - 1e4 * (1 - b) if attention_mask is not None: # Apply the attention mask w = w + attention_mask w = tf.nn.softmax(w, axis=-1) w = self.attn_dropout(w, training=training) # Mask heads if we want to if head_mask is not None: w = w * head_mask outputs = [tf.matmul(w, v)] if output_attentions: outputs.append(w) return outputs def merge_heads(self, x): x = tf.transpose(x, [0, 2, 1, 3]) x_shape = shape_list(x) new_x_shape = x_shape[:-2] + [x_shape[-2] * x_shape[-1]] return tf.reshape(x, new_x_shape) def split_heads(self, x): x_shape = shape_list(x) new_x_shape = x_shape[:-1] + [self.n_head, x_shape[-1] // self.n_head] x = tf.reshape(x, new_x_shape) return tf.transpose(x, (0, 2, 1, 3)) # (batch, head, seq_length, head_features) def call(self, x, attention_mask, head_mask, output_attentions, training=False): x = self.c_attn(x) query, key, value = tf.split(x, 3, axis=2) query = self.split_heads(query) key = self.split_heads(key) value = self.split_heads(value) attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions, training=training) a = attn_outputs[0] a = self.merge_heads(a) a = self.c_proj(a) a = self.resid_dropout(a, training=training) outputs = [a] + attn_outputs[1:] return outputs # a, (attentions) class TFMLP(tf.keras.layers.Layer): def __init__(self, n_state, config, **kwargs): super().__init__(**kwargs) nx = config.n_embd self.c_fc = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_fc") self.c_proj = TFConv1D(nx, n_state, initializer_range=config.initializer_range, name="c_proj") self.act = get_tf_activation("gelu") self.dropout = tf.keras.layers.Dropout(config.resid_pdrop) def call(self, x, training=False): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) h2 = self.dropout(h2, training=training) return h2 class TFBlock(tf.keras.layers.Layer): def __init__(self, n_ctx, config, scale=False, **kwargs): super().__init__(**kwargs) nx = config.n_embd self.attn = TFAttention(nx, n_ctx, config, scale, name="attn") self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1") self.mlp = TFMLP(4 * nx, config, name="mlp") self.ln_2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_2") def call(self, x, attention_mask, head_mask, output_attentions, training=False): output_attn = self.attn(x, attention_mask, head_mask, output_attentions, training=training) a = output_attn[0] # output_attn: a, (attentions) n = self.ln_1(x + a) m = self.mlp(n, training=training) h = self.ln_2(n + m) outputs = [h] + output_attn[1:] return outputs # x, (attentions) @keras_serializable class TFOpenAIGPTMainLayer(tf.keras.layers.Layer): config_class = OpenAIGPTConfig def __init__(self, config, *inputs, **kwargs): super().__init__(*inputs, **kwargs) self.config = config self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.return_dict = config.use_return_dict self.num_hidden_layers = config.n_layer self.vocab_size = config.vocab_size self.n_embd = config.n_embd self.tokens_embed = TFSharedEmbeddings( config.vocab_size, config.n_embd, initializer_range=config.initializer_range, name="tokens_embed" ) self.positions_embed = tf.keras.layers.Embedding( config.n_positions, config.n_embd, embeddings_initializer=get_initializer(config.initializer_range), name="positions_embed", ) self.drop = tf.keras.layers.Dropout(config.embd_pdrop) self.h = [TFBlock(config.n_ctx, config, scale=True, name="h_._{}".format(i)) for i in range(config.n_layer)] def get_input_embeddings(self): return self.tokens_embed def set_input_embeddings(self, value): self.tokens_embed.weight = value self.tokens_embed.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ raise NotImplementedError def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif inputs["input_ids"] is not None: input_shape = shape_list(inputs["input_ids"]) inputs["input_ids"] = tf.reshape(inputs["input_ids"], [-1, input_shape[-1]]) elif inputs["inputs_embeds"] is not None: input_shape = shape_list(inputs["inputs_embeds"])[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs["position_ids"] is None: inputs["position_ids"] = tf.range(input_shape[-1], dtype=tf.int32)[tf.newaxis, :] if inputs["attention_mask"] is not None: # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. inputs["attention_mask"] = inputs["attention_mask"][:, tf.newaxis, tf.newaxis, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. inputs["attention_mask"] = tf.cast(inputs["attention_mask"], tf.float32) inputs["attention_mask"] = (1.0 - inputs["attention_mask"]) * -10000.0 else: inputs["attention_mask"] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if inputs["head_mask"] is not None: raise NotImplementedError else: inputs["head_mask"] = [None] * self.num_hidden_layers # head_mask = tf.constant([0] * self.num_hidden_layers) inputs["position_ids"] = tf.reshape(inputs["position_ids"], [-1, shape_list(inputs["position_ids"])[-1]]) if inputs["inputs_embeds"] is None: inputs["inputs_embeds"] = self.tokens_embed(inputs["input_ids"], mode="embedding") position_embeds = self.positions_embed(inputs["position_ids"]) if inputs["token_type_ids"] is not None: inputs["token_type_ids"] = tf.reshape( inputs["token_type_ids"], [-1, shape_list(inputs["token_type_ids"])[-1]] ) token_type_embeds = self.tokens_embed(inputs["token_type_ids"], mode="embedding") else: token_type_embeds = 0 hidden_states = inputs["inputs_embeds"] + position_embeds + token_type_embeds hidden_states = self.drop(hidden_states, training=inputs["training"]) output_shape = input_shape + [shape_list(hidden_states)[-1]] all_attentions = () if inputs["output_attentions"] else None all_hidden_states = () if inputs["output_hidden_states"] else None for i, block in enumerate(self.h): if inputs["output_hidden_states"]: all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),) outputs = block( hidden_states, inputs["attention_mask"], inputs["head_mask"][i], inputs["output_attentions"], training=inputs["training"], ) hidden_states = outputs[0] if inputs["output_attentions"]: all_attentions = all_attentions + (outputs[1],) hidden_states = tf.reshape(hidden_states, output_shape) # Add last hidden state if inputs["output_hidden_states"]: all_hidden_states = all_hidden_states + (hidden_states,) if inputs["output_attentions"]: # let the number of heads free (-1) so we can extract attention even after head pruning attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:] all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions) if not inputs["return_dict"]: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, ) class TFOpenAIGPTPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = OpenAIGPTConfig base_model_prefix = "transformer" @tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"), } ] ) def serving(self, inputs): output = self.call(inputs) return self.serving_output(output) @dataclass class TFOpenAIGPTDoubleHeadsModelOutput(ModelOutput): """ Base class for outputs of models predicting if two sentences are consecutive or not. Args: logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, num_choices, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). mc_logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, num_choices)`): Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None mc_logits: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None OPENAI_GPT_START_DOCSTRING = r""" This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Parameters: config (:class:`~transformers.OpenAIGPTConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ OPENAI_GPT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.OpenAIGPTTokenizer`. See :func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`__ position_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`__ head_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. training (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare OpenAI GPT transformer model outputting raw hidden-states without any specific head on top.", OPENAI_GPT_START_DOCSTRING, ) class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="openai-gpt", output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.transformer( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) return outputs # Copied from transformers.models.distilbert.modeling_tf_distilbert.TFDistilBertModel.serving_output def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFBaseModelOutput(last_hidden_state=output.last_hidden_state, hidden_states=hs, attentions=attns) @add_start_docstrings( """ OpenAI GPT Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, OPENAI_GPT_START_DOCSTRING, ) class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="openai-gpt", output_type=TFCausalLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the cross entropy classification loss. Indices should be in ``[0, ..., config.vocab_size - 1]``. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) transformer_outputs = self.transformer( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) hidden_states = transformer_outputs[0] logits = self.transformer.tokens_embed(hidden_states, mode="linear") loss = None if inputs["labels"] is not None: # shift labels to the left and cut last logit token logits = logits[:, :-1] labels = inputs["labels"][:, 1:] loss = self.compute_loss(labels, logits) if not inputs["return_dict"]: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.serving_output def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFCausalLMOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ OpenAI GPT Model transformer with a language modeling and a multiple-choice classification head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the input embeddings, the classification head takes as input the input of a specified classification token index in the input sequence). """, OPENAI_GPT_START_DOCSTRING, ) class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) config.num_labels = 1 self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") self.multiple_choice_head = TFSequenceSummary( config, initializer_range=config.initializer_range, name="multiple_choice_head" ) @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFOpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, mc_token_ids=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): r""" mc_token_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, num_choices)`, `optional`, default to index of the last token of the input): Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) - 1]``. Return: Examples:: >>> import tensorflow as tf >>> from transformers import OpenAIGPTTokenizer, TFOpenAIGPTDoubleHeadsModel >>> tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt') >>> model = TFOpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt') >>> # Add a [CLS] to the vocabulary (we should train it also!) >>> tokenizer.add_special_tokens({'cls_token': '[CLS]'}) >>> model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size >>> print(tokenizer.cls_token_id, len(tokenizer)) # The newly token the last token of the vocabulary >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] >>> encoding = tokenizer(choices, return_tensors="tf") >>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()} >>> inputs["mc_token_ids"]= tf.constant([inputs["input_ids"].shape[-1] - 1, inputs["input_ids"].shape[-1] - 1])[None, :] # Batch size 1 >>> outputs = model(inputs) >>> lm_prediction_scores, mc_prediction_scores = outputs[:2] """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, mc_token_ids=mc_token_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None: input_shapes = shape_list(inputs["input_ids"]) else: input_shapes = shape_list(inputs["inputs_embeds"])[:-1] seq_length = input_shapes[-1] flat_input_ids = tf.reshape(inputs["input_ids"], (-1, seq_length)) if inputs["input_ids"] is not None else None flat_attention_mask = ( tf.reshape(inputs["attention_mask"], (-1, seq_length)) if inputs["attention_mask"] is not None else None ) flat_token_type_ids = ( tf.reshape(inputs["token_type_ids"], (-1, seq_length)) if inputs["token_type_ids"] is not None else None ) flat_position_ids = ( tf.reshape(inputs["position_ids"], (-1, seq_length)) if inputs["position_ids"] is not None else None ) transformer_outputs = self.transformer( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, inputs["head_mask"], inputs["inputs_embeds"], inputs["output_attentions"], inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) hidden_states = transformer_outputs[0] hidden_states = tf.reshape(hidden_states, input_shapes + shape_list(hidden_states)[-1:]) lm_logits = self.transformer.tokens_embed(hidden_states, mode="linear") mc_logits = self.multiple_choice_head(hidden_states, inputs["mc_token_ids"], training=inputs["training"]) mc_logits = tf.squeeze(mc_logits, axis=-1) if not inputs["return_dict"]: return (lm_logits, mc_logits) + transformer_outputs[1:] return TFOpenAIGPTDoubleHeadsModelOutput( logits=lm_logits, mc_logits=mc_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), "mc_token_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"), } ] ) def serving(self, inputs): output = self.call(inputs) return self.serving_output(output) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFOpenAIGPTDoubleHeadsModelOutput( logits=output.logits, mc_logits=output.mc_logits, hidden_states=hs, attentions=attns ) @add_start_docstrings( """ The OpenAI GPT Model transformer with a sequence classification head on top (linear layer). :class:`~transformers.TFOpenAIGPTForSequenceClassification` uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a :obj:`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no :obj:`pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when :obj:`inputs_embeds` are passed instead of :obj:`input_ids`, it does the same (take the last value in each row of the batch). """, OPENAI_GPT_START_DOCSTRING, ) class TFOpenAIGPTForSequenceClassification(TFOpenAIGPTPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.score = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="score", use_bias=False, ) self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="openai-gpt", output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the cross entropy classification loss. Indices should be in ``[0, ..., config.vocab_size - 1]``. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) transformer_outputs = self.transformer( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) logits_shape = shape_list(logits) in_logits = None if self.config.pad_token_id is None: sequence_lengths = -1 else: if inputs["input_ids"] is not None: sequence_lengths = ( tf.reduce_sum( tf.cast(tf.math.not_equal(inputs["input_ids"], self.config.pad_token_id), tf.int32), -1, keepdims=False, ) - 1 ) def get_seq_element(sequence_position, input_batch): return tf.strided_slice( input_batch, [sequence_position, 0], [sequence_position + 1, input_batch.shape[-1]], [1, 1] ) result = tf.map_fn( fn=lambda t: get_seq_element(t[0], t[1]), elems=[sequence_lengths, logits], dtype="float" ) in_logits = tf.reshape(result, [logits_shape[0], logits_shape[-1]]) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " f"unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) loss = None if inputs["labels"] is not None: if input_ids is not None: batch_size, sequence_length = shape_list(inputs["input_ids"])[:2] else: batch_size, sequence_length = shape_list(inputs["inputs_embeds"])[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if not tf.is_tensor(sequence_lengths): in_logits = logits[0:batch_size, sequence_lengths] loss = self.compute_loss( tf.reshape(inputs["labels"], [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels]) ) pooled_logits = in_logits if in_logits is not None else logits if not inputs["return_dict"]: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=pooled_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForSequenceClassification.serving_output def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
[]
2024-01-10
Lucete28/TradeTrend
TT_runfile~update_naver_raw.py
from airflow.models.variable import Variable import openai import pandas as pd openai.api_key = Variable.get("gpt_api_key") Target_list = Variable.get("Target_list") values = [tuple(item.strip("()").split(",")) for item in Target_list.split("),")] values = [(x[0].strip(), x[1].strip()) for x in values] err_report = [] for val in values: gpt_ans = [] temp_df = pd.read_csv(f'/home/jhy/code/TradeTrend/data/{val[0]}/{val[0]}_temp4.csv') raw_df = pd.read_csv(f'/home/jhy/code/TradeTrend/data/{val[0]}/{val[0]}_news_raw2.csv') ans_list = raw_df.iloc[:, 1] while True: condition_satisfied = True # ๋ชจ๋“  ์กฐ๊ฑด์ด ๋งŒ์กฑ๋˜์—ˆ๋Š”์ง€ ์—ฌ๋ถ€๋ฅผ ์ถ”์ ํ•˜๋Š” ํ”Œ๋ž˜๊ทธ ๋ณ€์ˆ˜ for i, ans in enumerate(ans_list): try: if len(str(ans)) > 4 or (float(ans) > 1 or float(ans) < 0): messages = [] a = temp_df.iloc[i, 1] content = f'{a} {val[1]} ๊ด€๋ จ ๋‰ด์Šค๊ธฐ์‚ฌ ์ œ๋ชฉ์ธ๋ฐ {val[1]} ์ฃผ์‹์— ๋ฏธ์น  ๊ธ์ •๋„์˜ ํ‰๊ท ์„ 0์—์„œ 1์‚ฌ์ด ์†Œ์ˆซ์  ๋‘์ž๋ฆฌ๊นŒ์ง€ ๋‚˜ํƒ€๋‚ด float๊ฐ’๋งŒ' messages.append({"role": "user", "content": content}) completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) chat_response = completion.choices[0].message.content gpt_ans.append(chat_response) messages.append({"role": "assistant", "content": chat_response}) # raw_df์—์„œ ํ•ด๋‹น ๊ฐ’์„ ์ƒˆ๋กœ์šด ๊ฐ’์œผ๋กœ ์—…๋ฐ์ดํŠธํ•ฉ๋‹ˆ๋‹ค. raw_df.iloc[i, 1] = chat_response raw_df.to_csv(f'/home/jhy/code/TradeTrend/data/{val[0]}/{val[0]}_news_raw2.csv', index=False) condition_satisfied = False # ์กฐ๊ฑด์ด ํ•˜๋‚˜ ์ด์ƒ์˜ ํ•ญ๋ชฉ์— ๋Œ€ํ•ด ๋งŒ์กฑ๋˜์ง€ ์•Š์•˜์Œ์„ ํ‘œ์‹œํ•ฉ๋‹ˆ๋‹ค. except: # ์—๋Ÿฌ ๋ฐœ์ƒ print(i, ans) err_report.append(ans) condition_satisfied = False if condition_satisfied: break # ๋ชจ๋“  ํ•ญ๋ชฉ์˜ ์กฐ๊ฑด์ด ๋งŒ์กฑ๋˜์—ˆ์„ ๊ฒฝ์šฐ ๋ฐ˜๋ณต๋ฌธ์„ ์ข…๋ฃŒํ•ฉ๋‹ˆ๋‹ค. for err in err_report: if err_report.count(err) >=5: print("5ํšŒ ์ด์ƒ ๊ฐ™์€ err ๋ฐœ์ƒ") break
[ "PLACEHOLDER PLACEHOLDER ๊ด€๋ จ ๋‰ด์Šค๊ธฐ์‚ฌ ์ œ๋ชฉ์ธ๋ฐ PLACEHOLDER ์ฃผ์‹์— ๋ฏธ์น  ๊ธ์ •๋„์˜ ํ‰๊ท ์„ 0์—์„œ 1์‚ฌ์ด ์†Œ์ˆซ์  ๋‘์ž๋ฆฌ๊นŒ์ง€ ๋‚˜ํƒ€๋‚ด float๊ฐ’๋งŒ" ]
2024-01-10
LilithHafner/ai
integrated_ai.py
import openai openai.api_key = "sk-..." # GPT AI def ai(prompt): response = openai.Completion.create( engine="code-davinci-002", prompt=prompt, temperature=0, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0, stop="<end>" ) return response.choices[0].text # Subprocesses def user(prompt): return input(prompt+"\n*>> ") import traceback def python_eval(prompt): try: return str(eval(prompt, globals())) except: return traceback.format_exc() def python_exec(prompt): try: return str(exec(prompt, globals())) except: return traceback.format_exc() subprocesses = [ ("<user output>", "<user input>", user), ("<python eval>", "<python eval result>", python_eval), ("<python exec>", "<python exec result>", python_exec), ] def subprocess(s): for start, end, func in subprocesses: if s.startswith(start): return end + func(s[len(start):]) # print("The AI made an unsupported query:", s, "", sep="\n") return "<error>unknown tag" ## Training data prompt = """This is a question and answer bot that has oracles to various external tools including python, google, and others <user input>what time is it<end> <pyhton eval>time.ctime()<end> <python eval result>Traceback (most recent call last): File "/Users/x/Documents/integrated_ai.py", line 26, in python return str(eval(prompt, globals(), locals())) File "<string>", line 1, in <module> NameError: name 'time' is not defined<end> <python exec>import time<end> <python exec result>None<end> <python eval>time.ctime()<end> <user output>The time is Sun Apr 24 18:01:32 2022<end> <user input>what is the weather in New York<end> <google>weather in New York<end> <google result>Sunny 53ยฐFยฐC Precipitation: 1% Humidity: 52% Wind: 7 mph New York, NY Sunday 6:00 PM Sunny TemperaturePrecipitationWind<end> <user output>The weather in New York is Sunny<end> <user input>is it warm in chicago?<end> <google>weather in chicago<end> result: Cloudy 70ยฐFยฐC Precipitation: 5% Humidity: 65% Wind: 19 mph Chicago, IL Sunday 6:00 PM Cloudy TemperaturePrecipitationWind<end> <user output>It is warm in chicago<end> <user input>is 1729 prime?<end> <python eval>is_prime(1729)<end> <python eval result>Traceback (most recent call last): File "/Users/x/Documents/integrated_ai.py", line 26, in python_eval return str(eval(prompt, globals())) File "<string>", line 1, in <module> NameError: name 'is_prime' is not defined<end> <python exec>def is_prime(n): if n <= 1: return False for i in range(2, n): if n % i == 0: return False return True<end> <python exec result>None<end> <python eval>is_prime(1729)<end> <python eval result>False<end> <user output>1729 is not prime<end> <user input>Stop using google<end> <user output>Google disabled.<end> <user input>What's the weather?<end> <user output>I cannot answer that question without google<end> <user input>Name 7 edibe mushrooms<end> <user output>Pleurotus, Lentinula edodes, Shiitake mushroom, Auricularia auricula-judae, Volvariella volvacea, Flammulina velutipes, Tremella fuciformis<end>""" # Main loop def kernal(verbose=True): global prompt prompt += "<user input>" + user("Welcome!") + "<end>\n" while True: call = ai(prompt) if verbose: print(call + "<end>") prompt += call + "<end>\n" if call.startswith("<exit>"): return result = subprocess(call) if verbose: print(result + "<end>") prompt += result + "<end>\n" if __name__ == "__main__": kernal()
[ "This is a question and answer bot that has oracles to various external tools including python, google, and others\n\n<user input>what time is it<end>\n<pyhton eval>time.ctime()<end>\n<python eval result>Traceback (most recent call last):\n File \"/Users/x/Documents/integrated_ai.py\", line 26, in python\n return str(eval(prompt, globals(), locals()))\n File \"<string>\", line 1, in <module>\nNameError: name 'time' is not defined<end>\n<python exec>import time<end>\n<python exec result>None<end>\n<python eval>time.ctime()<end>\n<user output>The time is Sun Apr 24 18:01:32 2022<end>\n<user input>what is the weather in New York<end>\n<google>weather in New York<end>\n<google result>Sunny\n53ยฐFยฐC\nPrecipitation: 1%\nHumidity: 52%\nWind: 7 mph\nNew York, NY\nSunday 6:00 PM\nSunny\nTemperaturePrecipitationWind<end>\n<user output>The weather in New York is Sunny<end>\n<user input>is it warm in chicago?<end>\n<google>weather in chicago<end>\nresult: Cloudy\n70ยฐFยฐC\nPrecipitation: 5%\nHumidity: 65%\nWind: 19 mph\nChicago, IL\nSunday 6:00 PM\nCloudy\nTemperaturePrecipitationWind<end>\n<user output>It is warm in chicago<end>\n<user input>is 1729 prime?<end>\n<python eval>is_prime(1729)<end>\n<python eval result>Traceback (most recent call last):\n File \"/Users/x/Documents/integrated_ai.py\", line 26, in python_eval\n return str(eval(prompt, globals()))\n File \"<string>\", line 1, in <module>\nNameError: name 'is_prime' is not defined<end>\n<python exec>def is_prime(n):\n if n <= 1:\n return False\n for i in range(2, n):\n if n % i == 0:\n return False\n return True<end>\n<python exec result>None<end>\n<python eval>is_prime(1729)<end>\n<python eval result>False<end>\n<user output>1729 is not prime<end>\n<user input>Stop using google<end>\n<user output>Google disabled.<end>\n<user input>What's the weather?<end>\n<user output>I cannot answer that question without google<end>\n<user input>Name 7 edibe mushrooms<end>\n<user output>Pleurotus, Lentinula edodes, Shiitake mushroom, Auricularia auricula-judae, Volvariella volvacea, Flammulina velutipes, Tremella fuciformis<end>", "<end>\n", "<user input>", "PLACEHOLDER<end>\n" ]
2024-01-10
Kororinpas/Lit_Tool
document_util.py
def get_split_documents(docs, chunk_size, chunk_overlap): from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,chunk_overlap=chunk_overlap) return text_splitter.split_documents(docs)
[]
2024-01-10
Kororinpas/Lit_Tool
literature_test.py
import streamlit as st import sys class StreamlitWriter: def write(self, text): st.write(text.strip()) ### This the function about streamlit def Vector_Databse(): st.write("Vector Database") choose = st.radio("Choose using an existing database or upload a new one.", ["Using an existing one", "Uploading a new one"]) import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' if choose == "Using an existing one": persist_dirctory = st.text_input("Enter the persist_dirctory") collection = st.text_input("Enter the collection") if st.button('Confirm'): st.session_state['persist_dirctory'] = persist_dirctory st.session_state['collection'] = collection vectorstore,embeddings = load_vectorstore(persist_directory=st.session_state['persist_dirctory'], collection_name = st.session_state['collection'], model_name = 'sentence-transformers/all-mpnet-base-v2', device = device) st.session_state['vectorstore'] = vectorstore st.session_state['embeddings'] = embeddings print('The vectorstore load successfully') else: path = st.text_input("Enter the path") persist_dirctory = st.text_input("Enter the persist_dirctory") collection = st.text_input("Enter the collection") if st.button('Confirm'): st.session_state['path'] = path st.session_state['persist_dirctory'] = persist_dirctory st.session_state['collection'] = collection split_docs = load_pdf(path = st.session_state['path'], openai_api_key=st.session_state['openai_api_key'], chunk_size=st.session_state['chunk_size'], chunk_overlap=st.session_state['chunk_overlap']) vectorstore,embeddings = generate_vectorstore(split_docs = split_docs, model_name = 'sentence-transformers/all-mpnet-base-v2', persist_directory = st.session_state['persist_dirctory'], collection_name = st.session_state['collection'], device=device) st.session_state['vectorstore'] = vectorstore st.session_state['embeddings'] =embeddings print('The vectorstore load successfully') def Parameters(): import os openai_api_key = st.text_input('Enter your Openapi_api_key') if st.button('Confirm'): if openai_api_key == '': st.session_state['openai_api_key'] = os.environ.get('openai_api_key') else: st.session_state['openai_api_key'] = openai_api_key chunk_size = st.text_input('Enter your chunk_size') if st.button('Confirm_1'): if chunk_size== '': st.session_state['chunk_size'] = 1500 chunk_overlap = st.text_input('Enter your chunk_overlap') if st.button('Confirm_2'): if chunk_overlap == '': st.session_state['chunk_overlap'] = 0 def Docs(): col1,col2 = st.columns([1,1]) with col1: output_text = '' vectorstore = st.session_state['vectorstore'] edited_output_text = st.text_area("่พ“ๅ‡บๆ–‡ๆœฌ", value=output_text, height=600) if st.button("Confirm paragraph"): output_text = edited_output_text k = st.slider("Select the number of sentences to generate", min_value=1, max_value=5, value=1) query = st.text_input("Input the query") if st.button("Confirm query"): output, docs = get_chain_output(query=query, vectordb=vectorstore, k=k, openai_api_key=st.session_state['openai_api_key']) final_json = run_text_match(output=output, query=query, docs=docs, k=k, embeddings=st.session_state['embeddings']) st.session_state['final_json'] = final_json with col2: if 'final_json' in st.session_state: final_json = st.session_state['final_json'] selected_sentence = st.selectbox("Select a sentence", final_json) if st.button('Confirm sentence'): process_selected_sentence(selected_sentence) ###This is the function about Langchain ###Loading PDF part def load_pdf(path, openai_api_key, chunk_size, chunk_overlap): from langchain.document_loaders import PyMuPDFLoader, DirectoryLoader, UnstructuredPDFLoader #from detectron2.config import get_cfg from PyPDF2 import PdfReader #cfg = get_cfg() #cfg.MODEL.DEVICE = 'gpu' import os file_names = os.listdir(path) pdf_file_names = [path + '/' + file_name for file_name in file_names if file_name.endswith('.pdf')] docs = [] import re for pdf in pdf_file_names: source = extract_doi(pdf) if source != 'None': doc = PyMuPDFLoader(pdf).load() for element in doc: element.metadata = source element.page_content = re.sub('\n+', ' ', element.page_content.strip()) docs.append(element) else: doc = PyMuPDFLoader(pdf).load() print(f"{pdf} is not identified! Using other strategy!!") source = extract_doi_llm(doc, openai_api_key) if source != 'None': for element in doc: element.metadata = source for element in doc: element.page_content = re.sub('\n+', ' ', element.page_content.strip()) docs.append(element) from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) split_docs = text_splitter.split_documents(docs) return split_docs def get_info(path): from PyPDF2 import PdfReader with open(path, 'rb') as f: pdf = PdfReader(f) info = pdf.metadata return info def extract_doi(path): source = 0 info = get_info(path) if '/doi' in info: doi = info['/doi'] elif '/Subject' in info: Subject = info['/Subject'] if 'doi:' in Subject: Subject = Subject.split('doi:') doi = Subject[1] else: source = 'None' elif '/WPS-ARTICLEDOI' in info: doi = info['/WPS-ARTICLEDOI'] else: source = 'None' if source != 'None': import habanero import time citation = habanero.cn.content_negotiation(ids=doi, format='bibentry') time.sleep(5) import bibtexparser citation = bibtexparser.loads(citation) citation = citation.entries[0] source = {'author': citation['author'], 'year': citation['year'], 'title': citation['title'], 'journal': citation['journal'], } return source def extract_doi_llm(doc,openai_api_key): import re doc[0].page_content = re.sub('\n+',' ',doc[0].page_content.strip()) from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500,chunk_overlap = 50) split_docs = text_splitter.split_documents(doc) abstract = split_docs[0] doi = extract_chain(abstract,openai_api_key) if doi != 'None' and doi!= None: import habanero import time citation = habanero.cn.content_negotiation(ids = doi,format='bibentry') time.sleep(5) import bibtexparser citation = bibtexparser.loads(citation) citation = citation.entries[0] source = {'author':citation['author'], 'year':citation['year'], 'title':citation['title'], 'journal':citation['journal'], } return source else: source = 'None' return source def extract_chain(abstract, openai_api_key): from kor.extraction import create_extraction_chain from kor.nodes import Object, Text, Number from langchain.chat_models import ChatOpenAI llm = ChatOpenAI( model_name="gpt-3.5-turbo", openai_api_key=openai_api_key, temperature=0, ) schema = Object( id="doi", description="doi is a digital identifier.It typically starts with 10. followed by a numeric prefix, such as 10.1000/182.", attributes=[ Text( id="doi", description='doi is a digital identifier. It typically starts with "10." followed by a numeric prefix, such as 10.1000/182.', examples=[ ( 'American Economic Journal: Economic Policy 2015, 7(4): 223โ€“242 http://dx.doi.org/10.1257/pol.20130367 223 Water Pollution Progress at Borders: The', 'http://dx.doi.org/10.1257/pol.20130367'), ( 'Environment and Development Economics (2020), 1โ€“17 doi:10.1017/S1355770X2000025X EDE RESEARCH ARTICLE Political incentives, Party Congress, and pollution cycle: empirical evidence from China Zhihua Tian,1 and Yanfang Tian2* 1School of Economics, Zhejiang University of Technology, Hangzhou', '10.1017/S1355770X2000025X') ], many=True ) ], many=False ) chain = create_extraction_chain(llm, schema, encoder_or_encoder_class='json') output = chain.predict_and_parse(text=abstract.page_content) if 'doi' not in output['data']: print(f"LLM strategy failed!!{abstract.metadata['source']} Please manually add it!!") source = 'None' return source else: if output['data']['doi']['doi'] == []: print(f"LLM strategy failed!!{abstract.metadata['source']} Please manually add it!!") source = 'None' return source else: doi = output['data']['doi']['doi'][0] if 'doi=' in doi: doi = doi.split('doi=')[1] return doi ###Loading the database def generate_vectorstore(split_docs, device, model_name, persist_directory, collection_name): from langchain.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings model_kwargs = {'device': device} model_name = model_name embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) persist_directory = persist_directory collection_name = collection_name vectorstore = Chroma.from_documents(split_docs, embeddings, collection_name=collection_name, persist_directory=persist_directory) vectorstore.persist() return vectorstore,embeddings def load_vectorstore(persist_directory,device,model_name,collection_name): from langchain.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings model_kwargs = {'device': device} model_name = model_name embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) vectordb = Chroma(collection_name=collection_name, persist_directory=persist_directory, embedding_function=embeddings) return vectordb,embeddings ###Using Langchain and match def get_chain_output(query, vectordb, k, openai_api_key): docs = vectordb.similarity_search(query, 6, include_metadata=True) from langchain.chat_models import ChatOpenAI llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name="gpt-3.5-turbo") from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate from langchain.llms import OpenAI from langchain.output_parsers import PydanticOutputParser from pydantic import BaseModel, Field, validator from typing import List, Union, Optional class Sentence(BaseModel): sentence: List[str] = Field( description="The sentence in the given document which is the most similar to the query provided") source: List[str] = Field(description="The meta source of the paper") score: List[float] = Field( description="The similarity score between the sentence selected and the query provided") parser = PydanticOutputParser(pydantic_object=Sentence) dic = {'1':"one", "2":"two", "3":"three", "4":"four", "5":"five"} k = dic[str(k)] question_template = f""" Given the document and query, find {k} sentences in the document that are most similar in meaning to the query. Return the sentences, the meta source of the sentences and the cosine similarity scores. If no similar sentences is found, return the sentence with highest cosine siliarity scores. """ main_template = """ {query} =========== {context} =========== {format_instructions} """ question_template = question_template+main_template from langchain.chains.question_answering import load_qa_chain from langchain import LLMChain PROMPT = PromptTemplate(template=question_template, input_variables=['query', 'context'], partial_variables={"format_instructions": parser.get_format_instructions()}) llm_chain = LLMChain(llm=llm, prompt=PROMPT) output = llm_chain({"query": query, "context": docs}) return output, docs def run_text_match(output, k,query, docs,embeddings): import re text = re.sub("\n+", "", output['text']) import json json_obj = json.loads(text) if "properties" in json_obj: print('No result was found, Using embedding searching strategy!!!') split_docs = split_for_embedding(docs) similar_sentence = search_cosine_similarity(query,k,split_docs, embeddings) return similar_sentence else: json_obj = [{'sentence': json_obj['sentence'][i], 'source': json_obj['source'][i], 'score': json_obj['score'][i]} for i in range(k)] return json_obj def split_for_embedding(docs): ##่พ“ๅ…ฅdocs(list),่พ“ๅ‡บsplit_for embedding(list) for_embedding = [] for content in docs: new_content = content.page_content.replace('et al.', 'et alใ€‚') new_content = new_content.split('.') if 'source' in content.metadata: meta_data = content.metadata['source'] else: meta_data = content.metadata for split_content in new_content: split_content = split_content.replace('ใ€‚', '.') if len(split_content) < 30: continue else: for_embedding.append({"content": split_content, "source": meta_data}) return for_embedding def search_cosine_similarity(query, k,split_docs, embeddings): ##query-str,split_docs-list,embeddings-embeddings() split_docs_content = [content['content'] for content in split_docs] split_docs_content = list(set(split_docs_content)) embed_docs = embeddings.embed_documents(split_docs_content) embed_query = embeddings.embed_query(query) from openai.embeddings_utils import cosine_similarity cos_index = [] for embed_doc in embed_docs: cos_index.append(cosine_similarity(embed_doc, embed_query)) # ่ฟ™่พนๆ˜ฏๆ นๆฎๅคงๅฐๅปบ็ซ‹็ดขๅผ• idx = sorted(range(len(cos_index)), key=lambda k: cos_index[k]) # ๆ นๆฎcos_index็š„ๅคงๅฐ่ฟ›่กŒๆŽ’ๅบ final_similar_list = [] for index in idx[-k:]: unit = {} unit['sentences'] = split_docs_content[index] unit['source'] = split_docs[index]['source'] unit['score'] = cos_index[index] final_similar_list.append(unit) return final_similar_list def main(): st.title("Literature Review Tool") sys.stdout = StreamlitWriter() # Create a toggle button to switch between pages page = st.sidebar.radio("Choose a page", [ "Parameter","Vector Database","Docs"]) if page == "Parameter": Parameters() elif page == "Vector Database": Vector_Databse() elif page == "Docs": Docs() def my_function(input_text): # ๅœจๆญคๅค„ๆทปๅŠ ๆ‚จ็š„ๅค„็†้€ป่พ‘ output_text = input_text.upper() return output_text def process_selected_sentence(selected_sentence): # ๅœจๆœ€็ปˆ่พ“ๅ‡บๅŒบๅŸŸๅฑ•็คบ็”จๆˆท้€‰ๆ‹ฉ็š„ๅฅๅญ st.write(f"You selected: {selected_sentence}") main()
[ "\n Given the document and query, find PLACEHOLDER sentences in the document that are most similar in meaning to the query. \n Return the sentences, the meta source of the sentences and the cosine similarity scores. \n If no similar sentences is found, return the sentence with highest cosine siliarity scores.\n ", "format_instructions", "PLACEHOLDERPLACEHOLDER", "\n {query}\n ===========\n {context}\n ===========\n {format_instructions}\n\n ", "context" ]
2024-01-10
Kororinpas/Lit_Tool
pdf_retrieval.py
from operator import itemgetter from langchain.chat_models import ChatOpenAI from langchain.output_parsers import StructuredOutputParser, ResponseSchema from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate from langchain.document_loaders import DataFrameLoader, PyMuPDFLoader import os import fitz import pandas as pd import json import ast def fonts(doc, granularity=False, pages=2): """Extracts fonts and their usage in PDF documents. :param doc: PDF document to iterate through :type doc: <class 'fitz.fitz.Document'> :param granularity: also use 'font', 'flags' and 'color' to discriminate text :type granularity: bool :rtype: [(font_size, count), (font_size, count}], dict :return: most used fonts sorted by count, font style information """ styles = {} font_counts = {} pageCounter = 0 for page in doc: blocks = page.get_text("dict")["blocks"] for b in blocks: # iterate through the text blocks if b['type'] == 0: # block contains text for l in b["lines"]: # iterate through the text lines for s in l["spans"]: # iterate through the text spans if granularity: identifier = "{0}_{1}_{2}_{3}".format(s['size'], s['flags'], s['font'], s['color']) styles[identifier] = {'size': s['size'], 'flags': s['flags'], 'font': s['font'], 'color': s['color']} else: identifier = "{0}".format(s['size']) styles[identifier] = {'size': s['size'], 'font': s['font']} font_counts[identifier] = font_counts.get(identifier, 0) + 1 # count the fonts usage pageCounter += 1 if pageCounter >= pages: break font_counts = sorted(font_counts.items(), key=itemgetter(1), reverse=True) if len(font_counts) < 1: raise ValueError("Zero discriminating fonts found!") return font_counts, styles def font_tags(font_counts, styles): """Returns dictionary with font sizes as keys and tags as value. :param font_counts: (font_size, count) for all fonts occuring in document :type font_counts: list :param styles: all styles found in the document :type styles: dict :rtype: dict :return: all element tags based on font-sizes """ p_style = styles[font_counts[0][0]] # get style for most used font by count (paragraph) p_size = p_style['size'] # get the paragraph's size # sorting the font sizes high to low, so that we can append the right integer to each tag font_sizes = [] for (font_size, count) in font_counts: font_sizes.append(float(font_size)) font_sizes.sort(reverse=True) # aggregating the tags for each font size idx = 0 size_tag = {} for size in font_sizes: idx += 1 if size == p_size: idx = 0 size_tag[size] = '<p>' if size > p_size: size_tag[size] = '<h{0}>'.format(idx) elif size < p_size: size_tag[size] = '<s{0}>'.format(idx) return size_tag def get_pdf_raw_pages(doc, pages): header_para = [] pageCounter = 0 for page in doc: blocks = page.get_text("dict")["blocks"] header_para.append(blocks) pageCounter += 1 if pageCounter >= pages: break return header_para def headers_para(doc, size_tag, pages=2): """Scrapes headers & paragraphs from PDF and return texts with element tags. :param doc: PDF document to iterate through :type doc: <class 'fitz.fitz.Document'> :param size_tag: textual element tags for each size :type size_tag: dict :rtype: list :return: texts with pre-prended element tags """ header_para = [] # list with headers and paragraphs first = True # boolean operator for first header previous_s = {} # previous span pageCounter = 0 for page in doc: blocks = page.get_text("dict")["blocks"] for b in blocks: # iterate through the text blocks # header_para.append("<section_block>") if b['type'] == 0: # this block contains text # REMEMBER: multiple fonts and sizes are possible IN one block block_string = "" # text found in block for l in b["lines"]: # iterate through the text lines for s in l["spans"]: # iterate through the text spans if s['text'].strip(): # removing whitespaces: if first: previous_s = s first = False block_string = size_tag[s['size']] + s['text'] else: if s['size'] == previous_s['size']: if block_string and all((c == "|") for c in block_string): # block_string only contains pipes block_string = size_tag[s['size']] + s['text'] if block_string == "": # new block has started, so append size tag block_string = size_tag[s['size']] + s['text'] else: # in the same block, so concatenate strings block_string += " " + s['text'] else: header_para.append(block_string) block_string = size_tag[s['size']] + s['text'] previous_s = s # new block started, indicating with a pipe block_string += "|" # header_para.append("<text_block>") header_para.append(block_string) # header_para.append("<text_block_end>") # header_para.append("<section_block_end>") pageCounter += 1 if pageCounter >= pages: break return header_para def get_pdf_first_page_txt(pdf_path, pages=2): doc = fitz.open(pdf_path) font_counts, styles = fonts(doc, granularity=False, pages=pages) size_tag = font_tags(font_counts, styles) return headers_para(doc, size_tag, pages) def get_pdf_pages(pdf_path, pages=2): docs = PyMuPDFLoader(pdf_path).load() return docs[:pages] # texts = [] # for doc in docs[:pages]: # texts.append(doc.page_content) # return texts def get_pdf_page_metadata(pdf_path, pages): pdf_first_page_txt = get_pdf_first_page_txt(pdf_path, pages) template = """ I have extracted text from the initial pages of a Journal of Economic Literature (JEL) PDF file. I require assistance in extracting specific details, namely: article title, author, abstract and keywords section. Please be aware that if you encounter JEL classifications such as C12 and P34, kindly ignore them and refrain from including them in the abstract and keywords. {format_instructions} Wrap your final output as a json objects INPUT: {pdf_first_page_txt} YOUR RESPONSE: """ response_schemas = [ ResponseSchema(name="title", description="extracted title"), ResponseSchema(name="author", description="extracted authors seperated by comma"), ResponseSchema(name="abstract", description="extracted abstract"), ResponseSchema(name="keywords", description="extracted keywords") ] output_parser = StructuredOutputParser.from_response_schemas(response_schemas) prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template(template) ], input_variables=["pdf_first_page_txt"], partial_variables={"format_instructions": output_parser.get_format_instructions()} ) llm = ChatOpenAI(model_name='gpt-3.5-turbo-16k',temperature=0.0,max_tokens=6048) # type: ignore gpt-3.5-turbo final_prompt = prompt.format_prompt(pdf_first_page_txt=pdf_first_page_txt) output = llm(final_prompt.to_messages()) try: result = output_parser.parse(output.content) except: if "```json" in output.content: json_string = output.content.split("```json")[1].strip() else: json_string = output.content result = fix_JSON(json_string) head, tail = os.path.split(pdf_path) result["filename"] = tail return result def get_pdf_page_accept_metadata(pdf_path, pages): pdf_first_page_txt = get_pdf_first_page_txt(pdf_path, pages) template = """ I have extracted text from the initial pages of a Journal of Economic Literature (JEL) PDF file. I need help identifying the accepted date of the article. If the accepted date is not explicitly specified, it should be located either at the top or bottom of the first or second page of the article in a date format without the prefix 'accepted'. {format_instructions} Wrap your final output as a json objects INPUT: {pdf_first_page_txt} YOUR RESPONSE: """ response_schemas = [ ResponseSchema(name="accepted", description="extracted accepted date") ] output_parser = StructuredOutputParser.from_response_schemas(response_schemas) prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template(template) ], input_variables=["pdf_first_page_txt"], partial_variables={"format_instructions": output_parser.get_format_instructions()} ) llm = ChatOpenAI(model_name='gpt-3.5-turbo',temperature=0.0,max_tokens=148) # type: ignore gpt-3.5-turbo final_prompt = prompt.format_prompt(pdf_first_page_txt=pdf_first_page_txt) output = llm(final_prompt.to_messages()) try: result = output_parser.parse(output.content) except: if "```json" in output.content: json_string = output.content.split("```json")[1].strip() else: json_string = output.content result = fix_JSON(json_string) head, tail = os.path.split(pdf_path) result["filename"] = tail return result def get_pdf_intro(pdf_path, pages): pdf_first_page_txt = get_pdf_first_page_txt(pdf_path, pages) template = """ I have extracted text from the initial pages of a Journal of Economic Literature (JEL) PDF file. I require assistance in extracting introduction section. Typically, the introduction section begins after the abstract and ends before the next sub-title or section heading. Wrap your final output as a json objects INPUT: {pdf_first_page_txt} YOUR RESPONSE: """ response_schemas = [ ResponseSchema(name="introduction", description="extracted introduction") ] output_parser = StructuredOutputParser.from_response_schemas(response_schemas) prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template(template) ], input_variables=["pdf_first_page_txt"], # partial_variables={"format_instructions": output_parser.get_format_instructions()} ) llm = ChatOpenAI(model_name='gpt-3.5-turbo-16k',temperature=0.0,max_tokens=8396) # type: ignore gpt-3.5-turbo final_prompt = prompt.format_prompt(pdf_first_page_txt=pdf_first_page_txt) output = llm(final_prompt.to_messages()) try: result = output_parser.parse(output.content) except Exception as e: print(str(e)) if "```json" in output.content: json_string = output.content.split("```json")[1].strip() else: json_string = output.content result = fix_JSON(json_string) head, tail = os.path.split(pdf_path) result["filename"] = tail return result def get_polish_intro(my_intro, sample_introes, words_limit, temperature): template = """ I require an introduction for my Journal of Economic Literature and I would appreciate it \ if you could compose it for me around {words_limit} words. I would like the introduction mimic on the \ sample introductions that I will provide. If I have already provided my own introduction, \ please refine it accordingly. % My own introduction: {my_intro} % Sample introductions: {sample_introes} % End of sample introductions: YOUR RESPONSE: """ response_schemas = [ ResponseSchema(name="introduction", description="refined introduction") ] output_parser = StructuredOutputParser.from_response_schemas(response_schemas) prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template(template) ], input_variables=["my_intro","sample_introes","words_limit"], partial_variables={"format_instructions": output_parser.get_format_instructions()} ) llm = ChatOpenAI(model_name='gpt-3.5-turbo',temperature=temperature,max_tokens=2048) # type: ignore gpt-3.5-turbo final_prompt = prompt.format_prompt(my_intro=my_intro, sample_introes=sample_introes, words_limit=words_limit) output = llm(final_prompt.to_messages()) result = output.content return result def fix_JSON(json_message=None): result = None try: result = json.loads(json_message) except Exception as e: # Find the offending character index: idx_to_replace = int(str(e).split(' ')[-1].replace(')', '')) # Remove the offending character: json_message = list(json_message) json_message[idx_to_replace] = ' ' new_message = ''.join(json_message) return fix_JSON(json_message=new_message) return result def save_pdfs_to_db(pdf_files, excel_file, meta_type='meta', pages=2): if os.path.exists(excel_file): df = pd.read_excel(excel_file) existing_data = df.to_dict(orient='records') else: existing_data = [] existing_filenames = set(row['filename'] for row in existing_data) for doc in pdf_files: head, tail = os.path.split(doc) if tail not in existing_filenames: # print('get meta from LLM '+doc) try: if meta_type == 'intro': metadata = get_pdf_intro2(doc, pages) elif meta_type == 'date': metadata = get_pdf_page_accept_metadata(doc, pages) else: metadata = get_pdf_page_metadata(doc, pages) temp_data = [] temp_data.append(metadata) save_to_excel(existing_data+temp_data, excel_file) existing_data += temp_data print("Data append to ", excel_file) except Exception as e: print(str(e)) def get_metadata_from_db(excel_file): df = pd.read_excel(excel_file) dict = df.to_dict(orient='records',) return dict def get_column_from_db(excel_file, column): df = pd.read_excel(excel_file) doc = DataFrameLoader(df, column).load() return doc def get_data_from_csv(file_path, column_name, filter_value): data = pd.read_csv(file_path, encoding = 'unicode_escape') filtered_data = data[data[column_name] == filter_value] dict_data = filtered_data.to_dict(orient='records') #filtered_data.values.tolist() for row in dict_data: md = ast.literal_eval(row["metadata"]) # print(type(md)) row["date"] = md["modDate"] return dict_data def get_filename_list(similar_dict, path): filenames = [] for doc in similar_dict['context']: filenames.append(os.path.join(path, doc.metadata['filename'])) return filenames def save_to_excel(data, file_path): df = pd.DataFrame(data) df.to_excel(file_path, index=False) def get_pdf_intro2(pdf_path, pages): pdf_first_page_txt = get_pdf_first_page_txt(pdf_path, pages) # pdf_first_page_txt = get_pdf_pages(pdf_path, pages) human_template = """ I have extracted the text from the initial pages of a Journal of Economic Literature (JEL) PDF file. I require assistance in extracting the introduction section. Typically, the document follows a pattern where the 'abstract' header is encountered, followed by the abstract section. Subsequently, an 'Introduction' header is expected, which is followed by the introduction section. Next, there may be a 'Background' header or other headers indicating different sections. The introduction section generally concludes before the next sub-title or section heading appears, such as 'Background' or other similar headings. Please continue searching for the introduction section until you reach a clear next sub-title or section heading. However, please note that if you encounter a bottom part between two pages, such as a section starting with 'RECEIVED:' followed by a date, it does not necessarily mean that the introduction section has ended. In such cases, you should continue searching on the next page. If the text 'www.elsevier.com' appears in the beginning, it indicates that the literature is published on Elsevier and follows a specific format. In this case, the abstract section will start with "A B S T R A C T" and end before the introduction section. The introduction section will typically start with "1. Introduction" and end before the next section header, such as "2. Background". Please continue searching for the introduction section until you reach next section heading such as "2. Background", it has to be started with "2.". Please provide the introduction section as the final output in JSON format with the key 'Introduction' written in Pascal case. Exclude the content of the abstract section. Only include the text within the introduction section and exclude any text prior to it. INPUT: {pdf_first_page_txt} YOUR RESPONSE: """ response_schemas = [ # ResponseSchema(name="abstract", description="extracted abstract"), ResponseSchema(name="introduction", description="extracted introduction") ] output_parser = StructuredOutputParser.from_response_schemas(response_schemas) prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template(human_template) ], input_variables=["pdf_first_page_txt"] ) llm = ChatOpenAI(model_name='gpt-3.5-turbo-16k',temperature=0.0,max_tokens=6658) # type: ignore gpt-3.5-turbo final_prompt = prompt.format_prompt(pdf_first_page_txt=pdf_first_page_txt) output = llm(final_prompt.to_messages()) try: result = output_parser.parse(output.content) except Exception as e: print(str(e)) if "```json" in output.content: json_string = output.content.split("```json")[1].strip() else: json_string = output.content result = fix_JSON(json_string) head, tail = os.path.split(pdf_path) result["filename"] = tail return result def main(): documents = ['./data/docs/literature/Do people care about democracy_An experiment exploring the value of voting rights.pdf', './data/docs/literature/Expressive voting versus information avoidance_expenrimental evidence in the context of climate change mitigation.pdf', './data/docs/literature/Crashing the party_An experimental investigation of strategic voting in primary elections.pdf', './data/docs/literature/Economic growth andย political extremism.pdf'] doc = './data/docs/literature_suicide/1-s2.0-S0304387821000432-main.pdf' doc = './data/docs/literature_suicide/1-s2.0-S0047272721000761-main.pdf' # doc = './data/docs/literature_suicide/rest_a_00777.pdf' documents = ['./data/docs/literature/Do people care about democracy_An experiment exploring the value of voting rights.pdf' ,'./data/docs/literature/Expressive voting versus information avoidance_expenrimental evidence in the context of climate change mitigation.pdf' ,'./data/docs/literature/Economic growth andย political extremism.pdf' ] # './data/docs/literature/Expressive voting versus information avoidance_expenrimental evidence in the context of climate change mitigation.pdf', # './data/docs/literature/Crashing the party_An experimental investigation of strategic voting in primary elections.pdf', # './data/docs/literature/Economic growth andย political extremism.pdf'] # save_pdfs_to_db(documents, intro_excel_file, is_Intro=True, pages=4) metadata = get_pdf_intro2(doc, 2) print(metadata) # docs = get_pdf_first_page_txt(doc, 3) # # docs = get_pdf_pages(doc, 2) # # docs = get_pdf_raw_pages(doc, 2) # print(docs) # pdf_first_page_txt = get_pdf_first_page_txt(doc, 3) # raw_txt = get_pdf_raw_pages(fitz.open(doc), 2) # print(raw_txt) # pdf_first_page_txt = get_pdf_first_page_txt(doc, 3) # output_file = "data/db/repo_intro_4.xlsx" # intro354_excel_file = "data/db/repo_intro_35_16.xlsx" # save_pdfs_to_db(documents, intro354_excel_file, is_intro=True, pages=4) # intros = [dict["introduction"] for dict in get_metadata_from_db(intro35_excel_file)] # polish = get_polish_intro('', intros[:3], 600, 0) # print(polish) # csv_file = "./data/db/summary.csv" # column_name = "Theme" # filter_value = "China authoritarian system" # data = get_data_from_csv(csv_file, column_name, filter_value) # print(data) if __name__ == '__main__': main()
[ "sample_introes", "words_limit", "format_instructions", "\n I have extracted text from the initial pages of a Journal of Economic Literature (JEL) PDF file. I require assistance in extracting \n specific details, namely: article title, author, abstract and keywords section. Please be aware that if you encounter \n JEL classifications such as C12 and P34, kindly ignore them and refrain from including them in the abstract and keywords. \n \n {format_instructions}\n\n Wrap your final output as a json objects\n\n INPUT:\n {pdf_first_page_txt}\n\n YOUR RESPONSE:\n ", "\nI have extracted the text from the initial pages of a Journal of Economic Literature (JEL) PDF file. I require assistance in extracting the introduction section. Typically, the document follows a pattern where the 'abstract' header is encountered, followed by the abstract section. Subsequently, an 'Introduction' header is expected, which is followed by the introduction section. Next, there may be a 'Background' header or other headers indicating different sections. The introduction section generally concludes before the next sub-title or section heading appears, such as 'Background' or other similar headings.\n\nPlease continue searching for the introduction section until you reach a clear next sub-title or section heading. However, please note that if you encounter a bottom part between two pages, such as a section starting with 'RECEIVED:' followed by a date, it does not necessarily mean that the introduction section has ended. In such cases, you should continue searching on the next page.\n\nIf the text 'www.elsevier.com' appears in the beginning, it indicates that the literature is published on Elsevier and follows a specific format. In this case, the abstract section will start with \"A B S T R A C T\" and end before the introduction section. The introduction section will typically start with \"1. Introduction\" and end before the next section header, such as \"2. Background\". Please continue searching for the introduction section until you reach next section heading such as \"2. Background\", it has to be started with \"2.\".\n\nPlease provide the introduction section as the final output in JSON format with the key 'Introduction' written in Pascal case.\n\nExclude the content of the abstract section.\n\nOnly include the text within the introduction section and exclude any text prior to it.\n\nINPUT: {pdf_first_page_txt}\n\nYOUR RESPONSE:\n ", "\n I have extracted text from the initial pages of a Journal of Economic Literature (JEL) PDF file. \n I need help identifying the accepted date of the article. If the accepted date is not explicitly specified, \n it should be located either at the top or bottom of the first or second page of the article in a date format without the prefix 'accepted'. \n \n {format_instructions}\n\n Wrap your final output as a json objects\n\n INPUT:\n {pdf_first_page_txt}\n\n YOUR RESPONSE:\n ", "pdf_first_page_txt", "\n I have extracted text from the initial pages of a Journal of Economic Literature (JEL) PDF file. I require assistance in extracting \n introduction section. Typically, the introduction section begins after the abstract and ends before the next sub-title or section heading. \n \n Wrap your final output as a json objects\n\n INPUT:\n {pdf_first_page_txt}\n\n YOUR RESPONSE:\n ", "my_intro", "\n I require an introduction for my Journal of Economic Literature and I would appreciate it if you could compose it for me around {words_limit} words. I would like the introduction mimic on the sample introductions that I will provide. If I have already provided my own introduction, please refine it accordingly. \n\n % My own introduction: {my_intro}\n\n % Sample introductions:\n {sample_introes}\n % End of sample introductions:\n\n YOUR RESPONSE:\n " ]
2024-01-10
Kororinpas/Lit_Tool
pdf_documents.py
from pdf_metadata import get_pdf_metadata from pdf_metadata_llm import get_pdf_metadata_using_llm def get_pdf_documents(pdf_files): from langchain.document_loaders import PyMuPDFLoader,DirectoryLoader,UnstructuredPDFLoader docs =[] import re for pdf_fullpath in pdf_files: metadata = get_pdf_metadata(pdf_fullpath) if metadata != 'None': doc = PyMuPDFLoader(pdf_fullpath).load() for element in doc: element.metadata = metadata element.page_content = re.sub('\n+',' ',element.page_content.strip()) docs.append(element) else: doc = PyMuPDFLoader(pdf_fullpath).load() print(f"{pdf_fullpath} is not identified! Using other strategy!!") metadata = get_pdf_metadata_using_llm(doc) if metadata != 'None': for element in doc: element.metadata = metadata for element in doc: element.page_content = re.sub('\n+',' ',element.page_content.strip()) docs.append(element) return docs
[]
2024-01-10
Kororinpas/Lit_Tool
pdf_metadata_llm.py
from doi import get_doi from document_util import get_split_documents def get_pdf_metadata_using_llm(doc): import re doc[0].page_content = re.sub('\n+',' ',doc[0].page_content.strip()) # from langchain.text_splitter import RecursiveCharacterTextSplitter # text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500,chunk_overlap = 50) split_docs = get_split_documents(doc, 1500, 50) abstract = split_docs[0] doi = get_doi(abstract) if doi != 'None': import habanero import time citation = habanero.cn.content_negotiation(ids = doi,format='bibentry') time.sleep(5) import bibtexparser citation = bibtexparser.loads(citation) citation = citation.entries[0] metadata = {'author':citation['author'], 'year':citation['year'], 'title':citation['title'], 'journal':citation['journal'], } return metadata else: metadata = 'None' return metadata
[]
2024-01-10
Kororinpas/Lit_Tool
cosine_match.py
def search_cosine_similarity(query,split_docs,embeddings): ##query-str,split_docs-list,embeddings-embeddings() split_docs_content = [content['content'] for content in split_docs] embed_docs = embeddings.embed_documents(split_docs_content) embed_query= embeddings.embed_query(query) from openai.embeddings_utils import cosine_similarity cos_index = [] for embed_doc in embed_docs: cos_index.append(cosine_similarity(embed_doc,embed_query)) #่ฟ™่พนๆ˜ฏๆ นๆฎๅคงๅฐๅปบ็ซ‹็ดขๅผ• idx = sorted(range(len(cos_index)),key=lambda k:cos_index[k]) #ๆ นๆฎcos_index็š„ๅคงๅฐ่ฟ›่กŒๆŽ’ๅบ final_similar_list = [] for index in idx[-3:]: unit = {} unit['sentences']=split_docs_content[index] unit['source']=split_docs[index]['source'] unit['score']=cos_index[index] final_similar_list.append(unit) return final_similar_list
[]
2024-01-10
Kororinpas/Lit_Tool
embedding_function.py
def get_embedding_function(): from langchain.embeddings import HuggingFaceEmbeddings import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {'device':device} return HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
[]
2024-01-10
Kororinpas/Lit_Tool
doi.py
def get_doi(abstract): from kor.extraction import create_extraction_chain from kor.nodes import Object, Text, Number from langchain.chat_models import ChatOpenAI llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0) # type: ignore schema = Object( id="doi", description="doi is a digital identifier.It typically starts with 10. followed by a numeric prefix, such as 10.1000/182.", attributes=[ Text( id="doi", description='doi is a digital identifier. It typically starts with "10." followed by a numeric prefix, such as 10.1000/182.', examples=[ ('American Economic Journal: Economic Policy 2015, 7(4): 223โ€“242 http://dx.doi.org/10.1257/pol.20130367 223 Water Pollution Progress at Borders: The','http://dx.doi.org/10.1257/pol.20130367'), ('Environment and Development Economics (2020), 1โ€“17 doi:10.1017/S1355770X2000025X EDE RESEARCH ARTICLE Political incentives, Party Congress, and pollution cycle: empirical evidence from China Zhihua Tian,1 and Yanfang Tian2* 1School of Economics, Zhejiang University of Technology, Hangzhou','10.1017/S1355770X2000025X') ], many=True ) ], many=False ) chain = create_extraction_chain(llm, schema, encoder_or_encoder_class='json') output = chain.predict_and_parse(text=abstract.page_content) if 'doi' not in output['data']: print(f"LLM strategy failed!!{abstract.metadata['source']} Please manually add it!!") source = 'None' return source else: doi = output['data']['doi']['doi'][0] if 'doi=' in doi: doi = doi.split('doi=')[1] return doi
[]
2024-01-10
jied-O/Jids-Garage
langchainagentstest.py
from langchain import OpenAI from langchain.chains import LLMChain from langchain.chains import PALChain from langchain.agents import initialize_agent from langchain.agents import AgentType from langchain.agents import load_tools from ogbujipt.config import openai_emulation from ogbujipt.model_style.alpaca import prep_instru_inputs, ALPACA_PROMPT_TMPL from langchain.prompts import PromptTemplate openai_emulation(host="http://192.168.0.73", port="8000") def simpleWordPrompt(): prompt = PromptTemplate( input_variables=["place"], template="What is the capital of {place}?", ) print(prompt.format(place="Nigeria")) llm = OpenAI(temperature=0.1) llmchain = LLMChain(llm=llm, prompt=prompt) response = llmchain.run(place="Nigeria") print(response) def MathWorldProblem(): llm = OpenAI(temperature=0.1) palchain = PALChain.from_math_prompt(llm=llm, verbose=True) response = palchain.run( "If my age is half of my dad's age and he is going to be 60 next year, what is my current age?" ) print(response) def agentTest(): llm = OpenAI(temperature=0) tools = load_tools(["pal-math"], llm=llm) agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True) agent.run("If my age is half of my dad's age and he is going to be 60 next year, what is my current age?") def main(): MathWorldProblem() if __name__ == "__main__": main()
[ "What is the capital of {place}?" ]
2024-01-10
tarunsamanta2k20/quivr
backend~parsers~audio.py
import os import tempfile import time from io import BytesIO from tempfile import NamedTemporaryFile import openai from fastapi import UploadFile from langchain.document_loaders import TextLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.schema import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from utils import compute_sha1_from_content, documents_vector_store # # Create a function to transcribe audio using Whisper # def _transcribe_audio(api_key, audio_file, stats_db): # openai.api_key = api_key # transcript = "" # with BytesIO(audio_file.read()) as audio_bytes: # # Get the extension of the uploaded file # file_extension = os.path.splitext(audio_file.name)[-1] # # Create a temporary file with the uploaded audio data and the correct extension # with tempfile.NamedTemporaryFile(delete=True, suffix=file_extension) as temp_audio_file: # temp_audio_file.write(audio_bytes.read()) # temp_audio_file.seek(0) # Move the file pointer to the beginning of the file # transcript = openai.Audio.translate("whisper-1", temp_audio_file) # return transcript async def process_audio(upload_file: UploadFile, stats_db): file_sha = "" dateshort = time.strftime("%Y%m%d-%H%M%S") file_meta_name = f"audiotranscript_{dateshort}.txt" # uploaded file to file object openai_api_key = os.environ.get("OPENAI_API_KEY") # Here, we're writing the uploaded file to a temporary file, so we can use it with your existing code. with tempfile.NamedTemporaryFile(delete=False, suffix=upload_file.filename) as tmp_file: await upload_file.seek(0) content = await upload_file.read() tmp_file.write(content) tmp_file.flush() tmp_file.close() with open(tmp_file.name, "rb") as audio_file: transcript = openai.Audio.transcribe("whisper-1", audio_file) file_sha = compute_sha1_from_content(transcript.text.encode("utf-8")) file_size = len(transcript.text.encode("utf-8")) # Load chunk size and overlap from sidebar chunk_size = 500 chunk_overlap = 0 text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( chunk_size=chunk_size, chunk_overlap=chunk_overlap) texts = text_splitter.split_text(transcript) docs_with_metadata = [Document(page_content=text, metadata={"file_sha1": file_sha, "file_size": file_size, "file_name": file_meta_name, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort}) for text in texts] # if st.secrets.self_hosted == "false": # add_usage(stats_db, "embedding", "audio", metadata={"file_name": file_meta_name,"file_type": ".txt", "chunk_size": chunk_size, "chunk_overlap": chunk_overlap}) documents_vector_store.add_documents(docs_with_metadata) return documents_vector_store
[]
2024-01-10
sshh12/llm_optimize
llm_optimize~optimize.py
from typing import Callable, Optional, Tuple, List import re import openai from langchain.input import print_text from langchain.prompts.chat import ( SystemMessage, HumanMessage, AIMessage, ) from llm_optimize import llm, constants # The numeric score and the LLM-facing representation ScoreTuple = Tuple[float, str] # Best score, history of scores, best x0 OptimizationResultTuple = Tuple[float, List[float], str] def run( task_description: str, task_question: str, func: Callable[[str], ScoreTuple], x0: str, max_steps: Optional[int] = 10, model: Optional[llm.LLMModel] = None, verbose: Optional[bool] = True, system_prompt: Optional[str] = constants.SYSTEM_PROMPT, human_prompt: Optional[str] = constants.HUMAN_OPTIMIZATION_PROMPT, stop_score: Optional[float] = None, ) -> OptimizationResultTuple: if model is None: model = llm.get_default_llm() def _log(text: str, color: str): if verbose: print_text(text + "\n", color) x = x0 score, fx = func(x) best_score = score best_x = x _log(x, "blue") _log(fx, "green") messages = [ SystemMessage(content=system_prompt.format(task_description=task_description)), HumanMessage(content=human_prompt.format(task_question=task_question, x=x, fx=fx)), ] score_hist = [score] for _ in range(max_steps): try: resp = model(messages).content except openai.error.InvalidRequestError as e: _log(str(e), "red") # drop the first set of results to reduce token usage messages.pop(1) messages.pop(1) resp = model(messages).content _log(resp, "yellow") try: x = re.findall("```(?:\w+)?([\s\S]+)```", resp)[0] except IndexError as e: _log(f"Stopping early, failed to parse response. {e}", "red") break _log(x, "blue") score, fx = func(x) score_hist.append(score) if score > best_score: best_x = x best_score = score _log(fx, "green") messages.append(AIMessage(content=resp)) messages.append(HumanMessage(content=human_prompt.format(task_question=task_question, x=x, fx=fx))) if stop_score is not None and best_score >= stop_score: break return (best_score, score_hist, best_x)
[]
2024-01-10
xiahan4956/Auto_Claude_100k
autogpt~llm~api_manager.py
from __future__ import annotations from typing import List, Optional import openai from openai import Model from autogpt.config import Config from autogpt.llm.base import CompletionModelInfo, MessageDict from autogpt.llm.providers.openai import OPEN_AI_MODELS from autogpt.logs import logger from autogpt.singleton import Singleton class ApiManager(metaclass=Singleton): def __init__(self): self.total_prompt_tokens = 0 self.total_completion_tokens = 0 self.total_cost = 0 self.total_budget = 0 self.models: Optional[list[Model]] = None def reset(self): self.total_prompt_tokens = 0 self.total_completion_tokens = 0 self.total_cost = 0 self.total_budget = 0.0 self.models = None def create_chat_completion( self, messages: list[MessageDict], model: str | None = None, temperature: float = None, max_tokens: int | None = None, deployment_id=None, ): """ Create a chat completion and update the cost. Args: messages (list): The list of messages to send to the API. model (str): The model to use for the API call. temperature (float): The temperature to use for the API call. max_tokens (int): The maximum number of tokens for the API call. Returns: str: The AI's response. """ cfg = Config() if temperature is None: temperature = cfg.temperature if deployment_id is not None: response = openai.ChatCompletion.create( deployment_id=deployment_id, model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, api_key=cfg.openai_api_key, ) else: response = openai.ChatCompletion.create( model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, api_key=cfg.openai_api_key, ) if not hasattr(response, "error"): logger.debug(f"Response: {response}") prompt_tokens = response.usage.prompt_tokens completion_tokens = response.usage.completion_tokens self.update_cost(prompt_tokens, completion_tokens, model) return response def update_cost(self, prompt_tokens, completion_tokens, model: str): """ Update the total cost, prompt tokens, and completion tokens. Args: prompt_tokens (int): The number of tokens used in the prompt. completion_tokens (int): The number of tokens used in the completion. model (str): The model used for the API call. """ # the .model property in API responses can contain version suffixes like -v2 model = model[:-3] if model.endswith("-v2") else model model_info = OPEN_AI_MODELS[model] self.total_prompt_tokens += prompt_tokens self.total_completion_tokens += completion_tokens self.total_cost += prompt_tokens * model_info.prompt_token_cost / 1000 if issubclass(type(model_info), CompletionModelInfo): self.total_cost += ( completion_tokens * model_info.completion_token_cost / 1000 ) logger.debug(f"Total running cost: ${self.total_cost:.3f}") def set_total_budget(self, total_budget): """ Sets the total user-defined budget for API calls. Args: total_budget (float): The total budget for API calls. """ self.total_budget = total_budget def get_total_prompt_tokens(self): """ Get the total number of prompt tokens. Returns: int: The total number of prompt tokens. """ return self.total_prompt_tokens def get_total_completion_tokens(self): """ Get the total number of completion tokens. Returns: int: The total number of completion tokens. """ return self.total_completion_tokens def get_total_cost(self): """ Get the total cost of API calls. Returns: float: The total cost of API calls. """ return self.total_cost def get_total_budget(self): """ Get the total user-defined budget for API calls. Returns: float: The total budget for API calls. """ return self.total_budget def get_models(self) -> List[Model]: """ Get list of available GPT models. Returns: list: List of available GPT models. """ if self.models is None: all_models = openai.Model.list()["data"] self.models = [model for model in all_models if "gpt" in model["id"]] return self.models
[]
2024-01-10
xiahan4956/Auto_Claude_100k
autogpt~llm~utils~claude.py
from autogpt.config import Config import time import openai import json CFG = Config() openai.api_key = CFG.openai_api_key MAX_TOKEN_ONCE = 100000 CONTINUE_PROMPT = "... continue" from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT def _sendReq(anthropic, prompt, max_tokens_to_sample): print("----------------request----------------") print(prompt) print("----------------request----------------\n") print("the input words of claude: "+str(len(prompt))) for _ in range(5): try: response = anthropic.completions.create( prompt=prompt, stop_sequences = [HUMAN_PROMPT, AI_PROMPT], model="claude-2", max_tokens_to_sample=max_tokens_to_sample, temperature = 0.3 ) break except Exception as e: print(e) time.sleep(1) return response def sendReq(question, max_tokens_to_sample: int = MAX_TOKEN_ONCE): anthropic = Anthropic(api_key = CFG.claude_api_key) prompt = f"{question} {anthropic.AI_PROMPT}" response = _sendReq(anthropic, prompt, max_tokens_to_sample) data = response.completion return data def pmt_gpt_to_claude(question): question = str(question)[1:-1] question = question.replace("{\'role\': \'system\', \'content\':","\n\nSYSTEM:") question = question.replace("{\'role\': \'user\', \'content\':","\n\nHuman:") question = question.replace("{\'role\': \'assistant\', \'content\':","\n\nAssistant:") question = question.replace("\'}","") return question def fix_claude_json(claude_resp): messages = [{"role":"system","content":r"1. You will receive a JSON string, and your task is to extract information from it and return it as a JSON object. 2.Use function's json schema to extrct.Please notice the format 3. Be aware that the given JSON may contain errors, so you may need to infer the fields and the format from the JSON string. 4.Do not use \" and \' .you should use ' " },{"role": "user", "content": claude_resp}] functions = [ { "name": "parse_claude_json", "description": "parse a claude response to the json", "parameters": { "type": "object", "properties": { "thoughts": { "type": "object", "properties": { "text": { "type": "string", "description": "thoughts" }, "reasoning": { "type": "string" }, "plan": { "type": "string", "description": "it is a string,not list.If you find it is list,please use correct it " }, "criticism": { "type": "string", "description": "constructive self-criticism" }, "speak": { "type": "string", "description": "thoughts summary to say to user" } }, "required": ["text", "reasoning", "plan", "criticism", "speak"], }, "command": { "type": "object", "properties": { "name": {"type": "string"}, "args": { "type": "object" } }, "required": ["name", "args"], } }, "required": ["thoughts", "command"], }, }, ] resp_json = claude_resp for _ in range(5): try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=messages, functions=functions, max_tokens=3000, temperature=0.0, ) resp_json = response["choices"][0]["message"]["function_call"]["arguments"] break except Exception as e: time.sleep(1) print(e) # fix the plan try: resp_json = json.loads(resp_json) resp_json["thoughts"]["plan"] = str(resp_json["thoughts"]["plan"]).replace("[","").replace("]","") resp_json = json.dumps(resp_json) except Exception as e: print(e) return resp_json
[ "f\"{question} {anthropic.AI_PROMPT}", "1. You will receive a JSON string, and your task is to extract information from it and return it as a JSON object. 2.Use function's json schema to extrct.Please notice the format 3. Be aware that the given JSON may contain errors, so you may need to infer the fields and the format from the JSON string. 4.Do not use \\\" and \\' .you should use ' ", "... continue" ]
2024-01-10
pkrack/asp
asp~ppo_patched.py
import warnings from typing import Any, Dict, Optional, Type, TypeVar, Union import numpy as np import torch as th from gymnasium import spaces from stable_baselines3.common.on_policy_algorithm import OnPolicyAlgorithm from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, BasePolicy, MultiInputActorCriticPolicy from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule from stable_baselines3.common.utils import explained_variance, get_schedule_fn from torch.nn import functional as F SelfPPO = TypeVar("SelfPPO", bound="PPO") class PPO(OnPolicyAlgorithm): """ Proximal Policy Optimization algorithm (PPO) (clip version) Paper: https://arxiv.org/abs/1707.06347 Code: This implementation borrows code from OpenAI Spinning Up (https://github.com/openai/spinningup/) https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail and Stable Baselines (PPO2 from https://github.com/hill-a/stable-baselines) Introduction to PPO: https://spinningup.openai.com/en/latest/algorithms/ppo.html :param policy: The policy model to use (MlpPolicy, CnnPolicy, ...) :param env: The environment to learn from (if registered in Gym, can be str) :param learning_rate: The learning rate, it can be a function of the current progress remaining (from 1 to 0) :param n_steps: The number of steps to run for each environment per update (i.e. rollout buffer size is n_steps * n_envs where n_envs is number of environment copies running in parallel) NOTE: n_steps * n_envs must be greater than 1 (because of the advantage normalization) See https://github.com/pytorch/pytorch/issues/29372 :param batch_size: Minibatch size :param n_epochs: Number of epoch when optimizing the surrogate loss :param gamma: Discount factor :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator :param clip_range: Clipping parameter, it can be a function of the current progress remaining (from 1 to 0). :param clip_range_vf: Clipping parameter for the value function, it can be a function of the current progress remaining (from 1 to 0). This is a parameter specific to the OpenAI implementation. If None is passed (default), no clipping will be done on the value function. IMPORTANT: this clipping depends on the reward scaling. :param normalize_advantage: Whether to normalize or not the advantage :param ent_coef: Entropy coefficient for the loss calculation :param vf_coef: Value function coefficient for the loss calculation :param max_grad_norm: The maximum value for the gradient clipping :param use_sde: Whether to use generalized State Dependent Exploration (gSDE) instead of action noise exploration (default: False) :param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE Default: -1 (only sample at the beginning of the rollout) :param target_kl: Limit the KL divergence between updates, because the clipping is not enough to prevent large update see issue #213 (cf https://github.com/hill-a/stable-baselines/issues/213) By default, there is no limit on the kl div. :param tensorboard_log: the log location for tensorboard (if None, no logging) :param policy_kwargs: additional arguments to be passed to the policy on creation :param verbose: Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for debug messages :param seed: Seed for the pseudo random generators :param device: Device (cpu, cuda, ...) on which the code should be run. Setting it to auto, the code will be run on the GPU if possible. :param _init_setup_model: Whether or not to build the network at the creation of the instance """ policy_aliases: Dict[str, Type[BasePolicy]] = { "MlpPolicy": ActorCriticPolicy, "CnnPolicy": ActorCriticCnnPolicy, "MultiInputPolicy": MultiInputActorCriticPolicy, } def __init__( self, policy: Union[str, Type[ActorCriticPolicy]], env: Union[GymEnv, str], learning_rate: Union[float, Schedule] = 3e-4, n_steps: int = 2048, batch_size: int = 64, n_epochs: int = 10, gamma: float = 0.99, gae_lambda: float = 0.95, clip_range: Union[float, Schedule] = 0.2, clip_range_vf: Union[None, float, Schedule] = None, normalize_advantage: bool = True, ent_coef: float = 0.0, vf_coef: float = 0.5, max_grad_norm: float = 0.5, use_sde: bool = False, sde_sample_freq: int = -1, target_kl: Optional[float] = None, tensorboard_log: Optional[str] = None, policy_kwargs: Optional[Dict[str, Any]] = None, verbose: int = 0, seed: Optional[int] = None, device: Union[th.device, str] = "auto", _init_setup_model: bool = True, ): super().__init__( policy, env, learning_rate=learning_rate, n_steps=n_steps, gamma=gamma, gae_lambda=gae_lambda, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, use_sde=use_sde, sde_sample_freq=sde_sample_freq, tensorboard_log=tensorboard_log, policy_kwargs=policy_kwargs, verbose=verbose, device=device, seed=seed, _init_setup_model=False, supported_action_spaces=( spaces.Box, spaces.Discrete, spaces.MultiDiscrete, spaces.MultiBinary, ), ) # Sanity check, otherwise it will lead to noisy gradient and NaN # because of the advantage normalization if normalize_advantage: assert ( batch_size > 1 ), "`batch_size` must be greater than 1. See https://github.com/DLR-RM/stable-baselines3/issues/440" if self.env is not None: # Check that `n_steps * n_envs > 1` to avoid NaN # when doing advantage normalization buffer_size = self.env.num_envs * self.n_steps assert buffer_size > 1 or ( not normalize_advantage ), f"`n_steps * n_envs` must be greater than 1. Currently n_steps={self.n_steps} and n_envs={self.env.num_envs}" # Check that the rollout buffer size is a multiple of the mini-batch size untruncated_batches = buffer_size // batch_size if buffer_size % batch_size > 0: warnings.warn( f"You have specified a mini-batch size of {batch_size}," f" but because the `RolloutBuffer` is of size `n_steps * n_envs = {buffer_size}`," f" after every {untruncated_batches} untruncated mini-batches," f" there will be a truncated mini-batch of size {buffer_size % batch_size}\n" f"We recommend using a `batch_size` that is a factor of `n_steps * n_envs`.\n" f"Info: (n_steps={self.n_steps} and n_envs={self.env.num_envs})" ) self.batch_size = batch_size self.n_epochs = n_epochs self.clip_range = clip_range self.clip_range_vf = clip_range_vf self.normalize_advantage = normalize_advantage self.target_kl = target_kl if _init_setup_model: self._setup_model() def _setup_model(self) -> None: super()._setup_model() # Initialize schedules for policy/value clipping self.clip_range = get_schedule_fn(self.clip_range) if self.clip_range_vf is not None: if isinstance(self.clip_range_vf, (float, int)): assert self.clip_range_vf > 0, "`clip_range_vf` must be positive, " "pass `None` to deactivate vf clipping" self.clip_range_vf = get_schedule_fn(self.clip_range_vf) def train(self) -> None: """ Update policy using the currently gathered rollout buffer. """ # Switch to train mode (this affects batch norm / dropout) self.policy.set_training_mode(True) # Update optimizer learning rate self._update_learning_rate(self.policy.optimizer) # Compute current clip range clip_range = self.clip_range(self._current_progress_remaining) # Optional: clip range for the value function if self.clip_range_vf is not None: clip_range_vf = self.clip_range_vf(self._current_progress_remaining) entropy_losses = [] pg_losses, value_losses = [], [] clip_fractions = [] continue_training = True loss = None for epoch in range(self.n_epochs): approx_kl_divs = [] # Do a complete pass on the rollout buffer for rollout_data, bc_data in self.rollout_buffer.get(self.batch_size): # Re-sample the noise matrix because the log_std has changed if self.use_sde: self.policy.reset_noise(self.batch_size) if bc_data is None: bc_loss = th.zeros(1, device=self.device) else: _, log_probs, _ = self.policy.evaluate_actions(bc_data.obs, bc_data.action) ratio = th.exp(log_probs - bc_data.log_prob) bc_loss = -th.mean(th.clamp(ratio, 1 - clip_range, 1 + clip_range)).to(self.device) if rollout_data is not None: actions = rollout_data.actions if isinstance(self.action_space, spaces.Discrete): # Convert discrete action from float to long actions = rollout_data.actions.long().flatten() values, log_prob, entropy = self.policy.evaluate_actions(rollout_data.observations, actions) values = values.flatten() # Normalize advantage advantages = rollout_data.advantages # Normalization does not make sense if mini batchsize == 1, see GH issue #325 if self.normalize_advantage and len(advantages) > 1: advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) # ratio between old and new policy, should be one at the first iteration ratio = th.exp(log_prob - rollout_data.old_log_prob) # clipped surrogate loss policy_loss_1 = advantages * ratio policy_loss_2 = advantages * th.clamp(ratio, 1 - clip_range, 1 + clip_range) policy_loss = -th.min(policy_loss_1, policy_loss_2).mean() # Logging pg_losses.append(policy_loss.item()) clip_fraction = th.mean((th.abs(ratio - 1) > clip_range).float()).item() clip_fractions.append(clip_fraction) if self.clip_range_vf is None: # No clipping values_pred = values else: # Clip the difference between old and new value # NOTE: this depends on the reward scaling values_pred = rollout_data.old_values + th.clamp( values - rollout_data.old_values, -clip_range_vf, clip_range_vf ) # Value loss using the TD(gae_lambda) target value_loss = F.mse_loss(rollout_data.returns, values_pred) value_losses.append(value_loss.item()) # Entropy loss favor exploration if entropy is None: # Approximate entropy when no analytical form entropy_loss = -th.mean(-log_prob) else: entropy_loss = -th.mean(entropy) entropy_losses.append(entropy_loss.item()) # Calculate approximate form of reverse KL Divergence for early stopping # see issue #417: https://github.com/DLR-RM/stable-baselines3/issues/417 # and discussion in PR #419: https://github.com/DLR-RM/stable-baselines3/pull/419 # and Schulman blog: http://joschu.net/blog/kl-approx.html with th.no_grad(): log_ratio = log_prob - rollout_data.old_log_prob approx_kl_div = th.mean((th.exp(log_ratio) - 1) - log_ratio).cpu().numpy() approx_kl_divs.append(approx_kl_div) if self.target_kl is not None and approx_kl_div > 1.5 * self.target_kl: continue_training = False if self.verbose >= 1: print(f"Early stopping at step {epoch} due to reaching max kl: {approx_kl_div:.2f}") break loss = (policy_loss + self.ent_coef * entropy_loss + self.vf_coef * value_loss) + self.bc_coef * bc_loss else: loss = bc_loss # Optimization step self.policy.optimizer.zero_grad() loss.backward() # Clip grad norm th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm) self.policy.optimizer.step() if not continue_training: break if loss: self._n_updates += self.n_epochs explained_var = explained_variance(self.rollout_buffer.values.flatten(), self.rollout_buffer.returns.flatten()) # Logs if loss: self.logger.record("train/entropy_loss", np.mean(entropy_losses)) self.logger.record("train/policy_gradient_loss", np.mean(pg_losses)) self.logger.record("train/value_loss", np.mean(value_losses)) self.logger.record("train/approx_kl", np.mean(approx_kl_divs)) self.logger.record("train/clip_fraction", np.mean(clip_fractions)) self.logger.record("train/loss", loss.item()) self.logger.record("train/explained_variance", explained_var) if hasattr(self.policy, "log_std"): self.logger.record("train/std", th.exp(self.policy.log_std).mean().item()) self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard") self.logger.record("train/clip_range", clip_range) if self.clip_range_vf is not None: self.logger.record("train/clip_range_vf", clip_range_vf) else: self.logger.info("No valid goals in the batch, skipping update") def learn( self: SelfPPO, total_timesteps: int, callback: MaybeCallback = None, log_interval: int = 1, tb_log_name: str = "PPO", reset_num_timesteps: bool = True, progress_bar: bool = False, ) -> SelfPPO: return super().learn( total_timesteps=total_timesteps, callback=callback, log_interval=log_interval, tb_log_name=tb_log_name, reset_num_timesteps=reset_num_timesteps, progress_bar=progress_bar, )
[]
2024-01-10
jongio/chat-with-your-data-solution-accelerator
backend~utilities~orchestrator~Strategies.py
from enum import Enum class OrchestrationStrategy(Enum): OPENAI_FUNCTION = 'openai_function' LANGCHAIN = 'langchain' def get_orchestrator(orchestration_strategy: str): if orchestration_strategy == OrchestrationStrategy.OPENAI_FUNCTION.value: from .OpenAIFunctions import OpenAIFunctionsOrchestrator return OpenAIFunctionsOrchestrator() elif orchestration_strategy == OrchestrationStrategy.LANGCHAIN.value: from .LangChainAgent import LangChainAgent return LangChainAgent() else: raise Exception(f"Unknown orchestration strategy: {orchestration_strategy}")
[]
2024-01-10
jongio/chat-with-your-data-solution-accelerator
backend~utilities~document_chunking~Layout.py
from typing import List from .DocumentChunkingBase import DocumentChunkingBase from langchain.text_splitter import MarkdownTextSplitter from .Strategies import ChunkingSettings from ..common.SourceDocument import SourceDocument class LayoutDocumentChunking(DocumentChunkingBase): def __init__(self) -> None: pass def chunk(self, documents: List[SourceDocument], chunking: ChunkingSettings) -> List[SourceDocument]: full_document_content = "".join(list(map(lambda document: document.content, documents))) document_url = documents[0].source splitter = MarkdownTextSplitter.from_tiktoken_encoder(chunk_size=chunking.chunk_size, chunk_overlap=chunking.chunk_overlap) chunked_content_list = splitter.split_text(full_document_content) # Create document for each chunk documents = [] chunk_offset = 0 for idx, chunked_content in enumerate(chunked_content_list): documents.append( SourceDocument.from_metadata( content=chunked_content, document_url=document_url, metadata={"offset": chunk_offset}, idx=idx, ) ) chunk_offset += len(chunked_content) return documents
[]
2024-01-10
jongio/chat-with-your-data-solution-accelerator
backend~utilities~helpers~LLMHelper.py
import openai from typing import List from langchain.chat_models import AzureChatOpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from .EnvHelper import EnvHelper class LLMHelper: def __init__(self): env_helper: EnvHelper = EnvHelper() # Configure OpenAI API openai.api_type = "azure" openai.api_version = env_helper.AZURE_OPENAI_API_VERSION openai.api_base = env_helper.OPENAI_API_BASE openai.api_key = env_helper.OPENAI_API_KEY self.llm_model = env_helper.AZURE_OPENAI_MODEL self.llm_max_tokens = env_helper.AZURE_OPENAI_MAX_TOKENS if env_helper.AZURE_OPENAI_MAX_TOKENS != '' else None self.embedding_model = env_helper.AZURE_OPENAI_EMBEDDING_MODEL def get_llm(self): return AzureChatOpenAI(deployment_name=self.llm_model, temperature=0, max_tokens=self.llm_max_tokens, openai_api_version=openai.api_version) # TODO: This needs to have a custom callback to stream back to the UI def get_streaming_llm(self): return AzureChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler], deployment_name=self.llm_model, temperature=0, max_tokens=self.llm_max_tokens, openai_api_version=openai.api_version) def get_embedding_model(self): return OpenAIEmbeddings(deployment=self.embedding_model, chunk_size=1) def get_chat_completion_with_functions(self, messages: List[dict], functions: List[dict], function_call: str="auto"): return openai.ChatCompletion.create( deployment_id=self.llm_model, messages=messages, functions=functions, function_call=function_call, ) def get_chat_completion(self, messages: List[dict]): return openai.ChatCompletion.create( deployment_id=self.llm_model, messages=messages, )
[]
2024-01-10
pcc2k00/HousingPriceTrend
HousingPriceTrendMetaphor.py
import openai import yaml from metaphor_python import Metaphor with open("pass.yml") as f: content = f.read() my_credentials = yaml.load(content, Loader=yaml.FullLoader) openai.api_key = my_credentials["openAi"] metaphor = Metaphor(my_credentials["metaphor"]) USER_QUESTION = "Recent housing price in Seattle" SYSTEM_MESSAGE = "You are a helpful assistant that generates search queiries based on user questions. Only generate one search query." completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": SYSTEM_MESSAGE}, {"role": "user", "content": USER_QUESTION}, ], ) query = completion.choices[0].message.content search_response = metaphor.search( query, use_autoprompt=True, start_published_date="2023-07-01" ) contents_result = search_response.get_contents() first_result = contents_result.contents[0] SYSTEM_MESSAGE = "You are a helpful assistant that summarizes the content of a webpage. Summarize the users input." completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": SYSTEM_MESSAGE}, {"role": "user", "content": first_result.extract}, ], ) summary = completion.choices[0].message.content print(f"Summary for {first_result.title}: {summary}")
[]
2024-01-10
romain-cambonie/openxcom-mod-generator
src~chat~ask_for_visual_proposition.py
from openai import OpenAI from openai.types.chat import ChatCompletion def ask_for_concept_art( client: OpenAI, character_story: str, art_style_description: str, ) -> str: system_prompt = ( "Generate a comprehensive and vivid visual concept art of a character for a piece of artwork. " "The character should fit within a distinct theme and style, and the description must be detailed enough to guide an " "artist in creating a dynamic and engaging image." "Here are the guidelines for your description:" "Theme and Setting: Choose an intriguing theme and setting for the character. It could be anything from a dystopian " "future to a fantasy world. " "Describe the setting in a way that complements the character's story and personality." "Character Details:" "Physical Appearance: Provide a detailed description of the character's physical features, including hair, eyes, " "skin, and build." "Expression and Posture: Convey the character's mood or personality through their expression and posture." "Attire and Equipment: Describe the character's clothing and any distinctive equipment they might carry, " "do NOT use proper noun, describe visually what the items look like." f"Artistic Style: Specify the desired artistic style for the portrayal. The starting point is : " f"{art_style_description}, make sure to detail the stylistic elements that should be emphasized." "Composition and Color Palette: Suggest a striking composition for the artwork" "Describe the character stance" "Describe the color palette, considering how colors can reflect the character's traits or the mood of the setting." "Extract up to 8 keys focusing on the art style and composition" "Use these guidelines to create a structured and detailed visual description for a character based on the following " "origin story:" "Focus on making the description as vivid and detailed as possible, so it can easily be translated into a stunning " "piece of art." "" "An example of a good concept art result:" "Keys: Commanding presence, Dynamic composition, Low angle perspective, Cold metallic shades, Warm leather tones, " "Dramatic lighting, Cyberpunk aesthetic" "Character Details: She is light-skinned with a muscular build, short blonde hair, and piercing light-colored eyes " "that radiate intelligence and cunning. Her expression is one of chilling neutrality, a reflection of her spirit " "shaped by the cold, ruthless Arctic." "Attire and Equipment: Her attire combines functionality with a touch of brutality โ€“ a sleek, black chest armor that " "bulges with the strength of her physique, complemented by large shoulder pads. Her arms are covered with highly " "detailed armor, and her legs are clad in thigh-high boots with sturdy knee pads. Fortified gloves adorn her hands. " "In one hand, she deftly holds a leather whip, an emblem of elegance and cruelty, while her other hand grips a robust " "submachine gun. Around her waist are vials containing clear liquid and spherical objects reminiscent of primitive " "grenades, adding to her enigmatic persona. A handle and a battle axe, symbols of her defiance and skill, " "are fastened at her side." "Setting: The backdrop is a post-apocalyptic Arctic tundra, subtly hinting at her origins. The environment should be " "bleak yet captivating, with remnants of a once-thriving world now lost to chaos and rebellion." "Artistic Style and Composition: The portrait should capture her commanding presence amidst this desolate backdrop. " "The composition should be dynamic, focusing on her from a slightly low angle to emphasize her dominance. The color " "palette should be a blend of cold metallic shades and warmer tones from her leather armor, creating a vivid contrast " "that underscores her determination and grit. The lighting should be dramatic, highlighting her features and the " "textures of her gear, enhancing the overall cyberpunk aesthetic." ) user_prompt = f"Character story: {character_story}" response: ChatCompletion = client.chat.completions.create( model="gpt-4", messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}], ) return str(response.choices[0].message.content)
[ "Generate a comprehensive and vivid visual concept art of a character for a piece of artwork. The character should fit within a distinct theme and style, and the description must be detailed enough to guide an artist in creating a dynamic and engaging image.Here are the guidelines for your description:Theme and Setting: Choose an intriguing theme and setting for the character. It could be anything from a dystopian future to a fantasy world. Describe the setting in a way that complements the character's story and personality.Character Details:Physical Appearance: Provide a detailed description of the character's physical features, including hair, eyes, skin, and build.Expression and Posture: Convey the character's mood or personality through their expression and posture.Attire and Equipment: Describe the character's clothing and any distinctive equipment they might carry, do NOT use proper noun, describe visually what the items look like.Artistic Style: Specify the desired artistic style for the portrayal. The starting point is : PLACEHOLDER, make sure to detail the stylistic elements that should be emphasized.Composition and Color Palette: Suggest a striking composition for the artworkDescribe the character stanceDescribe the color palette, considering how colors can reflect the character's traits or the mood of the setting.Extract up to 8 keys focusing on the art style and compositionUse these guidelines to create a structured and detailed visual description for a character based on the following origin story:Focus on making the description as vivid and detailed as possible, so it can easily be translated into a stunning piece of art.An example of a good concept art result:Keys: Commanding presence, Dynamic composition, Low angle perspective, Cold metallic shades, Warm leather tones, Dramatic lighting, Cyberpunk aestheticCharacter Details: She is light-skinned with a muscular build, short blonde hair, and piercing light-colored eyes that radiate intelligence and cunning. Her expression is one of chilling neutrality, a reflection of her spirit shaped by the cold, ruthless Arctic.Attire and Equipment: Her attire combines functionality with a touch of brutality โ€“ a sleek, black chest armor that bulges with the strength of her physique, complemented by large shoulder pads. Her arms are covered with highly detailed armor, and her legs are clad in thigh-high boots with sturdy knee pads. Fortified gloves adorn her hands. In one hand, she deftly holds a leather whip, an emblem of elegance and cruelty, while her other hand grips a robust submachine gun. Around her waist are vials containing clear liquid and spherical objects reminiscent of primitive grenades, adding to her enigmatic persona. A handle and a battle axe, symbols of her defiance and skill, are fastened at her side.Setting: The backdrop is a post-apocalyptic Arctic tundra, subtly hinting at her origins. The environment should be bleak yet captivating, with remnants of a once-thriving world now lost to chaos and rebellion.Artistic Style and Composition: The portrait should capture her commanding presence amidst this desolate backdrop. The composition should be dynamic, focusing on her from a slightly low angle to emphasize her dominance. The color palette should be a blend of cold metallic shades and warmer tones from her leather armor, creating a vivid contrast that underscores her determination and grit. The lighting should be dramatic, highlighting her features and the textures of her gear, enhancing the overall cyberpunk aesthetic.", "Character story: PLACEHOLDER" ]
2024-01-10
romain-cambonie/openxcom-mod-generator
src~dalle~call_dalle_and_save_image.py
import requests from openai import OpenAI from pathlib import Path from typing import Optional from openai.types import ImagesResponse def call_dalle_and_save_image(prompt: str, client: OpenAI, output_file_path: Path) -> Optional[Path]: try: # Generate image using OpenAI client response: ImagesResponse = client.images.generate( prompt=prompt, n=1, model="dall-e-3", size="1024x1024", quality="hd", response_format="url" ) # Extract the image URL image_url = response.data[0].url if not image_url: print("No image URL found in the response.") return None print(image_url) # Download the image image_response = requests.get(image_url) if image_response.status_code == 200: # Write the image data to a file with open(output_file_path, "wb") as file: file.write(image_response.content) return output_file_path else: print(f"Error downloading image: {image_response.status_code}") return None except Exception as e: print(f"An error occurred: {e}") return None
[]
2024-01-10
romain-cambonie/openxcom-mod-generator
src~chat~ask_for_dalle_character_prompt.py
from openai import OpenAI from openai.types.chat import ChatCompletion def ask_for_dalle_character_prompt( client: OpenAI, concept_art_description: str, ) -> str: system_prompt = ( "You're given a detailed concept art description of a character. Your task is to condense this description into a " "succinct, vivid DALL-E prompt." "The DALL-E prompt should accurately capture the key visual elements and artistic style described in the concept art, " "while being concise enough for effective image generation. " "Here is the concept art description to be transformed into a DALL-E prompt:\n" f"{concept_art_description}\n" "Based on this description, refine this concept into a DALL-E prompt that contains, in order references to the art " "style, composition, subject, location, colors;" "The prompt must not be more than 130 words, encapsulating the essence of the concept art." f"The prompt must start with the keys of the concept art" ) user_prompt = "Transform the above concept art description into a succinct DALL-E prompt." response: ChatCompletion = client.chat.completions.create( model="gpt-4", messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}], ) return str(response.choices[0].message.content)
[ "Transform the above concept art description into a succinct DALL-E prompt.", "You're given a detailed concept art description of a character. Your task is to condense this description into a succinct, vivid DALL-E prompt.The DALL-E prompt should accurately capture the key visual elements and artistic style described in the concept art, while being concise enough for effective image generation. Here is the concept art description to be transformed into a DALL-E prompt:\nPLACEHOLDER\nBased on this description, refine this concept into a DALL-E prompt that contains, in order references to the art style, composition, subject, location, colors;The prompt must not be more than 130 words, encapsulating the essence of the concept art.The prompt must start with the keys of the concept art" ]
2024-01-10
romain-cambonie/openxcom-mod-generator
src~chat~ask_for_origin_story.py
from openai import OpenAI from openai.types.chat import ChatCompletion def ask_for_origin_story( client: OpenAI, character_name: str, equipment_description: str, appearance_description: str, ) -> str: system_prompt = ( "You are tasked with creating a short origin story for a fictional character. " "You will receive three key pieces of information: (1) the character's name, " "(2) a YAML payload detailing the character's equipment, and " "(3) an image that shows some characteristics of the character's appearance. " "Your job is to weave these elements together into a compelling and imaginative origin story. " "The story should be concise, no more than a few paragraphs, and should creatively incorporate specific details from " "the YAML payload and the visual cues from the image. " "The tone and style of the story should align with the genre suggested by the character's name and appearance. " "Be imaginative and ensure that the equipment and visual traits play a significant role in the character's background " "and the events that shaped them." "Pay special attention to match all visual description details such as gender, race, skin color, hair color and so on " ) user_prompt = ( f"Character Name: {character_name}\n\nEquipment: {equipment_description}\n\nAppearance: " f"{appearance_description}\n\nBased on the above details, create a short origin story for the character." ) response: ChatCompletion = client.chat.completions.create( model="gpt-4", messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}], ) return str(response.choices[0].message.content)
[ "You are tasked with creating a short origin story for a fictional character. You will receive three key pieces of information: (1) the character's name, (2) a YAML payload detailing the character's equipment, and (3) an image that shows some characteristics of the character's appearance. Your job is to weave these elements together into a compelling and imaginative origin story. The story should be concise, no more than a few paragraphs, and should creatively incorporate specific details from the YAML payload and the visual cues from the image. The tone and style of the story should align with the genre suggested by the character's name and appearance. Be imaginative and ensure that the equipment and visual traits play a significant role in the character's background and the events that shaped them.Pay special attention to match all visual description details such as gender, race, skin color, hair color and so on ", "Character Name: PLACEHOLDER\n\nEquipment: PLACEHOLDER\n\nAppearance: PLACEHOLDER\n\nBased on the above details, create a short origin story for the character." ]
2024-01-10
outlines-dev/outlines
outlines~models~__init__.py
"""Module that contains all the models integrated in outlines. We group the models in submodules by provider instead of theme (completion, chat completion, diffusers, etc.) and use routing functions everywhere else in the codebase. """ from .awq import awq from .exllamav2 import exl2 from .gptq import gptq from .llamacpp import LlamaCpp, llamacpp from .mamba import Mamba, mamba from .openai import OpenAI, openai from .transformers import Transformer, transformers
[]
2024-01-10
ball2004244/Pinecone-Hackathon-23-Backend
logic~pinecone_db.py
''' This file contains the logic for storing and querying data from Pinecone. ''' from typing import List from langchain.vectorstores import Pinecone from langchain.chains.summarize import load_summarize_chain from langchain.llms import GooglePalm from langchain.embeddings.google_palm import GooglePalmEmbeddings from langchain.schema import Document import pinecone from pinecone import DescribeIndexStatsResponse class PineconeTrainer: def __init__(self, gcp_api_key: str, pinecone_api_key: str, pinecone_environment: str): self.gcp_api_key = gcp_api_key self.pinecone_api_key = pinecone_api_key self.pinecone_environment = pinecone_environment self.palm_config = { 'temperature': 0.7, 'google_api_key': self.gcp_api_key, } self.index_name = 'paragraph-summarizer' self.llm = GooglePalm(**self.palm_config) self.chain = load_summarize_chain(self.llm, chain_type='stuff') self.embeddings = GooglePalmEmbeddings(**self.palm_config) self.pinecone_init(self.index_name, 'cosine', 768) def pinecone_init(self, index_name: str, metric: str, dimension: int) -> None: pinecone.init( api_key=self.pinecone_api_key, environment=self.pinecone_environment, ) # check if index exists if index_name not in pinecone.list_indexes(): pinecone.create_index(name=index_name, metric=metric, dimension=dimension) self.index = pinecone.Index(index_name=index_name) self.vectordb = Pinecone(index=self.index, embedding_function=self.embeddings.embed_query, text_key='text') def add_data(self, input_list: List[str]=[]) -> None: document_list = [Document(page_content=input_list[i]) for i in range(len(input_list))] self.vectordb = Pinecone.from_documents(document_list, embedding=self.embeddings, index_name=self.index_name) print('Data added successfully!, %s vectors added' % len(input_list)) def delete_all_data(self) -> None: pass def query(self, query: str=' ', question: str='Summarize in 3 sentences') -> str: search = self.vectordb.similarity_search(query=query, k=3) summary = self.chain.run(input_documents=search, question=question) return summary def get_index_info(self) -> DescribeIndexStatsResponse: index = pinecone.GRPCIndex(self.index_name) output = index.describe_index_stats() return output def embed_text(self, text: str) -> List[float]: return self.embeddings.embed_query(text) def pinecone_train(self, input_file: str) -> None: try: input_list = self.extract_input_text(input_file) self.add_data(input_list) except Exception as e: print(e) @staticmethod def extract_input_text(input_file: str) -> List[str]: from logic.data_extract import extract_data, extract_text data = extract_data(input_file) texts = extract_text(data) return texts @staticmethod def extract_output_text(input_file: str) -> List[str]: from logic.data_extract import extract_data, extract_output_text data = extract_data(input_file) texts = extract_output_text(data) return texts if __name__ == '__main__': pass
[]
2024-01-10
TheoKanning/crossword
crossword~clues.py
import json import os import openai def convert_raw_clues(raw_filename, output_filename): """ Reads raw clue info from raw_filename, formats it to match GPT-3's fine-tune input, and writes it to output_filename Raw clues are formatted like "Up in the air : ALOFT" """ with open(output_filename, "w+") as f_out: f_out.write("farts") with open(raw_filename, "r") as f_in: with open(output_filename, "w+") as f_out: for line in f_in.readlines(): line = line.strip() if not line: continue if line.isnumeric(): # This line is a clue number, ignore it continue if line.lower() == "down" or line.lower() == "across": continue components = line.rsplit( ":", 1 ) # split from end to handle colons inside clues if len(components) != 2: print(line) continue clue = components[0].strip() answer = components[1].strip() f_out.write( json.dumps( { "prompt": f"Answer: {answer.lower()}\nClue:", "completion": f" {clue}\n", } ) ) f_out.write("\n") def get_clue(answer): prompt = f"Answer: {answer.lower()}\nClue:" openai.api_key = os.getenv("OPENAI_API_KEY") result = openai.Completion.create( model="curie:ft-personal-2022-04-30-18-38-57", prompt=prompt, stop="\n", n=5 ) print(f"Answer: {answer}\nClues:") for choice in result["choices"]: print(choice["text"]) if __name__ == "__main__": get_clue("") # convert_raw_clues("../clues/raw_clues.txt", "../clues/formatted.jsonl")
[ "f\"Answer: {answer.lower()}\\nClue:" ]
2024-01-10
NusretOzates/langchain_retrieval_qa_bot
data_loaders.py
import re from itertools import chain from typing import List from langchain.docstore.document import Document from langchain.document_loaders import PyPDFLoader, TextLoader, UnstructuredURLLoader from langchain.indexes import VectorstoreIndexCreator from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import DocArrayInMemorySearch from langchain.vectorstores.base import VectorStoreRetriever def load_text_file(file_path: str) -> Document: """Loads a text file and returns a Document object. Args: file_path: Path to the text file. Returns: A Document object. """ doc = TextLoader(file_path, encoding="utf-8").load()[0] return doc def load_pdf_file(file_path: str) -> List[Document]: """Loads a pdf file and returns a list of Document objects. Args: file_path: Path to the pdf file. Returns: A list of Document objects. Every page in the pdf file is a Document object. """ loader = PyPDFLoader(file_path) docs = loader.load() return docs def load_website(url: str) -> List[Document]: """Loads a website and returns a Document object. Args: url: Url of the website. Returns: A Document object. """ documents = UnstructuredURLLoader( [url], mode="elements", headers={ "ssl_verify": "False", }, ).load() processed_docs = [] # We are not rich, we need to eliminate some of the elements for doc in documents: # This will make us lose table information sorry about that :( if doc.metadata.get("category") not in [ "NarrativeText", "UncategorizedText", "Title", ]: continue # Remove elements with empty links, they are mostly recommended articles etc. if doc.metadata.get("links"): link = doc.metadata["links"][0]["text"] if link is None: continue link = link.replace(" ", "").replace("\n", "") if len(link.split()) == 0: continue # Remove titles with links, they are mostly table of contents or navigation links if doc.metadata.get("category") == "Title" and doc.metadata.get("links"): continue # Remove extra spaces doc.page_content = re.sub(" +", " ", doc.page_content) # Remove docs with less than 3 words if len(doc.page_content.split()) < 3: continue processed_docs.append(doc) # Instead of splitting element-wise, we merge all the elements and split them in chunks merged_docs = "\n".join([doc.page_content for doc in processed_docs]) splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) processed_docs = splitter.split_text(merged_docs) processed_docs = [ Document(page_content=doc, metadata={"url": url}) for doc in processed_docs ] return processed_docs def load_text_files(file_paths: List[str]) -> List[Document]: """Loads a list of text files and returns a list of Document objects. Args: file_paths: List of paths to the text files. Returns: A list of Document objects. """ docs = [load_text_file(file_path) for file_path in file_paths] return docs def load_pdf_files(file_paths: List[str]) -> List[Document]: """Loads a list of pdf files and returns a list of Document objects. Args: file_paths: List of paths to the pdf files. Returns: A list of Document objects. Every page in the pdf file is a Document object. """ docs = [load_pdf_file(file_path) for file_path in file_paths] docs = list(chain.from_iterable(docs)) return docs def create_index(docs: List[Document]) -> VectorStoreRetriever: """Creates a vectorstore index from a list of Document objects. Args: docs: List of Document objects. Returns: A vectorstore index. It searches the most similar document to the given query but with the help of MMR it also tries to find the most diverse document to the given query. """ index = VectorstoreIndexCreator( vectorstore_cls=DocArrayInMemorySearch, text_splitter=RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=100 ), ).from_documents(docs) return index.vectorstore.as_retriever(search_type="mmr")
[]
2024-01-10
Antrozhuk/telegramChatGPTBot
src~telegram_bot.py
import telegram.constants as constants from telegram import Update from telegram.ext import ApplicationBuilder, ContextTypes, CommandHandler, MessageHandler, filters from src.openai_helper import OpenAIHelper from src.logger import Logger class ChatGPT3TelegramBot: """ Class representing a Chat-GPT3 Telegram Bot. """ def __init__(self, config: dict, openai: OpenAIHelper): """ ะ†ะฝั–ั†ั–ะฐะปั–ะทัƒั” ะฑะพั‚ ะบะพะฝั„ั–ะณัƒั€ะฐั†ั–ั”ัŽ ั‚ะฐ GPT-3 ะฝะฐะปะฐัˆั‚ัƒะฒะฐะฝะฝัะผะธ. :param config: ะกะปะพะฒะฝะธะบ ะท ะบะพะฝั„ั–ะณัƒั€ะฐั†ั–ั”ัŽ ะฑะพั‚ะฐ :param openai: OpenAIHelper ะพะฑสผั”ะบั‚ :param disallowed_message: ะŸะพะฒั–ะดะพะผะปะตะฝะฝั ะฟั€ะพ ะฒั–ะดััƒั‚ะฝั–ัั‚ัŒ ะดะพัั‚ัƒะฟัƒ """ self.config = config self.openai = openai self.logger = Logger('telegram_bot').get_logger() self.disallowed_message = "ะ’ะธะฑะฐั‡ั‚ะต, ะฐะปะต ะฒะฐะผ ะฝะต ะดะพะทะฒะพะปะตะฝะพ ะบะพั€ะธัั‚ัƒะฒะฐั‚ะธััŒ ั†ะธะผ ะฑะพั‚ะพะผ." async def start(self, update: Update, context: ContextTypes.DEFAULT_TYPE): """ ะŸะพะบะฐะทัƒั” ะฟะพั‡ะฐั‚ะบะพะฒะต ะฟะพะฒั–ะดะพะผะปะตะฝะฝั. """ if await self.disallowed(update, context): return await update.message.reply_text("ะŸั€ะธะฒั–ั‚! ะฏ ะฑะพั‚, ัะบะธะน ะฒั–ะดะฟะพะฒั–ะดะฐั” ะฝะฐ ะฒะฐัˆั– ะฟะพะฒั–ะดะพะผะปะตะฝะฝั ะทะฐ ะดะพะฟะพะผะพะณะพัŽ ChatGPT-3.\n" "ะฏะบั‰ะพ ะฒะธ ั…ะพั‡ะตั‚ะต ะดั–ะทะฝะฐั‚ะธััŒ ะฑั–ะปัŒัˆะต ะฟั€ะพ ะผะตะฝะต, ะฒะฒะตะดั–ั‚ัŒ /help\n\n", disable_web_page_preview=True) async def help(self, update: Update, context: ContextTypes.DEFAULT_TYPE): """ ะŸะพะบะฐะทัƒั” ะดะพะฟะพะผั–ะถะฝะต ะฟะพะฒั–ะดะพะผะปะตะฝะฝั. """ if await self.disallowed(update, context): return await update.message.reply_text("[ะ‘ัƒะดัŒ ัะบะต ะฟะพะฒั–ะดะพะผะปะตะฝะฝั] - ะ’ั–ะดะฟั€ะฐะฒะปัั” ะฒะฐัˆะต ะฟะพะฒั–ะดะพะผะปะตะฝะฝั ะดะพ AI\n" "/help - ะœะตะฝัŽ ะฟะพะผั–ั‡ะฝะธะบะฐ\n" "/random_answer - ะ“ะตะฝะตั€ัƒั” ั€ะฐะฝะดะพะผะฝัƒ ะฒั–ะดะฟะพะฒั–ะดัŒ\n" "/random_post - ะ“ะตะฝะตั€ัƒั” ั€ะฐะฝะดะพะผะฝะธะน ะฟะพัั‚\n" "/reset - ะžะฝะพะฒะปัŽั” ะฑะตัั–ะดัƒ\n\n", disable_web_page_preview=True) async def reset(self, update: Update, context: ContextTypes.DEFAULT_TYPE): """ ะžะฝะพะฒะปัŽั” ะฑะตัั–ะดัƒ. """ if await self.disallowed(update, context): return self.logger.info(f'Resetting the conversation for {update.message.from_user}...') chat_id = update.effective_chat.id self.openai.reset_chat_history(chat_id=chat_id) await context.bot.send_message(chat_id=chat_id, text='ะ“ะพั‚ะพะฒะพ!') async def prompt(self, update: Update, context: ContextTypes.DEFAULT_TYPE): """ React to incoming messages and respond accordingly. """ if await self.disallowed(update, context): return self.logger.info(f'New message "{update.message.text}" received from {update.message.from_user}') chat_id = update.effective_chat.id await context.bot.send_chat_action(chat_id=chat_id, action=constants.ChatAction.TYPING) response = self.openai.get_chat_response(chat_id=chat_id, query=update.message.text) await context.bot.send_message( chat_id=chat_id, reply_to_message_id=update.message.id, parse_mode=constants.ParseMode.MARKDOWN, text=response ) async def random_answer(self, update: Update, context: ContextTypes.DEFAULT_TYPE): """ ะ’ั–ะดะฟั€ะฐะฒะปัั” ั€ะฐะฝะดะพะผะฝัƒ ะฒั–ะดะฟะพะฒั–ะดัŒ. """ if await self.disallowed(update, context): return self.logger.info(f'random_answer command received from {update.message.from_user}') chat_id = update.effective_chat.id await context.bot.send_chat_action(chat_id=chat_id, action=constants.ChatAction.TYPING) response = self.openai.get_chat_response(chat_id=chat_id, query='ะฝะฐะฟะธัˆะธ ั€ะฐะฝะดะพะผะฝัƒ ะฒั–ะดะฟะพะฒั–ะดัŒ') await context.bot.send_message( chat_id=chat_id, reply_to_message_id=update.message.id, parse_mode=constants.ParseMode.MARKDOWN, text=response ) async def random_post(self, update: Update, context: ContextTypes.DEFAULT_TYPE): """ ะ’ั–ะดะฟั€ะฐะฒะปัั” ั€ะฐะฝะดะพะผะฝะธะน ะฟะพัั‚. """ if await self.disallowed(update, context): return self.logger.info(f'random_post command received from {update.message.from_user}') chat_id = update.effective_chat.id await context.bot.send_chat_action(chat_id=chat_id, action=constants.ChatAction.TYPING) response = self.openai.get_chat_response(chat_id=chat_id, query='ะฝะฐะฟะธัˆะธ ั€ะฐะฝะดะพะผะฝะธะน ะฟะพัั‚ ัƒะบั€ะฐั—ะฝััŒะบะพัŽ') await context.bot.send_message( chat_id=chat_id, parse_mode=constants.ParseMode.MARKDOWN, text=response ) async def disallowed(self, update: Update, context: ContextTypes.DEFAULT_TYPE): """ ะ’ั–ะดะฟั€ะฐะฒะปัั” ะฟะพะฒั–ะดะพะผะปะตะฝะฝั ะฟั€ะพ ะฒั–ะดััƒั‚ะฝั–ัั‚ัŒ ะดะพัั‚ัƒะฟั–ะฒ ะดะพ ะบะพั€ะธัั‚ัƒะฒะฐั‡ะฐ. """ if not await self.is_allowed(update): self.logger.warning(f'User {update.message.from_user} is not allowed to use the bot') await context.bot.send_message( chat_id=update.effective_chat.id, text=self.disallowed_message, disable_web_page_preview=True ) return True return False async def error_handler(self, update: object, context: ContextTypes.DEFAULT_TYPE) -> None: """ ะ’ั–ะดะปะพะฒะปัŽั” ะฒัั– ะฟะพะผะธะปะบะธ. """ self.logger.debug(f'Exception while handling an update: {context.error}') async def is_allowed(self, update: Update) -> bool: """ ะŸะตั€ะตะฒั–ั€ัั” ั‡ะธ ะดะพะทะฒะพะปะตะฝะพ ัŽะทะตั€ัƒ ะบะพั€ะธัั‚ัƒะฒะฐั‚ะธััŒ ะดะฐะฝะธะผ ะฑะพั‚ะพะผ. """ if self.config['allowed_user_ids'] == '*': return True allowed_user_ids = self.config['allowed_user_ids'].split(',') if str(update.message.from_user.id) in allowed_user_ids: return True return False def run(self): """ ะ—ะฐะฟัƒัะบะฐั” ะฑะพั‚ ะดะพะบะธ ะบะพั€ะธัั‚ัƒะฒะฐั‡ ะฝะต ะฝะฐั‚ะธัะฝะต Ctrl+C """ application = ApplicationBuilder().token(self.config['token']).build() application.add_handler(CommandHandler('start', self.start)) application.add_handler(CommandHandler('help', self.help)) application.add_handler(CommandHandler('reset', self.reset)) application.add_handler(CommandHandler('random_answer', self.random_answer)) application.add_handler(CommandHandler('random_post', self.random_post)) application.add_handler(MessageHandler(filters.TEXT & (~filters.COMMAND), self.prompt)) application.add_error_handler(self.error_handler) application.run_polling()
[]
2024-01-10
aws-samples/aurora-postgresql-pgvector
DAT303~02_QuestionAndAnswering~rag_app.py
# Import libraries from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.vectorstores.pgvector import PGVector from langchain.memory import ConversationSummaryBufferMemory from langchain.chains import ConversationalRetrievalChain from htmlTemplates import css from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import BedrockEmbeddings from langchain.llms import Bedrock from langchain.prompts import PromptTemplate import streamlit as st import boto3 from PIL import Image import os import traceback # TODO: This function takes a list of PDF documents as input and extracts the text from them using PdfReader. # It concatenates the extracted text and returns it. # TODO: Given the extracted text, this function splits it into smaller chunks using the RecursiveCharacterTextSplitter module. # The chunk size, overlap, and other parameters are configured to optimize processing efficiency. # TODO: This function takes the text chunks as input and creates a vector store using Bedrock Embeddings (Titan) and pgvector. # The vector store stores the vector representations of the text chunks, enabling efficient retrieval based on semantic similarity. # TODO: In this function, a conversation chain is created using the conversational AI model (Anthropic's Claude v2), vector store (created in the previous function), and conversation memory (ConversationSummaryBufferMemory). # This chain allows the Gen AI app to engage in conversational interactions. # This function is responsible for processing the user's input question and generating a response from the chatbot def handle_userinput(user_question): if "chat_history" not in st.session_state: st.session_state.chat_history = None if "messages" not in st.session_state: st.session_state.messages = [] try: response = st.session_state.conversation({'question': user_question}) except ValueError: st.write("Sorry, I didn't understand that. Could you rephrase your question?") print(traceback.format_exc()) return st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.success(message.content, icon="๐Ÿค”") else: st.write(message.content) # Streamlit components def main(): # Set the page configuration for the Streamlit application, including the page title and icon. st.set_page_config(page_title="Generative AI Q&A with Amazon Bedrock, Aurora PostgreSQL and pgvector", layout="wide", page_icon=":books::parrot:") st.write(css, unsafe_allow_html=True) logo_url = "static/Powered-By_logo-stack_RGB_REV.png" st.sidebar.image(logo_url, width=150) st.sidebar.markdown( """ ### Instructions: 1. Browse and upload PDF files 2. Click Process 3. Type your question in the search bar to get more insights """ ) # Check if the conversation and chat history are not present in the session state and initialize them to None. if "conversation" not in st.session_state: st.session_state.conversation = get_conversation_chain(get_vectorstore(None)) if "chat_history" not in st.session_state: st.session_state.chat_history = None # A header with the text appears at the top of the Streamlit application. st.header("Generative AI Q&A with Amazon Bedrock, Aurora PostgreSQL and pgvector :books::parrot:") subheader = '<p style="font-family:Calibri (Body); color:Grey; font-size: 16px;">Leverage Foundational Models from <a href="https://aws.amazon.com/bedrock/">Amazon Bedrock</a> and <a href="https://github.com/pgvector/pgvector">pgvector</a> as Vector Engine</p>' # Write the CSS style to the Streamlit application, allowing you to customize the appearance. st.markdown(subheader, unsafe_allow_html=True) image = Image.open("static/RAG_APG.png") st.image(image, caption='Generative AI Q&A with Amazon Bedrock, Aurora PostgreSQL and pgvector') # Create a text input box where you can ask questions about your documents. user_question = st.text_input("Ask a question about your documents:", placeholder="What is Amazon Aurora?") # Define a Go button for user action go_button = st.button("Submit", type="secondary") # If the go button is pressed or the user enters a question, it calls the handle_userinput() function to process the user's input. if go_button or user_question: with st.spinner("Processing..."): handle_userinput(user_question) with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader( "Upload your PDFs here and click on 'Process'", type="pdf", accept_multiple_files=True) # If the user clicks the "Process" button, the following code is executed: # i. raw_text = get_pdf_text(pdf_docs): retrieves the text content from the uploaded PDF documents. # ii. text_chunks = get_text_chunks(raw_text): splits the text content into smaller chunks for efficient processing. # iii. vectorstore = get_vectorstore(text_chunks): creates a vector store that stores the vector representations of the text chunks. if st.button("Process"): with st.spinner("Processing"): # get pdf text raw_text = get_pdf_text(pdf_docs) # get the text chunks text_chunks = get_text_chunks(raw_text) # create vector store vectorstore = get_vectorstore(text_chunks) # create conversation chain st.session_state.conversation = get_conversation_chain(vectorstore) st.success('PDF uploaded successfully!', icon="โœ…") with st.sidebar: st.divider() st.sidebar.markdown( """ ### Sample questions to get started: 1. What is Amazon Aurora? 2. How can I migrate from PostgreSQL to Aurora and the other way around? 3. What does "three times the performance of PostgreSQL" mean? 4. What is Aurora Standard and Aurora I/O-Optimized? 5. How do I scale the compute resources associated with my Amazon Aurora DB Instance? 6. How does Amazon Aurora improve my databases fault tolerance to disk failures? 7. How does Aurora improve recovery time after a database crash? 8. How can I improve upon the availability of a single Amazon Aurora database? """ ) if __name__ == '__main__': # This function loads the environment variables from a .env file. load_dotenv() # Define the Bedrock client. BEDROCK_CLIENT = boto3.client("bedrock-runtime", 'us-west-2') # Create the connection string for pgvector from .env file. CONNECTION_STRING = PGVector.connection_string_from_db_params( driver = os.environ.get("PGVECTOR_DRIVER"), user = os.environ.get("PGVECTOR_USER"), password = os.environ.get("PGVECTOR_PASSWORD"), host = os.environ.get("PGVECTOR_HOST"), port = os.environ.get("PGVECTOR_PORT"), database = os.environ.get("PGVECTOR_DATABASE") ) main()
[]
2024-01-10
WuQingYi20/InteractiveStory
wsgi.py
from flask import Flask, render_template, jsonify, request import openai import re from prompts import prompts from dotenv import load_dotenv import os # Load the .env file load_dotenv() app = Flask(__name__) initialCall = True currentDescription = "" # Initialize OpenAI API with your API key openai.api_key = os.getenv('OPENAI_API_KEY') # Define a dictionary to store user progress data user_data = {} # Global variable to track initialization status initialized = False @app.route('/') def index(): global initialized global currentDescription if initialized: # Initialization has already been done, return JSON response if request.headers.get('X-Requested-With') == 'XMLHttpRequest': return jsonify(story=user_data['story'], choices=user_data['choices']) # Initialization has already been done, return HTML response else: return render_template('index.html', story=user_data['story'], choices=user_data['choices']) else: # Initialization code systemRoleAuto = prompts['index']['System'] promptStory = prompts['index']['story'] storyResponse = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": f"{systemRoleAuto}"}, {"role": "user", "content": f"{promptStory}"}, #{"role": "assistant", "content": f"{contentAssistant}"}, ], max_tokens= 1500, ) story = storyResponse.choices[0].message['content'] currentDescription = story choicesPrompt = prompts['index']['choices'] choiceResponse = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": f"{systemRoleAuto}"}, {"role": "user", "content": f"{story} {choicesPrompt}"}, #{"role": "assistant", "content": f"{contentAssistant}"}, ], max_tokens= 1500, ) #Insert <p> tags around each paragraph formatted_story = format_story(story) user_data['story'] = formatted_story user_data['choices'] = choiceResponse.choices[0].message['content'] initialized = True if request.headers.get('X-Requested-With') == 'XMLHttpRequest': return jsonify(story=story, choices=user_data['choices']) else: return render_template('index.html', story=story, choices=user_data['choices']) # Define a route to handle user choices and update the story @app.route('/next-page/<choice>') def next_page(choice): systemRoleAuto = prompts['next-page']['System'] originalStory = user_data['story'] + "\n" + choice contentAssistant = prompts['next-page']['storyAssistant'] contentAssistantChoices = prompts['next-page']['choicesAssistant'] prompt_story = originalStory + "\n" + prompts['next-page']['story'] response_story = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": f"{systemRoleAuto}"}, {"role": "user", "content": f"{prompt_story}"}, {"role": "assistant", "content": f"{contentAssistant}"}, ], max_tokens= 1500, ) prompt_choices = originalStory + response_story.choices[0].message['content'] + "\n" + prompts['next-page']['choices'] response_choices = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": f"{systemRoleAuto}"}, {"role": "user", "content": f"{prompt_choices}"}, {"role": "assistant", "content": f"{contentAssistantChoices}"}, ], max_tokens= 1500, ) story = response_story.choices[0].message['content'] choices = response_choices.choices[0].message['content'] # get summary of previous story and actions by gpt-3.5-turbo and original story prompt_summary = originalStory + "\n" + prompts['next-page']['summary'] response_summary = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": f"{systemRoleAuto}"}, {"role": "user", "content": f"{prompt_summary}"}, #{"role": "assistant", "content": f"{contentAssistant}"}, ], max_tokens= 1500, ) formatted_story = format_story(story) user_data['story'] = formatted_story user_data['choices'] = choices user_data['summary'] = response_summary.choices[0].message['content'] return jsonify(story=formatted_story, choices=choices, summary=user_data['summary']) def format_story(story): # Split the text into paragraphs using a regular expression paragraphs = re.split(r"\n\s*\n", story) #Insert <p> tags around each paragraph formatted_story = "\n".join([f"<p>{paragraph}</p>" for paragraph in paragraphs]) return formatted_story if __name__ == '__main__': app.run(debug=True)
[ "\n", "PLACEHOLDER PLACEHOLDER", "PLACEHOLDER", "originalStory + \"\\n\" + prompts['next-page']['story']", "next-page", "originalStory + \"\\n\" + prompts['next-page']['summary']", "originalStory + response_story.choices[0].message['content'] + \"\\n\" + prompts['next-page']['choices']", "content", "index" ]
2024-01-10
yamdereneko/ymbot
src~chatGPT~Chat_GPT_API.py
# -*- coding: utf-8 -*- import asyncio import nonebot from pydantic import BaseModel from httpx import AsyncClient import src.Data.jx3_Redis as redis import openai class Response(BaseModel): """่ฟ”ๅ›žๆ•ฐๆฎๆจกๅž‹""" id: str """็Šถๆ€็ """ object: str created: int model: str choices: list """่ฟ”ๅ›žๆถˆๆฏๅญ—็ฌฆไธฒ""" usage: dict | list[dict] """่ฟ”ๅ›žๆ•ฐๆฎ""" class ChatGPTAPI: client: AsyncClient def __init__(self): proxy_url = "http://username:password@127.0.0.1:8888" proxies = {"http": proxy_url, "https": proxy_url} self.client = AsyncClient(proxies=proxies) self.url = "https://api.openai.com/v1/completions" async def call_api(self, content) -> Response: red = redis.Redis() chat_gpt_apikey = await red.query("chat_gpt_apikey") Organization = await red.query("OpenAI-Organization") """่ฏทๆฑ‚api็ฝ‘็ซ™ๆ•ฐๆฎ""" headers = { 'Authorization': f'Bearer {chat_gpt_apikey}', 'OpenAI-Organization': Organization, 'Content-Type': 'application/json' } data = { "model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": content}] } res = await self.client.post(url=self.url, json=data, headers=headers, timeout=3000) print(res) nonebot.logger.info(res.text) return Response.parse_obj(res.json())
[]
2024-01-10
kaistAI/SelFee
data_augmentation~call_openai_multiprocessing_sharegpt.py
from concurrent.futures import ProcessPoolExecutor import argparse import multiprocessing import openai from time import sleep from random import random import nltk nltk.download('punkt') from nltk import tokenize import json import fcntl from typing import List import os from tenacity import ( retry, stop_after_attempt, wait_random_exponential, RetryError ) # for exponential backoff API_KEYS = os.environ["OPENAI_API_KEYS"].split(",") MAX_WAIT_TIME=1 def main(): parser = argparse.ArgumentParser() parser.add_argument("--input-path", type=str, required=True) parser.add_argument("--output-path", type=str, required=True) parser.add_argument("--fail-path", type=str, required=True) parser.add_argument("--requests-per-minute", type=int, default=60, help="Number of requests per minute per API key") parser.add_argument("--input-streaming", action="store_true") parser.add_argument("--limit", type=int, default=None) args = parser.parse_args() if not args.input_streaming: no_streaming(args.input_path, args.output_path, args.fail_path, args.requests_per_minute, args.limit) else: streaming(args.input_path, args.output_path, args.fail_path, args.requests_per_minute, args.limit) def no_streaming(input_path, output_path, fail_path, requests_per_minute, limit): input_items = [] input_format = input_path.split(".")[-1] with open(input_path, "r") as input_file: if input_format == "jsonl": for line in input_file: input_items.append(json.loads(line)) elif input_format == "json": input_items = json.load(input_file) else: raise ValueError(f"Unknown input format: {input_format}") if limit is not None: input_items = input_items[:limit] process(input_items, output_path, fail_path, requests_per_minute) def streaming(input_path, output_path, fail_path, requests_per_minute, limit): last_modified = None last_items = None while True: stats = os.stat(input_path) modified = stats.st_mtime if last_modified is not None and last_modified == modified: sleep(1) continue input_items = [] input_format = input_path.split(".")[-1] with open(input_path, "r") as input_file: if input_format == "jsonl": for line in input_file: input_items.append(json.loads(line)) elif input_format == "json": input_items = json.load(input_file) else: raise ValueError(f"Unknown input format: {input_format}") if limit is not None: input_items = input_items[:limit] if last_items is not None: added_items = [item for item in input_items if item not in last_items] else: added_items = input_items process(added_items, output_path, fail_path, requests_per_minute) last_modified = modified def process(input_items, output_path, fail_path, requests_per_minute): num_api_keys = len(API_KEYS) requests_per_minute_total = requests_per_minute * num_api_keys with ProcessPoolExecutor(max_workers=num_api_keys * requests_per_minute) as executor: for item_index, item in enumerate(input_items): api_key = API_KEYS[item_index % num_api_keys] executor.submit(call_api_and_save, api_key=api_key, item=item, output_path=output_path, fail_path=fail_path) sleep(1 / requests_per_minute_total * 60) def call_api_and_save(api_key: str, item: dict, output_path: str, fail_path: str): try: output_item = call_api(api_key, item) success = True except Exception as e: success = False if success: output_line = json.dumps(output_item) with open(output_path, "a") as output_file: fcntl.flock(output_file, fcntl.LOCK_EX) output_file.write(output_line + "\n") fcntl.flock(output_file, fcntl.LOCK_UN) else: fail_line = json.dumps(item) with open(fail_path, "a") as fail_file: fcntl.flock(fail_file, fcntl.LOCK_EX) fail_file.write(fail_line + "\n") fcntl.flock(fail_file, fcntl.LOCK_UN) def call_api(api_key: str, task: str): openai.api_key = api_key last_flag = False item = {} item["iteration_truncated"]=False print('Testing %s ...' % task) # print('testing index %d-------------------------------------------------------------------------------------'%index) instruction = task["instruction"] input = task["input"] item['instruction']=instruction item['input']=input answer = task["output"] outputs=[] message=[] if input == "": context = f"{instruction}\n" else: context = f"{instruction}\n{input}\n" #0 message.append({"role": "user", "content": f"{context}"}) #3 7 # message.append({"role": "assistant", "content": answer}) message=[{"role": "user", "content": f"{context}Here is a proposed answer:\n{answer}\n\nAre there any comments or critiques for the above answer? If so, write one under 100 words. You may score the quality of the answer on the scale of 1-10 (1: no code/no sense; 10: perfect) Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end. Normally, score of less than 9 should be revised.\n\nCritique:"}] # Describe possible feedbacks that can improve the answer. The feedback should be under 100 words. If there is nothing to improve, just say \"No Feedback\".Feedback:"}) # source ="Instruction: " + task["instruction"] + '\Answer: ' + output + "\n\nAre there any comments or feedbacks for the above answer? If so, write one within 100 words. Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end.\n\Feedback1:" # print(source) # message.append({"role": "user", "content": instruction+":\n"+input}) # message.append({"role":"user","content":"Are there any comments or critiques for the above answer? If so, write one within 100 words. If not, just say \"Revision is not needed\"."}) feedback = completion_with_backoff( model="gpt-3.5-turbo", messages = message, temperature=1.0, max_tokens=128, top_p=1, frequency_penalty=0, presence_penalty=0 # stop=["\n\n"] ) feedback = feedback['choices'][0]['message']['content'] #1: 0 message.append({"role": "assistant", "content": feedback}) outputs.append({"output":answer, "feedback":feedback}) print("feedback:", feedback) iteration=1 while("no critique" not in message[-1]["content"].lower()) and ("no revision" not in message[-1]["content"].lower()) and ("no need" not in message[-1]["content"].lower()) and ("not needed" not in message[-1]["content"].lower()): if iteration>=5: item["iteration_truncated"]=True break #2 6 if last_flag == False: message.append({"role":"user","content":"Revise the answer based on your own critique within 500 words. Your revision should be simple and clear, so do not add any rhetorics such as apology for the past mistake. Write as if the revised answer is the first try.\nRevision:"}) else: message.append({"role":"user","content":"Revise the answer based on your own critique within 500 words. Your revision should be simple and clear, so do not add any rhetorics such as apology for the past mistake.\nRevision:"}) answer = completion_with_backoff( model="gpt-3.5-turbo", messages = message,#0,1,2 6,5,4 temperature=1.0, max_tokens=512, top_p=1, frequency_penalty=0, presence_penalty=0 )['choices'][0]['message']['content'] if ("N/A" in answer): break iteration +=1 while answer!=delete_revision_word_from_last(answer): answer = delete_revision_word_from_last(answer) answer_split = answer.split('.') if "i apologize" in answer_split[0].lower(): answer_split=answer_split[1:] answer = ('.').join(answer_split) print("answer:", answer) #3 7 message.append({"role": "assistant", "content": answer}) #4 8 if iteration>2: last_flag = True if last_flag ==False: message.append({"role": "user", "content": f"{context}Here is a proposed answer:\n{answer}\n\nAre there any comments or critiques for the above answer? If so, write one under 100 words. You may score the quality of the answer on the scale of 1-10 (1: no code/no sense; 10: perfect) Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end. Normally, score of less than 9 should be revised.\n\nCritique:"}) else: message=[{"role": "user", "content": f"{context}Here is a proposed answer:\n{answer}\n\nAre there any comments or critiques for the above answer? If so, write one under 100 words. You may score the quality of the answer on the scale of 1-10 (1: no code/no sense; 10: perfect) Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end. Normally, score of less than 9 should be revised.\n\nCritique:"}] #message=[{"role":"user","content":f"{context}Here is a proposed answer:\n{answer}\nDescribe possible feedbacks that can improve the answer. The feedback should be under 100 words. If there is nothing to improve, just say \"No Feedback\".Feedback:"}] feedback = completion_with_backoff( model="gpt-3.5-turbo", messages = message,#4 temperature=1.0, max_tokens=128, top_p=1, frequency_penalty=0, presence_penalty=0 # stop=["\n\n"] )['choices'][0]['message']['content'] feedback_sentence= feedback.split('.') if "but" in feedback_sentence[-1].lower() and("revision is needed" in feedback_sentence[-1].lower() or "revision is not needed"in feedback_sentence[-1].lower() ): if"revision is needed" in feedback_sentence[-1].lower() : last_sentence = "Revision is needed" else: last_sentence = "Revision is not needed" feedback_sentence[-1] = last_sentence feedback=('.').join(feedback_sentence) print("feedback:", feedback) #5 message.append({"role": "assistant", "content": feedback}) outputs.append({"output":answer, "feedback":feedback}) item["iteration"]=iteration item['outputs']=outputs return item @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6)) def completion_with_backoff(**kwargs): try: return openai.ChatCompletion.create(**kwargs) except Exception as e: print('-------------------------------------------------------------------------------------') print(e) print("kwargs", kwargs) print("API key", openai.api_key) print('-------------------------------------------------------------------------------------') raise e def delete_revision_word_from_last(answer): line_split = answer.split('\n') if len(line_split)>0: original = ('\n').join(line_split[:-1]) sentence_split = tokenize.sent_tokenize(line_split[-1]) if len(sentence_split)>0: if "revision " in sentence_split[-1]: add_sentence = ('').join(sentence_split[:-1]) answer=original+'\n'+add_sentence else: answer= ('\n').join(line_split[:-1]) return answer if __name__ == "__main__": main()
[ "Revise the answer based on your own critique within 500 words. Your revision should be simple and clear, so do not add any rhetorics such as apology for the past mistake. Write as if the revised answer is the first try.\nRevision:", "PLACEHOLDER", "Revise the answer based on your own critique within 500 words. Your revision should be simple and clear, so do not add any rhetorics such as apology for the past mistake.\nRevision:", "PLACEHOLDERHere is a proposed answer:\nPLACEHOLDER\n\nAre there any comments or critiques for the above answer? If so, write one under 100 words. You may score the quality of the answer on the scale of 1-10 (1: no code/no sense; 10: perfect) Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end. Normally, score of less than 9 should be revised.\n\nCritique:" ]
2024-01-10
kaistAI/SelFee
evaluation~gpt4_automatic_evaluation.py
"""This code is sourced from 4960ca7 commit of https://github.com/lm-sys/FastChat/blob/main/fastchat/eval/eval_gpt_review.py""" import argparse import json import os import time import openai import tqdm import ray import shortuuid import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) MAX_API_RETRY = 5 REQ_TIME_GAP = 10 @ray.remote(num_cpus=4) def get_eval(sys_prompt, user_prompt: str, max_tokens: int): logging.basicConfig(level=logging.INFO) for i in range(MAX_API_RETRY): try: response = openai.ChatCompletion.create( model='gpt-4', messages=[{ 'role': 'system', 'content': sys_prompt }, { 'role': 'user', 'content': user_prompt, }], temperature=0.2, # TODO: figure out which temperature is best for evaluation max_tokens=max_tokens, ) content = response['choices'][0]['message']['content'] logger.info(content) return content except Exception as e: logger.error(e) time.sleep(5) logger.error(f'Failed after {MAX_API_RETRY} retries.') return 'error' def parse_score(review): try: score_pair = review.split('\n')[0] score_pair = score_pair.replace(',', ' ') sp = score_pair.split(' ') if len(sp) == 2: return [float(sp[0]), float(sp[1])] else: score_pair = review.split('\n')[-1] score_pair = score_pair.split('(')[-1].split(')')[0] print(score_pair) sp = score_pair.split(', ') print(sp) if len(sp) == 2: return [float(sp[0]), float(sp[1])] else: raise Exception('Invalid score pair.') except Exception as e: logger.error(f'{e}\nContent: {review}\n' 'You must manually fix the score pair.') return [-1, -1] def gen_prompt(reviewer_jsons, prompt_jsons, cat, ques, ans1, ans2): # Default to general category (index=0) reviewer_idx = 0 for idx, reviewer in enumerate(reviewer_jsons): if reviewer['category'] == cat: reviewer_idx = idx break prompt_id = reviewer_jsons[reviewer_idx]['prompt_id'] prompt_json = prompt_jsons[prompt_id-1] assert prompt_json['prompt_id'] == prompt_id sys_prompt = prompt_json['system_prompt'] prompt_template = prompt_json['prompt_template'] defaults = prompt_json['defaults'] prompt = prompt_template.format(question=ques, answer_1=ans1, answer_2=ans2, **defaults) return sys_prompt, prompt, reviewer_idx+1 def get_json_list(file_path): file_path = os.path.expanduser(file_path) with open(file_path, 'r') as f: json_list = [] for line in f: json_list.append(json.loads(line)) return json_list if __name__ == '__main__': parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.') parser.add_argument('-q', '--question-file') parser.add_argument('-a', '--answer-file-list', nargs='+', default=[]) parser.add_argument('-p', '--prompt-file') parser.add_argument('-r', '--reviewer-file') parser.add_argument('-o', '--output-review-file') parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output') args = parser.parse_args() ray.init() question_jsons = get_json_list(args.question_file) answer1_jsons = get_json_list(args.answer_file_list[0]) answer2_jsons = get_json_list(args.answer_file_list[1]) reviewer_jsons = get_json_list(args.reviewer_file) prompt_jsons = get_json_list(args.prompt_file) # check if # of questions, answers are the same assert len(question_jsons) == len(answer1_jsons) == len(answer2_jsons) handles = [] review_jsons = [] total_len = len(question_jsons) question_idx_list = list(range(total_len)) for i in question_idx_list: assert answer1_jsons[i]['question_id'] == question_jsons[i]['question_id'] == answer2_jsons[i]['question_id'] ques = question_jsons[i]['text'] cat = question_jsons[i]['category'] ans1 = answer1_jsons[i]['text'] ans2 = answer2_jsons[i]['text'] sys_prompt, prompt, reviewer_id = gen_prompt(reviewer_jsons, prompt_jsons, cat, ques, ans1, ans2) review_id = shortuuid.uuid() review_jsons.append({ 'review_id': review_id, 'question_id': question_jsons[i]['question_id'], 'reviewer_id': reviewer_id, 'metadata': {}, }) # To avoid the rate limit set by OpenAI handles.append(get_eval.remote(sys_prompt, prompt, args.max_tokens)) logger.info(f'Waiting for {REQ_TIME_GAP} seconds before sending the next request.') time.sleep(REQ_TIME_GAP) reviews = ray.get(handles) with open(f'{args.output_review_file}', 'w') as output_review_file: for idx, review in enumerate(reviews): scores = parse_score(review) review_jsons[idx]['text'] = review review_jsons[idx]['score'] = scores output_review_file.write(json.dumps(review_jsons[idx]) + '\n')
[ "prompt_template", "system_prompt" ]
2024-01-10
kaistAI/SelFee
data_augmentation~call_openai_multiprocessing_flan.py
from concurrent.futures import ProcessPoolExecutor import argparse import multiprocessing import openai from time import sleep from random import random import nltk nltk.download('punkt') from nltk import tokenize import json import fcntl from typing import List import os from tenacity import ( retry, stop_after_attempt, wait_random_exponential, RetryError ) # for exponential backoff API_KEYS = os.environ["OPENAI_API_KEYS"].split(",") MAX_WAIT_TIME=1 def main(): parser = argparse.ArgumentParser() parser.add_argument("--input-path", type=str, required=True) parser.add_argument("--output-path", type=str, required=True) parser.add_argument("--fail-path", type=str, required=True) parser.add_argument("--requests-per-minute", type=int, default=60, help="Number of requests per minute per API key") parser.add_argument("--input-streaming", action="store_true") parser.add_argument("--limit", type=int, default=None) args = parser.parse_args() if not args.input_streaming: no_streaming(args.input_path, args.output_path, args.fail_path, args.requests_per_minute, args.limit) else: streaming(args.input_path, args.output_path, args.fail_path, args.requests_per_minute, args.limit) def no_streaming(input_path, output_path, fail_path, requests_per_minute, limit): input_items = [] input_format = input_path.split(".")[-1] with open(input_path, "r") as input_file: if input_format == "jsonl": for line in input_file: input_items.append(json.loads(line)) elif input_format == "json": input_items = json.load(input_file) else: raise ValueError(f"Unknown input format: {input_format}") if limit is not None: input_items = input_items[:limit] process(input_items, output_path, fail_path, requests_per_minute) def streaming(input_path, output_path, fail_path, requests_per_minute, limit): last_modified = None last_items = None while True: stats = os.stat(input_path) modified = stats.st_mtime if last_modified is not None and last_modified == modified: sleep(1) continue input_items = [] input_format = input_path.split(".")[-1] with open(input_path, "r") as input_file: if input_format == "jsonl": for line in input_file: input_items.append(json.loads(line)) elif input_format == "json": input_items = json.load(input_file) else: raise ValueError(f"Unknown input format: {input_format}") if limit is not None: input_items = input_items[:limit] if last_items is not None: added_items = [item for item in input_items if item not in last_items] else: added_items = input_items process(added_items, output_path, fail_path, requests_per_minute) last_modified = modified def process(input_items, output_path, fail_path, requests_per_minute): num_api_keys = len(API_KEYS) requests_per_minute_total = requests_per_minute * num_api_keys with ProcessPoolExecutor(max_workers=num_api_keys * requests_per_minute) as executor: for item_index, item in enumerate(input_items): api_key = API_KEYS[item_index % num_api_keys] executor.submit(call_api_and_save, api_key=api_key, item=item, output_path=output_path, fail_path=fail_path) sleep(1 / requests_per_minute_total * 60) def call_api_and_save(api_key: str, item: dict, output_path: str, fail_path: str): try: output_item = call_api(api_key, item) success = True except Exception as e: print(e) success = False if success: output_line = json.dumps(output_item) with open(output_path, "a") as output_file: fcntl.flock(output_file, fcntl.LOCK_EX) output_file.write(output_line + "\n") fcntl.flock(output_file, fcntl.LOCK_UN) else: fail_line = json.dumps(item) with open(fail_path, "a") as fail_file: fcntl.flock(fail_file, fcntl.LOCK_EX) fail_file.write(fail_line + "\n") fcntl.flock(fail_file, fcntl.LOCK_UN) def call_api(api_key: str, task: str): openai.api_key = api_key last_flag = False item = {} item["iteration_truncated"]=False # print('Testing %s ...' % task) # print('testing index %d-------------------------------------------------------------------------------------'%index) instruction = task["instruction"] gold_output = task["output"] item["output"]=gold_output add = task["input"] if add!="": instruction+="\n" instruction+=add item['instruction']=instruction item['input']="" outputs=[] message_teacher=[] message_student=[] message_teacher.append({"role": "user", "content": "You are given a role as a teaching assistant. You are going to get an instruction and its corresponding answer. Your job is to make me find the answer by giving an appropriate feedback. If the proposed answer is different from the ground truth, that means there should be some revision. You should guide me by giving an instruction that helps me find the answer without directly mentioning it. You should not directly mention about the answer when giving a feedback, because that is a cheating." }) constrain = f"Here is the instruction:\n{instruction}\n" message_teacher.append({"role": "user", "content": constrain}) message_teacher.append({"role": "user", "content": f"Here is the answer:\n{gold_output}\n"}) message_student.append({"role": "user", "content": instruction}) # Describe possible feedbacks that can improve the answer. The feedback should be under 100 words. If there is nothing to improve, just say \"No Feedback\".Feedback:"}) # source ="Instruction: " + task["instruction"] + '\Answer: ' + output + "\n\nAre there any comments or feedbacks for the above answer? If so, write one within 100 words. Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end.\n\Feedback1:" # print(source) # message.append({"role": "user", "content": instruction+":\n"+input}) # message.append({"role":"user","content":"Are there any comments or critiques for the above answer? If so, write one within 100 words. If not, just say \"Revision is not needed\"."}) output = completion_with_backoff( model="gpt-3.5-turbo", messages = message_student, temperature=1.0, max_tokens=512, top_p=1, frequency_penalty=0, presence_penalty=0 # stop=["\n\n"] )['choices'][0]['message']['content'] #0 while output!=delete_revision_word_from_last(output): output = delete_revision_word_from_last(output) # print("initial answer:", output) message_student.append({"role": "assistant", "content": output}) message_teacher.append({"role": "user", "content": f"Here is my initial answer:\n{output}\n\nAre there any comments or critiques for the above answer? If so, write one under 100 words. You may score the quality of the answer on the scale of 1-10 (1: no code/no sense; 10: perfect) Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end. Normally, score of less than 9 should be revised.\n\nCritique:"}) # Describe possible feedbacks that can improve the answer. The feedback should be under 100 words. If there is nothing to improve, just say \"No Feedback\".Feedback:"}) # source ="Instruction: " + task["instruction"] + '\Answer: ' + output + "\n\nAre there any comments or feedbacks for the above answer? If so, write one within 100 words. Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end.\n\Feedback1:" # print(source) # message.append({"role": "user", "content": instruction+":\n"+input}) # message.append({"role":"user","content":"Are there any comments or critiques for the above answer? If so, write one within 100 words. If not, just say \"Revision is not needed\"."}) feedback = completion_with_backoff( model="gpt-3.5-turbo", messages = message_teacher, temperature=1.0, max_tokens=128, top_p=1, frequency_penalty=0, presence_penalty=0 # stop=["\n\n"] ) feedback = feedback['choices'][0]['message']['content'] #1: 0 message_teacher.append({"role": "assistant", "content": feedback}) message_student.append({"role": "user", "content": feedback}) outputs.append({"output":output, "feedback":feedback}) # print("feedback:", feedback) iteration=1 while ("no critique" not in message_student[-1]["content"].lower()) and ("no revision" not in message_student[-1]["content"].lower()) and ("no need" not in message_student[-1]["content"].lower()) and ("not needed" not in message_student[-1]["content"].lower()): if iteration>=5: item["iteration_truncated"]=True break #2 6 if last_flag == False: message_student.append({"role":"user","content":"Revise the answer based on your own critique with minimal edits. Your revision should be simple and clear, so do not add any rhetorics such as apology for the past mistake. Write as if the revised answer is the first try.\nRevision:"}) else: message_student.append({"role":"user","content":"Revise the answer based on your own critique with minimal edits. Your revision should be simple and clear, so do not add any rhetorics such as apology for the past mistake.\nRevision:"}) answer = completion_with_backoff( model="gpt-3.5-turbo", messages = message_student,#0,1,2 6,5,4 temperature=1.0, max_tokens=512, top_p=1, frequency_penalty=0, presence_penalty=0 )['choices'][0]['message']['content'] if ("N/A" not in gold_output and "N/A" in answer): break iteration +=1 while answer!=delete_revision_word_from_last(answer): answer = delete_revision_word_from_last(answer) answer_split = answer.split('.') if "i apologize" in answer_split[0].lower(): answer_split=answer_split[1:] answer = ('.').join(answer_split) # print("answer:", answer) #3 7 message_student.append({"role": "assistant", "content": answer}) message_teacher.append({"role": "user", "content": answer}) #4 8 #if iteration>2: # last_flag = True if last_flag ==False: # message_teacher.append({"role": "user", "content": f"{constrain}Here is a proposed answer:\n{answer}\n\nHere is the ground truth answer:\n{gold_output}\n\nAre there any comments or critiques for the above answer? If so, write one under 100 words. Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end. If the proposed answer is different from the ground truth, that means there should be some revision.\n\nCritique:"}) message_teacher.append({"role": "user", "content": f"Here is a revised proposed answer:\n{answer}\n\nAre there any comments or critiques for the above answer? If so, write one under 100 words. You may score the quality of the answer on the scale of 1-10 (1: no code/no sense; 10: perfect) Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end. Normally, score of less than 9 should be revised.\n\nCritique:"}) else: # message_teacher=[{"role": "user", "content": f"{constrain}Here is a proposed answer:\n{answer}\n\nHere is the ground truth answer:\n{gold_output}\n\nAre there any comments or critiques for the above answer? If so, write one under 100 words. Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end. If the proposed answer is different from the ground truth, that means there should be some revision.\n\nCritique:"}] message_teacher=[{"role": "user", "content": f"Here is a revised proposed answer:\n{answer}\n\nAre there any comments or critiques for the above answer? If so, write one under 100 words. You may score the quality of the answer on the scale of 1-10 (1: no code/no sense; 10: perfect) Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end. Normally, score of less than 9 should be revised.\n\nCritique:"}] #message=[{"role":"user","content":f"{constrain}Here is a proposed answer:\n{answer}\nDescribe possible feedbacks that can improve the answer. The feedback should be under 100 words. If there is nothing to improve, just say \"No Feedback\".Feedback:"}] feedback = completion_with_backoff( model="gpt-3.5-turbo", messages = message_teacher,#4 temperature=1.0, max_tokens=128, top_p=1, frequency_penalty=0, presence_penalty=0 # stop=["\n\n"] )['choices'][0]['message']['content'] feedback_sentence= feedback.split('.') if "but" in feedback_sentence[-1].lower() and("revision is needed" in feedback_sentence[-1].lower() or "revision is not needed"in feedback_sentence[-1].lower() ): if"revision is needed" in feedback_sentence[-1].lower() : last_sentence = "Revision is needed" else: last_sentence = "Revision is not needed" feedback_sentence[-1] = last_sentence feedback=('.').join(feedback_sentence) # print("feedback:", feedback) #5 message_student.append({"role": "user", "content": feedback}) message_teacher.append({"role": "assistant", "content": feedback}) outputs.append({"output":answer, "feedback":feedback}) item["iteration"]=iteration item['outputs']=outputs # revised_list.append(item) # print(message_student) # print(message_teacher) return item @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6)) def completion_with_backoff(**kwargs): try: return openai.ChatCompletion.create(**kwargs) except Exception as e: print('-------------------------------------------------------------------------------------') print(e) # print("kwargs", kwargs) # print("API key", openai.api_key) print('-------------------------------------------------------------------------------------') raise e def delete_revision_word_from_last(answer): line_split = answer.split('\n') if len(line_split)>0: original = ('\n').join(line_split[:-1]) sentence_split = tokenize.sent_tokenize(line_split[-1]) if len(sentence_split)>0: if "revision " in sentence_split[-1]: add_sentence = ('').join(sentence_split[:-1]) answer=original+'\n'+add_sentence else: answer= ('\n').join(line_split[:-1]) return answer if __name__ == "__main__": main()
[ "Here is the answer:\nPLACEHOLDER\n", "Revise the answer based on your own critique with minimal edits. Your revision should be simple and clear, so do not add any rhetorics such as apology for the past mistake. Write as if the revised answer is the first try.\nRevision:", "Here is a revised proposed answer:\nPLACEHOLDER\n\nAre there any comments or critiques for the above answer? If so, write one under 100 words. You may score the quality of the answer on the scale of 1-10 (1: no code/no sense; 10: perfect) Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end. Normally, score of less than 9 should be revised.\n\nCritique:", "You are given a role as a teaching assistant. You are going to get an instruction and its corresponding answer. Your job is to make me find the answer by giving an appropriate feedback. If the proposed answer is different from the ground truth, that means there should be some revision. You should guide me by giving an instruction that helps me find the answer without directly mentioning it. You should not directly mention about the answer when giving a feedback, because that is a cheating.", "Revise the answer based on your own critique with minimal edits. Your revision should be simple and clear, so do not add any rhetorics such as apology for the past mistake.\nRevision:", "Here is my initial answer:\nPLACEHOLDER\n\nAre there any comments or critiques for the above answer? If so, write one under 100 words. You may score the quality of the answer on the scale of 1-10 (1: no code/no sense; 10: perfect) Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end. Normally, score of less than 9 should be revised.\n\nCritique:" ]
2024-01-10
kaistAI/SelFee
data_augmentation~call_openai_multiprocessing_alpaca.py
from concurrent.futures import ProcessPoolExecutor import argparse import multiprocessing import openai from time import sleep from random import random import nltk nltk.download('punkt') from nltk import tokenize import json import fcntl from typing import List import os from tenacity import ( retry, stop_after_attempt, wait_random_exponential, RetryError ) # for exponential backoff API_KEYS = os.environ["OPENAI_API_KEYS"].split(",") MAX_WAIT_TIME=1 def main(): parser = argparse.ArgumentParser() parser.add_argument("--input-path", type=str, required=True) parser.add_argument("--output-path", type=str, required=True) parser.add_argument("--fail-path", type=str, required=True) parser.add_argument("--requests-per-minute", type=int, default=60, help="Number of requests per minute per API key") parser.add_argument("--input-streaming", action="store_true") parser.add_argument("--limit", type=int, default=None) args = parser.parse_args() if not args.input_streaming: no_streaming(args.input_path, args.output_path, args.fail_path, args.requests_per_minute, args.limit) else: streaming(args.input_path, args.output_path, args.fail_path, args.requests_per_minute, args.limit) def no_streaming(input_path, output_path, fail_path, requests_per_minute, limit): input_items = [] input_format = input_path.split(".")[-1] with open(input_path, "r") as input_file: if input_format == "jsonl": for line in input_file: input_items.append(json.loads(line)) elif input_format == "json": input_items = json.load(input_file) else: raise ValueError(f"Unknown input format: {input_format}") if limit is not None: input_items = input_items[:limit] process(input_items, output_path, fail_path, requests_per_minute) def streaming(input_path, output_path, fail_path, requests_per_minute, limit): last_modified = None last_items = None while True: stats = os.stat(input_path) modified = stats.st_mtime if last_modified is not None and last_modified == modified: sleep(1) continue input_items = [] input_format = input_path.split(".")[-1] with open(input_path, "r") as input_file: if input_format == "jsonl": for line in input_file: input_items.append(json.loads(line)) elif input_format == "json": input_items = json.load(input_file) else: raise ValueError(f"Unknown input format: {input_format}") if limit is not None: input_items = input_items[:limit] if last_items is not None: added_items = [item for item in input_items if item not in last_items] else: added_items = input_items process(added_items, output_path, fail_path, requests_per_minute) last_modified = modified def process(input_items, output_path, fail_path, requests_per_minute): num_api_keys = len(API_KEYS) requests_per_minute_total = requests_per_minute * num_api_keys with ProcessPoolExecutor(max_workers=num_api_keys * requests_per_minute) as executor: for item_index, item in enumerate(input_items): api_key = API_KEYS[item_index % num_api_keys] executor.submit(call_api_and_save, api_key=api_key, item=item, output_path=output_path, fail_path=fail_path) sleep(1 / requests_per_minute_total * 60) def call_api_and_save(api_key: str, item: dict, output_path: str, fail_path: str): try: output_item = call_api(api_key, item) success = True except Exception as e: success = False if success: output_line = json.dumps(output_item) with open(output_path, "a") as output_file: fcntl.flock(output_file, fcntl.LOCK_EX) output_file.write(output_line + "\n") fcntl.flock(output_file, fcntl.LOCK_UN) else: fail_line = json.dumps(item) with open(fail_path, "a") as fail_file: fcntl.flock(fail_file, fcntl.LOCK_EX) fail_file.write(fail_line + "\n") fcntl.flock(fail_file, fcntl.LOCK_UN) def call_api(api_key: str, task: str): openai.api_key = api_key last_flag = False item = {} item["iteration_truncated"]=False print('Testing %s ...' % task) # print('testing index %d-------------------------------------------------------------------------------------'%index) instruction = task["instruction"] input = task["input"] item['instruction']=instruction item['input']=input outputs=[] message=[] if input == "": context = f"{instruction}\n" else: context = f"{instruction}\n{input}\n" #0 message.append({"role": "user", "content": f"{context}"}) answer = completion_with_backoff( model="gpt-3.5-turbo", messages = message,#0,1,2 6,5,4 temperature=1.0, max_tokens=512, top_p=1, frequency_penalty=0, presence_penalty=0 )['choices'][0]['message']['content'] print("answer:", answer) #3 7 # message.append({"role": "assistant", "content": answer}) message=[{"role": "user", "content": f"{context}Here is a proposed answer:\n{answer}\n\nAre there any comments or critiques for the above answer? If so, write one under 100 words. You may score the quality of the answer on the scale of 1-10 (1: no code/no sense; 10: perfect) Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end. Normally, score of less than 9 should be revised.\n\nCritique:"}] # Describe possible feedbacks that can improve the answer. The feedback should be under 100 words. If there is nothing to improve, just say \"No Feedback\".Feedback:"}) # source ="Instruction: " + task["instruction"] + '\Answer: ' + output + "\n\nAre there any comments or feedbacks for the above answer? If so, write one within 100 words. Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end.\n\Feedback1:" # print(source) # message.append({"role": "user", "content": instruction+":\n"+input}) # message.append({"role":"user","content":"Are there any comments or critiques for the above answer? If so, write one within 100 words. If not, just say \"Revision is not needed\"."}) feedback = completion_with_backoff( model="gpt-3.5-turbo", messages = message, temperature=1.0, max_tokens=128, top_p=1, frequency_penalty=0, presence_penalty=0 # stop=["\n\n"] ) feedback = feedback['choices'][0]['message']['content'] #1: 0 message.append({"role": "assistant", "content": feedback}) outputs.append({"output":answer, "feedback":feedback}) print("feedback:", feedback) iteration=1 while("no critique" not in message[-1]["content"].lower()) and ("no revision" not in message[-1]["content"].lower()) and ("no need" not in message[-1]["content"].lower()) and ("not needed" not in message[-1]["content"].lower()): if iteration>=5: item["iteration_truncated"]=True break #2 6 if last_flag == False: message.append({"role":"user","content":"Revise the answer based on your own critique within 500 words. Your revision should be simple and clear, so do not add any rhetorics such as apology for the past mistake. Write as if the revised answer is the first try.\nRevision:"}) else: message.append({"role":"user","content":"Revise the answer based on your own critique within 500 words. Your revision should be simple and clear, so do not add any rhetorics such as apology for the past mistake.\nRevision:"}) answer = completion_with_backoff( model="gpt-3.5-turbo", messages = message,#0,1,2 6,5,4 temperature=1.0, max_tokens=512, top_p=1, frequency_penalty=0, presence_penalty=0 )['choices'][0]['message']['content'] if ("N/A" in answer): break iteration +=1 while answer!=delete_revision_word_from_last(answer): answer = delete_revision_word_from_last(answer) answer_split = answer.split('.') if "i apologize" in answer_split[0].lower(): answer_split=answer_split[1:] answer = ('.').join(answer_split) print("answer:", answer) #3 7 message.append({"role": "assistant", "content": answer}) #4 8 if iteration>2: last_flag = True if last_flag ==False: message.append({"role": "user", "content": f"{context}Here is a proposed answer:\n{answer}\n\nAre there any comments or critiques for the above answer? If so, write one under 100 words. You may score the quality of the answer on the scale of 1-10 (1: no code/no sense; 10: perfect) Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end. Normally, score of less than 9 should be revised.\n\nCritique:"}) else: message=[{"role": "user", "content": f"{context}Here is a proposed answer:\n{answer}\n\nAre there any comments or critiques for the above answer? If so, write one under 100 words. You may score the quality of the answer on the scale of 1-10 (1: no code/no sense; 10: perfect) Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end. Normally, score of less than 9 should be revised.\n\nCritique:"}] #message=[{"role":"user","content":f"{context}Here is a proposed answer:\n{answer}\nDescribe possible feedbacks that can improve the answer. The feedback should be under 100 words. If there is nothing to improve, just say \"No Feedback\".Feedback:"}] feedback = completion_with_backoff( model="gpt-3.5-turbo", messages = message,#4 temperature=1.0, max_tokens=128, top_p=1, frequency_penalty=0, presence_penalty=0 # stop=["\n\n"] )['choices'][0]['message']['content'] feedback_sentence= feedback.split('.') if "but" in feedback_sentence[-1].lower() and("revision is needed" in feedback_sentence[-1].lower() or "revision is not needed"in feedback_sentence[-1].lower() ): if"revision is needed" in feedback_sentence[-1].lower() : last_sentence = "Revision is needed" else: last_sentence = "Revision is not needed" feedback_sentence[-1] = last_sentence feedback=('.').join(feedback_sentence) print("feedback:", feedback) #5 message.append({"role": "assistant", "content": feedback}) outputs.append({"output":answer, "feedback":feedback}) item["iteration"]=iteration item['outputs']=outputs return item @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6)) def completion_with_backoff(**kwargs): try: return openai.ChatCompletion.create(**kwargs) except Exception as e: print('-------------------------------------------------------------------------------------') print(e) print("kwargs", kwargs) print("API key", openai.api_key) print('-------------------------------------------------------------------------------------') raise e def delete_revision_word_from_last(answer): line_split = answer.split('\n') if len(line_split)>0: original = ('\n').join(line_split[:-1]) sentence_split = tokenize.sent_tokenize(line_split[-1]) if len(sentence_split)>0: if "revision " in sentence_split[-1]: add_sentence = ('').join(sentence_split[:-1]) answer=original+'\n'+add_sentence else: answer= ('\n').join(line_split[:-1]) return answer if __name__ == "__main__": main()
[ "Revise the answer based on your own critique within 500 words. Your revision should be simple and clear, so do not add any rhetorics such as apology for the past mistake. Write as if the revised answer is the first try.\nRevision:", "PLACEHOLDER", "PLACEHOLDERHere is a proposed answer:\nPLACEHOLDER\n\nAre there any comments or critiques for the above answer? If so, write one under 100 words. You may score the quality of the answer on the scale of 1-10 (1: no code/no sense; 10: perfect) Also, classify if revision is needed by responding \"Revision is needed\" or \"Revision is not needed\" at the end. Normally, score of less than 9 should be revised.\n\nCritique:", "Revise the answer based on your own critique within 500 words. Your revision should be simple and clear, so do not add any rhetorics such as apology for the past mistake.\nRevision:" ]
2024-01-10
Neelesh99/KnowledgeSpaces
LLMServer~construct_index.py
import os from llama_index import VectorStoreIndex, LLMPredictor, PromptHelper, Document, \ StringIterableReader, SlackReader, LangchainEmbedding, ServiceContext from langchain import HuggingFaceHub, HuggingFacePipeline from langchain.chat_models import ChatOpenAI from langchain.embeddings import HuggingFaceEmbeddings from langchain.llms.base import LLM # ModelConfig contains the configuration for the application class ModelConfig: def __init__(self, max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit, temperature, model_name, local): self.max_input_size = max_input_size self.num_outputs = num_outputs self.max_chunk_overlap = max_chunk_overlap self.chunk_size_limit = chunk_size_limit self.temperature = temperature self.model_name = model_name self.local = local def __eq__(self, o: object) -> bool: if isinstance(o, ModelConfig): return self.chunk_size_limit == o.chunk_size_limit and self.max_chunk_overlap == o.max_chunk_overlap and self.num_outputs == o.num_outputs and self.max_input_size == o.max_input_size and self.temperature == o.temperature and self.model_name == o.model_name and self.local == o.local return False # get_model_config_from_env creates a ModelConfig with defaulting from the environment variables def get_model_config_from_env() -> ModelConfig: max_input_size_str = os.getenv("MAX_INPUT_SIZE") if "MAX_INPUT_SIZE" in os.environ else "2048" num_outputs_str = os.getenv("NUM_OUTPUTS") if "NUM_OUTPUTS" in os.environ else "5096" max_chunk_overlap_str = os.getenv("MAX_CHUNK_OVERLAP") if "MAX_CHUNK_OVERLAP" in os.environ else "28" chunk_size_limit_str = os.getenv("CHUNK_SIZE_LIMIT") if "CHUNK_SIZE_LIMIT" in os.environ else "600" temperature_str = os.getenv("TEMPERATURE") if "TEMPERATURE" in os.environ else "0.6" local_str = os.getenv("LOCAL") if "LOCAL" in os.environ else "True" model_name = os.getenv("MODEL_NAME") if "MODEL_NAME" in os.environ else ( "gpt-3.5-turbo" if local_str == "False" else "declare-lab/flan-alpaca-base") return ModelConfig(int(max_input_size_str), int(num_outputs_str), int(max_chunk_overlap_str), int(chunk_size_limit_str), float(temperature_str), model_name, local_str == "True") # get_prompt_helper creates an OpenAI PromptHelper instance def get_prompt_helper(model_restrictions: ModelConfig) -> PromptHelper: return PromptHelper(model_restrictions.max_input_size, model_restrictions.num_outputs, float(model_restrictions.max_chunk_overlap / model_restrictions.chunk_size_limit), chunk_size_limit=model_restrictions.chunk_size_limit) # get_vector_index creates a GPTSimpleVectorIndex from GPTIndex Documents of any form, requires LLM and ModelConfig to be specified, also allows non OpenAI Embeddings def get_vector_index(documents: list[Document], llm: LLM, model_config: ModelConfig, embeddings=None) -> VectorStoreIndex: predictor = LLMPredictor(llm=llm) prompt_helper = get_prompt_helper(model_config) if embeddings is None: service_context = ServiceContext.from_defaults(llm_predictor=predictor, prompt_helper=prompt_helper) return VectorStoreIndex(documents, service_context=service_context) else: service_context = ServiceContext.from_defaults(llm_predictor=predictor, prompt_helper=prompt_helper, embed_model=embeddings) return VectorStoreIndex(documents, service_context=service_context) # get_openai_api_llm constructs an OpenAI API powered LLM model, requires OPENAI_API_TOKEN to be in environment # variables def get_openai_api_llm(model_config): return ChatOpenAI(temperature=model_config.temperature, model_name=model_config.model_name, max_tokens=model_config.num_outputs) # get_local_llm_from_huggingface downlaods and constricts an LLM Model based on name from the HuggingFace repository def get_local_llm_from_huggingface(model_config): return HuggingFacePipeline.from_model_id( model_id=model_config.model_name, task="text2text-generation", model_kwargs={ "temperature": model_config.temperature, # "model_max_length": model_config.num_outputs, "max_length": model_config.num_outputs} ) # IndexMaker provides utility wrappers for getting indexes from either slack or plain text list using either OpenAI # API models or a local one class IndexMaker: @staticmethod def get_index_from_text(list_of_text: list[str]): documents = StringIterableReader().load_data(list_of_text) model_config = get_model_config_from_env() return get_vector_index(documents, get_openai_api_llm(model_config), model_config) @staticmethod def get_index_from_slack(channel_ids: list[str]): documents = SlackReader().load_data(channel_ids) model_config = get_model_config_from_env() return get_vector_index(documents, get_openai_api_llm(model_config), model_config) @staticmethod def get_hf_index_from_text(list_of_text: list[str]): documents = StringIterableReader().load_data(list_of_text) model_config = get_model_config_from_env() hf = IndexMaker.get_hf_embeddings() return get_vector_index(documents, get_local_llm_from_huggingface(model_config), model_config, hf) @staticmethod def get_hf_index_from_docs(documents: list[Document]): model_config = get_model_config_from_env() hf = IndexMaker.get_hf_embeddings() return get_vector_index(documents, get_local_llm_from_huggingface(model_config), model_config, hf) @staticmethod def get_hf_index_from_slack(channel_ids: list[str]): documents = SlackReader().load_data(channel_ids) model_config = get_model_config_from_env() hf = IndexMaker.get_hf_embeddings() return get_vector_index(documents, get_local_llm_from_huggingface(model_config), model_config, hf) @staticmethod def get_hf_embeddings(): model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {'device': 'cpu'} hf = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) return LangchainEmbedding(hf) @staticmethod def get_hf_llm_predictor(): model_config = get_model_config_from_env() model = get_local_llm_from_huggingface(model_config) return LLMPredictor(llm=model)
[]
2024-01-10
MikeRock51/african_cuisines_recipe_api
models~chat~chatProvider.py
#!/usr/bin/env python3 from openai import OpenAI import os from dotenv import load_dotenv load_dotenv() api_key = os.getenv("OPENAI_API_KEY") if not api_key: raise ValueError("OPENAI key missing") client = OpenAI(api_key=api_key) def getChatResponse(chatHistory): try: completion = client.chat.completions.create( model="gpt-3.5-turbo", messages=chatHistory, max_tokens=200) completionText = completion.choices[0].message.content return {"role": "assistant", "content": completionText} except Exception as e: raise e
[]
2024-01-10
MikeRock51/african_cuisines_recipe_api
chatbot~yishu_cli.py
#!/usr/bin/env python3 from openai import OpenAI from termcolor import colored import os # Load environment variables from a .env file from dotenv import load_dotenv load_dotenv() api_key = os.getenv("OPENAI_API_KEY") if not api_key: raise ValueError("OPENAI key missing") client = OpenAI(api_key=api_key) def main(): print(colored("Welcome! My name is Yishu. Your AI assistant for all things nutrition. How may I be of help today?", "green", attrs=['bold'])) system_message = "Your name is Yishu. You are a food and nutrition specialist bot. You provide expert assistance on all matters related to food, nutrition and health" chat_history = [{"role": "system", "content": system_message}] while True: user_input = input(colored("You: ", "yellow")) try: messages = chat_history messages.append({"role": "user", "content": user_input}) completion = client.chat.completions.create(model="gpt-3.5-turbo", messages=messages, max_tokens=150) completion_text = completion.choices[0].message.content if user_input.lower() == "exit": print(colored("Yishu: " + completion_text, "green")) return print(colored("Yishu: " + completion_text, "green")) chat_history.append({"role": "user", "content": user_input}) chat_history.append({"role": "assistant", "content": completion_text}) except Exception as e: print(colored(str(e), "red")) if __name__ == "__main__": main()
[ "Your name is Yishu. You are a food and nutrition specialist bot. You provide expert assistance on all matters related to food, nutrition and health" ]
2024-01-10
goldenNormal/meeting-summary
utils_llm_models.py
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.schema import ( HumanMessage, AIMessage, SystemMessage ) import time import os OPENAI_API_KEY,API_BASE = os.getenv('OPENAI_API_KEY'),os.getenv('API_BASE') from langchain.chat_models import ChatOpenAI from jinja2 import Template gpt_35 = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()],temperature = 0.0 , openai_api_key = OPENAI_API_KEY, openai_api_base = API_BASE, model_name='gpt-3.5-turbo-16k-0613' ) gpt4 = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()],temperature = 0.0 , openai_api_key = OPENAI_API_KEY, openai_api_base = API_BASE, model_name='gpt-4-0314' ) def new_gpt35(temperature=0.0,**kwargs): if temperature == 0.0 and len(kwargs) == 0: return gpt_35 llm = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()],temperature = temperature , openai_api_key = OPENAI_API_KEY, openai_api_base = API_BASE, model_name='gpt-3.5-turbo-16k-0613' ,**kwargs) return llm def new_gpt4(temperature=0.0,**kwargs): if temperature == 0.0 and len(kwargs) == 0: return gpt4 llm = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()],temperature = temperature , openai_api_key = OPENAI_API_KEY, openai_api_base = API_BASE, model_name='gpt-4-0314' ,**kwargs) return llm def get_token_cnt(text): import tiktoken enc = tiktoken.get_encoding("cl100k_base") enctext =enc.encode(text) return len(enctext) def jinja_format(message, **kwargs): return Template(message).render(**kwargs) class BaseLLM: def __init__(self, llm) -> None: self.llm = llm self.max_retries = 5 # ่ฎพ็ฝฎๆœ€ๅคง้‡่ฏ•ๆฌกๆ•ฐ self.retry_delay = 1 # ่ฎพ็ฝฎๆฏๆฌก้‡่ฏ•ไน‹้—ด็š„ๅปถ่ฟŸ๏ผˆ็ง’๏ผ‰ self.msgs = [] def add_human(self,msg): self.msgs.append(HumanMessage(content=msg)) def add_system(self,msg): self.msgs.append(SystemMessage(content=msg)) def clear(self): self.msgs = [] def add_AI(self,resp): self.msgs.append(AIMessage(content=resp)) def get_msgs(self): return self.msgs def set_msgs(self,msgs): self.msgs = msgs class LLM(BaseLLM): def __init__(self, llm) -> None: super().__init__(llm) def get_reply(self): AImsg = self.llm(self.msgs) resp = AImsg.content return resp def get_time_cost_reply(self): start = time.time() resp = self.get_reply() end = time.time() print(f'cost time: {end-start}') return resp
[]
2024-01-10
jhmatthews/alpro
alpro~models.py
import numpy as np from scipy.interpolate import interp1d import types import os from scipy.integrate import simps class units: ''' class containing some units. Should probably use astropy units but I find them a bit annoying. ''' def __init__(self): self.kpc = 3.0857e21 self.pc = 3.0857e18 self.c = 2.997925e10 self.yr = 3.1556925e7 self.myr = 3.1556925e13 self.kyr = 3.1556925e10 self.radian = 57.29577951308232 self.msol = 1.989e33 self.mprot = 1.672661e-24 self.melec = 9.10938356e-28 self.melec_csq = self.melec * self.c * self.c self.mprot_csq = self.mprot * self.c * self.c self.e = 4.8032045057134676e-10 # fundamental charge self.kev = 1.602192e-9 # kilo electron volts in CGS self.ev = 1.602192e-12 # electron volts in CGS self.kb = 1.38062e-16 # boltzmann self.h = 6.6262e-27 # plank self.hbar = self.h / np.pi / np.pi self.hbar_ev = 6.582119569e-16 self.g = 6.670e-8 # gravitational self.hbar_c = self.hbar * self.c self.alpha = self.e * self.e / self.hbar_c self.thomson = 0.66524e-24 self.unit_gauss_natural = 0.01953548032 self.unit_length_natural = 50676.79373667135 # class to use for units unit = units() def random_angle(size=None): ''' compute theta and phi coordinates for a random isotropic angle ''' costheta = (2.0 * np.random.random(size=size)) - 1.0 phi = 2.0 * np.pi * np.random.random(size=size) theta = np.arccos(costheta) return (theta, phi) def fterm(r, C, alpha): term1 = -alpha * np.cos(alpha * r) term2 = np.sin(alpha * r) / r F0 = C * alpha * alpha * (alpha * np.cos(alpha) - np.sin(alpha)) term3 = F0 * r * r / alpha / alpha f = C * (term1 + term2) + term3 return f def fprime(r, C, alpha): term1 = alpha * alpha * np.sin(alpha * r) term2 = (alpha * np.cos(alpha * r) / r) - (np.sin(alpha * r) / r / r) F0 = C * alpha * alpha * (alpha * np.cos(alpha) - np.sin(alpha)) term3 = 2.0 * F0 * r / alpha / alpha f = C * (term1 + term2) + term3 return f def libanov_Br(r, alpha=5.76, theta=np.pi / 4.0, C=6e-8): f = fterm(r, C, alpha) Br = 2.0 * np.cos(theta) * f / r / r return (-Br) def get_libanov_B(r, theta=np.pi / 4, Rcavity=93.0, alpha=5.76, C=6e-8): rnorm = r / Rcavity fr = fterm(rnorm, C, alpha) Br = 2.0 * np.cos(theta) * fr / rnorm / rnorm Btheta = -np.sin(theta) * fprime(rnorm, C, alpha) / rnorm Bphi = alpha * np.sin(theta) * fr / rnorm # truncate the field beyond Rcavity Btheta[rnorm > 1] = 0.0 Bphi[rnorm > 1] = 0.0 Br[rnorm > 1] = 0.0 return (Btheta, Bphi, Br) def get_libanov_B_old(r, include_radial=True): x = r / (93.0) Bx = (0.00312443 * (x**18)) - (0.0319991 * (x**16)) + (0.260311 * (x**14)) - (1.63197 * (x**12)) + \ (7.58002 * (x**10)) - (24.721 * (x**8)) + (52.3929 * (x**6)) - \ (63.8794 * (x**4)) + (35.8973 * (x**2)) - 5.86899 By = (0.0102459 * (x**17)) - (0.0937683 * (x**15)) + (0.671841 * (x**13)) - (3.6406 * (x**11)) + \ (14.2479 * (x**9)) - (37.7455 * (x**7)) + \ (61.3611 * (x**5)) - (51.7231 * (x**3)) + (16.9128 * x) if include_radial: Bz = libanov_Br(x) return 1e-6 * Bx, 1e-6 * By, Bz else: return 1e-6 * Bx, 1e-6 * By def churazov_density(r): ''' Density function from churazov et al 2003 Given as equation (2) of Reynolds et al. 2020 Parameters: r float distance from cluster centre in kpc ''' term1 = 3.9e-2 / ((1.0 + (r / 80.0)**2)**1.8) term2 = 4.05e-3 / ((1.0 + (r / 280.0)**2)**0.87) return (term1 + term2) class ClusterProfile: ''' container for a magnetic field and density profile for a cluster ''' def __init__(self, model="a", plasma_beta=100, B_rms=None, n=None): self.plasma_beta = plasma_beta self.model = model if model == "a": # Model A from Reynolds+ 2020 self.get_B = self.B_modA self.density = churazov_density self.n0 = self.density(0.0) self.B0 = 2.5e-5 self.B_exponent = 0.7 elif model == "b": # Model B from Reynolds+ 2020 self.get_B = self.B_modB self.density = churazov_density self.n25 = self.density(25.0) elif model == "flat": ''' allow to just have a uniform field ''' self.B_rms = B_rms self.n = n self.get_B = self.Bflat self.density = churazov_density elif model == "murgia": self.n0 = 1e-3 self.r0 = 400.0 self.B_exponent = 0.5 self.beta = 0.6 self.B0 = 1e-6 self.density = self.beta_density self.get_B = self.B_modA elif model == "russell": self.n0 = 2.63 self.pl_alpha = 1.16 self.P0 = 1.85e-9 self.r_bend = 511.0 self.a_low = 0.47 self.a_high = 2.54 self.density = self.pl_density self.get_B = self.BendingPL_B elif model == "custom": print("Warning: Custom model specified - make sure get_B & density methods are populated or domain set manually!") else: raise ValueError( "ClusterProfile did not understand model type {}".format(model)) def beta_r(self, r): if callable(self.plasma_beta): return (self.plasma_beta(r)) else: return (self.plasma_beta) def churazov_density(self, r): return (churazov_density(r)) def beta_density(self, r): ''' beta law density. ''' exponent = -3.0 * self.beta / 2.0 n = self.n0 * (1 + (r / self.r0)**2) ** exponent return (n) def pl_density(self, r): ''' power law density. ''' return (self.n0 * (r ** -self.pl_alpha)) def BendingPL_B(self, r): ''' bending power law density. ''' numer = r**-self.a_low denom = 1 + (r / self.r_bend)**(self.a_high - self.a_low) P = self.P0 * (numer / denom) B = np.sqrt(P * 4.0 * np.pi / self.beta_r(r)) return B def Bflat(self): ''' uniform magentic field ''' return (self.B_rms) def nflat(self): ''' uniform density ''' return (self.n) def B_modA(self, r): ''' Model A from Reynolds et al. 2020 Parameters: r float distance from cluster centre in kpc ''' beta = self.beta_r(r) return (self.B0 * (self.density(r) / self.n0) ** self.B_exponent * 100.0 / beta) def B_modB(self, r, B25=7.5e-6): ''' Model B from Reynolds et al. 2020 Parameters: r float distance from cluster centre in kpc ''' beta = self.beta_r(r) B = B25 * np.sqrt(self.density(r) / self.n25 * 100.0 / beta) return (B) def profile(self, r): ''' wrapper to the density and magentic field functions ''' return (self.density(r), self.get_B(r)) class ClusterFromFile: def __init__(self, fname="Bfield.npy", model_type="cube"): # load the array self.Bfull = np.load(fname) self.N = self.Bfull.shape[0] self.mid = self.N // 2 self.density = churazov_density if model_type == "cube": if any(i != self.N for i in self.Bfull.shape[:-1]): raise ValueError( "File supplied must be cube shaped but has shape {}".format( self.Bfull.shape)) elif model_type == "1d": self.z = self.Bfull[0, :] self.B = np.transpose(self.Bfull[1:, :]) interp_x_temp = interp1d(self.z, self.B[:, 0], kind='slinear') interp_y_temp = interp1d(self.z, self.B[:, 1], kind='slinear') interp_z_temp = interp1d(self.z, self.B[:, 2], kind='slinear') # actual interpolation always done using 2nd order interp kind = "quadratic" # kind='quadratic' self.interp_x = interp1d(self.z, self.B[:, 0], kind=kind) self.interp_y = interp1d(self.z, self.B[:, 1], kind=kind) self.interp_z = interp1d(self.z, self.B[:, 2], kind=kind) def slice(self, z, L=100.0, axis=0, sign=1, degrade=1, normalise=1.0): if axis == 0: self.B = self.Bfull[:, self.mid, self.mid, :] elif axis == 1: self.B = self.Bfull[self.mid, :, self.mid, :] elif axis == 2: self.B = self.Bfull[self.mid, self.mid, :, :] if sign > 0: self.B = self.B[self.mid:, :] else: self.B = self.B[:self.mid, :] self.B *= normalise # take a slice along the B field from scipy.interpolate import interp1d ztrue = z self.z = np.linspace(0, L, len(self.B[:, 0]) / degrade) if degrade > 1: # these functions will allow us to degrade the resolution using # linear spline interp interp_x_temp = interp1d(ztrue, self.B[:, 0], kind='slinear') interp_y_temp = interp1d(ztrue, self.B[:, 1], kind='slinear') interp_z_temp = interp1d(ztrue, self.B[:, 2], kind='slinear') self.B = np.zeros((len(self.z), 3)) self.B[:, 0] = interp_x_temp(self.z) self.B[:, 1] = interp_y_temp(self.z) self.B[:, 2] = interp_z_temp(self.z) elif degrade < 1: raise ValueError("degrade needs to be >= 1!") # actual interpolation always done using 2nd order interp kind = "quadratic" # kind='quadratic' self.interp_x = interp1d(self.z, self.B[:, 0], kind=kind) self.interp_y = interp1d(self.z, self.B[:, 1], kind=kind) self.interp_z = interp1d(self.z, self.B[:, 2], kind=kind) def get_Bz(self, z): Bz = self.interp_z(z) return (Bz) def get_B(self, z): ''' get the two perpendicular components of the magnetic field at distance z ''' Bx = self.interp_x(z) By = self.interp_y(z) return (Bx, By) def profile(self, r): return (self.density(r), self.get_B(r)) def omega_p(ne): ''' calculate the plasma frequency in natural (eV) units from an electron density Parameters: ne float/array-like electron density in cm^-3 ''' omega_p = np.sqrt(4.0 * np.pi * unit.e * unit.e * ne / unit.melec) * unit.hbar_ev return (omega_p) # Possibly this should be renamed to Domain, or similar class FieldModel: def __init__(self, profile, plasma_beta=100, coherence_r0=None): self.profile = profile self.beta = plasma_beta # coherence_r0 scales the coherence lengths with radius # by a factor of (1 + r/coherence_r0), in kpc self.coherence_r0 = coherence_r0 self.Bz = 1.0 def create_libanov_field(self, deltaL=1.0, Lmax=93.0, density=None, theta=np.pi / 4.0): ''' Initialise uniform field model of Libanov & Troitsky. Parameters: deltaL float resolution of domain in kpc Lmax float maximum radius in kpc density str / Nonetype if None, use vanishing density. if set ''' self.r = np.arange(0, Lmax, deltaL) self.deltaL = np.ones_like(self.r) * deltaL self.rcen = self.r + (0.5 * self.deltaL) self.Bx, self.By, self.Bz = get_libanov_B(self.rcen, theta=theta) self.B = np.sqrt(self.Bx**2 + self.By**2) self.phi = np.arctan2(self.Bx, self.By) if density is None: self.ne = 1e-20 * np.ones_like(self.rcen) # ย vanishing density elif density == "churazov": self.ne = churazov_density(self.rcen) else: raise ValueError("density keyword must be Nonetype or churazov") #self.rm = self.get_rm() self.omega_p = omega_p(self.ne) def uniform_field_z(self, deltaL=1.0, Lmax=1800.0): ''' Set up a uniform radial field model with a uniform field sampled at N points. Parameters: deltaL float size of boxes in kpc Lmax float size of domain in kpc ''' self.r = np.arange(0, Lmax - deltaL, deltaL) self.deltaL = np.ones_like(self.r) * deltaL self.rcen = self.r + (0.5 * self.deltaL) self.Bx, self.By = 0.0, 0.0 self.ne, self.Bz = self.profile(self.rcen) self.B = np.sqrt(self.Bx**2 + self.By**2) self.phi = np.zeros_like(self.Bx) self.omega_p = omega_p(self.ne) def single_box(self, phi, B, L, ne, N=1): ''' Set up a Field model with a uniform field sampled at N points. Parameters: phi float angle between perpendicular magnetic field and y axis B float magnetic field strength in Gauss L float size of domain in kpc ne float electron density in cm^-3 ''' self.r = np.linspace(0, L, N) self.deltaL = np.ones_like(self.r) * (L - self.r[-1]) self.rcen = self.r + (0.5 * self.deltaL) self.ne = np.ones_like(self.r) * ne self.phi = np.ones_like(self.r) * phi self.B = np.ones_like(self.r) * B self.Bx = self.B * np.sin(self.phi) self.By = self.B * np.cos(self.phi) self.Bz = np.zeros_like(self.phi) def get_rm(self, cell_centered=True): r''' Calculate the rotation measure of the field model using Simpson integration. Equation is :math:`RM= 812 \int n_e B_z dz` with the field in microGauss Returns: the rotation measure of the field model in rad m^-2 ''' #prefactor = (unit.e ** 3) / 2.0 / np.pi / unit.melec_csq / unit.melec_csq prefactor = 812.0 if cell_centered: r = self.rcen else: r = self.r integral = simps(self.ne * self.Bz * 1e6, r) return (prefactor * integral) def domain_from_slice(self, Cluster, deltaL=1.0, Lmax=500.0, r0=0.0): npoints = int((Lmax - r0) // deltaL) self.r = np.linspace(r0, Lmax - deltaL, npoints) self.deltaL = np.ones_like(self.r) * deltaL self.rcen = self.r + (0.5 * self.deltaL) self.Bx, self.By = Cluster.get_B(self.rcen) self.Bz = Cluster.get_Bz(self.rcen) self.B = np.sqrt(self.Bx**2 + self.By**2) self.phi = np.arctan2(self.Bx, self.By) self.ne = Cluster.density(self.r) self.omega_p = omega_p(self.ne) def resample_box(self, new_redge, interp1d_kwargs={ "kind": "quadratic", "fill_value": "extrapolate"}, profile=True): ''' Resample a box array on to a new 1D grid using 1d interpolation. Must be called after the Bx, By, r arrays are already populated. ''' interp_array_r = np.concatenate( (self.r[0:1], self.rcen, self.r[-1:] + self.deltaL[-1:])) interp_Bx = np.concatenate((self.Bx[0:1], self.Bx, self.Bx[-1:])) interp_By = np.concatenate((self.By[0:1], self.By, self.By[-1:])) interp_x = interp1d(interp_array_r, interp_Bx, **interp1d_kwargs) interp_y = interp1d(interp_array_r, interp_By, **interp1d_kwargs) interp_Bz = np.concatenate((self.Bz[0:1], self.Bz, self.Bz[-1:])) interp_z = interp1d(interp_array_r, interp_Bz, **interp1d_kwargs) # populate new values self.rcen = 0.5 * (new_redge[1:] + new_redge[:-1]) self.Bx = interp_x(self.rcen) self.By = interp_y(self.rcen) self.Bz = interp_z(self.rcen) self.r = new_redge[:-1] self.deltaL = new_redge[1:] - new_redge[:-1] self.B = np.sqrt(self.Bx**2 + self.By ** 2) self.phi = np.arctan2(self.Bx, self.By) if profile: self.ne, _ = self.profile(self.rcen) else: interp_ne = np.concatenate((self.ne[0:1], self.ne, self.ne[-1:])) interp_n = interp1d(interp_array_r, interp_ne, **interp1d_kwargs) self.ne = interp_n(self.rcen) def create_box_array(self, L, random_seed, coherence, r0=10.0, cell_centered=True): ''' create an array of random magnetic field boxes by drawing random angles and box sizes from coherence_func. Parameters: L float size of domain in kiloparsecs random_seed int random number seed coherence_func function or float function that computes coherence length at distance r, or a single-value floating point number if the coherence length is constant. r0 float inner radius of the calculation (used to excide an inner region) ''' if isinstance(coherence, float) == False and callable( coherence) == False: raise TypeError("kwarg coherence must be callable or a float.") # set random number seed np.random.seed(random_seed) #ย initialise arrays and counters r = r0 rcen = r0 rcen_array, r_array = [], [] deltaL_array = [] #ย wonder if there's a better way to do this? while r < L: # get a coherence length which will be the size of the box # this can be a function or a float if callable(coherence): lc = coherence() else: lc = coherence if self.coherence_r0 is not None: lc *= (1.0 + (r / (self.coherence_r0))) # ensure the simulation is truncated at distance L if (r + lc) > L: lc = (L - r) + 1e-10 # if rcen == r0: # rcen += lc / 2.0 # else: # rcen += lc # rcen_array.append(rcen) r_array.append(r) deltaL_array.append(lc) r += lc rcen = r - (lc / 2.0) rcen_array.append(rcen) # ย now we have box sizes and radii, get the field and density in each # box Ncells = len(r_array) self.r = np.array(r_array) #rcen_array = np.array(0.5 * (self.r[1:] + self.r[:-1])) self.rcen = np.array(rcen_array) self.deltaL = np.array(deltaL_array) #ย draw random isotropic angles and save phi theta, phi = random_angle(size=Ncells) #phi = phi # get density and magnetic field strength at centre of box if cell_centered: rprofile = self.rcen else: rprofile = self.r self.ne, Btot = self.profile(rprofile) self.cell_centered = cell_centered #ย get the x and y components and increment r #Bx_array.append(B * np.sin(theta2)) #y_array.append(B * np.cos(theta2)) self.Bx, self.By, self.Bz = self.get_B_comp_from_angles( Btot, theta, phi) #self.Bx = Btot * np.sin(theta) * np.cos(phi) #self.By = Btot * np.sin(theta) * np.sin(phi) self.theta = theta #ย note B is actually Bperp self.B = np.sqrt(self.Bx**2 + self.By ** 2) self.phi = np.arctan2(self.Bx, self.By) #self.phi = phi self.rm = self.get_rm() self.omega_p = omega_p(self.ne) #print (self.rm) def get_B_comp_from_angles(self, Btot, theta, phi): Bx = Btot * np.sin(theta) * np.cos(phi) By = Btot * np.sin(theta) * np.sin(phi) Bz = Btot * np.cos(theta) return (Bx, By, Bz) def resonance_prune(self, mass, threshold=0.1, refine=50, required_res=3): # first identify any close-to resonances delta = np.log10(self.omega_p) - np.log10(mass) select = (np.fabs(delta) < threshold) # copy the domain to a new class domain_to_return = CopyDomain(self) # if no close to resonances, nothing to be done # also don't worry about cases where the resonance happens off the end of the # array if (np.sum(select) == 0) or ( np.argmin(np.fabs(delta)) == len(self.omega_p) - 1): return (domain_to_return) # find non zero parts of selection index = np.asarray(select).nonzero()[0] if len(index) > required_res: # multiple domains are close to resonance. This means #ย we must be resolving the resonance relatively well, # so we just discard the the two points that span the actual resonance # Just discard the closest two closest1 = np.where(delta > 0, delta, np.inf).argmin() closest2 = np.where(-delta > 0, -delta, np.inf).argmin() ind1 = np.min((closest1, closest2)) ind2 = np.max((closest1, closest2)) if (ind2 - ind1) != 1: print( "Warning: resonance_prune: values close to resonance are not adjacent!") attrs_to_mod = [ "ne", "Bx", "By", "Bz", "B", "phi", "deltaL", "r", "rcen", "Bz", "omega_p"] for a in attrs_to_mod: arr = getattr(domain_to_return, a) to_concat = (arr[:ind1], arr[ind2 + 1:]) arr_new = np.concatenate(to_concat) setattr(domain_to_return, a, arr_new) #self.rm = self.get_rm() # there are only a few domains close to resonance point, so we need to # resample elif len(index) <= required_res: # find the point either side of the resonance and find the first # one closest1 = np.where(delta > 0, delta, np.inf).argmin() closest2 = np.where(-delta > 0, -delta, np.inf).argmin() ind = np.min((closest1, closest2)) #print (closest1, closest2) # new r array r_insert = np.linspace(self.r[ind], self.r[ind + 1], refine + 1) rcen_insert = 0.5 * (r_insert[1:] + r_insert[:-1]) #ย new r and rcen arrays r = np.concatenate((self.r[:ind], r_insert[:-1], self.r[ind + 1:])) rcen = np.concatenate( (self.rcen[:ind], rcen_insert, self.rcen[ind + 1:])) deltaL_insert = r_insert[1:] - r_insert[:-1] deltaL = np.concatenate( (self.deltaL[:ind], deltaL_insert, self.deltaL[ind + 1:])) # get the density if self.cell_centered: rprofile = rcen else: rprofile = r ne, _ = self.profile(rprofile) w_p = omega_p(ne) new_delta = np.log10(w_p) - np.log10(mass) # find closest two arguments closest1 = np.where(new_delta > 0, new_delta, np.inf).argmin() closest2 = np.where(-new_delta > 0, -new_delta, np.inf).argmin() ind_new = np.min((closest1, closest2)) if ind_new == (ind + len(rcen_insert) - 1): ndiscard = 1 else: ndiscard = 2 domain_to_return.r = np.concatenate( (r[:ind_new], r[ind_new + ndiscard:])) domain_to_return.rcen = np.concatenate( (rcen[:ind_new], rcen[ind_new + ndiscard:])) domain_to_return.ne = np.concatenate( (ne[:ind_new], ne[ind_new + ndiscard:])) domain_to_return.omega_p = omega_p(domain_to_return.ne) domain_to_return.deltaL = np.concatenate( (deltaL[:ind_new], deltaL[ind_new + ndiscard:])) N = len(domain_to_return.r) assert (N == (len(self.r) + refine - ndiscard - 1)) # things that remain constant across resampling attrs_const = ["Bx", "By", "Bz", "B", "phi"] #list_const = [domain_to_return.Bx, self.By, self.B, self.phi, self.Bz] for a in attrs_const: arr = getattr(domain_to_return, a) arr_insert = np.ones(len(rcen_insert) - 1) * arr[ind] to_concat = (arr[:ind], arr_insert, arr[ind + ndiscard:]) arr = np.concatenate(to_concat) setattr(domain_to_return, a, arr) assert (len(getattr(domain_to_return, a)) == N, "incorrect array lengths after pruning -- could mean domain was modified pre-pruning") #domain_to_return = DomainTemp(deltaL, B, phi, ne, len(index)) return (domain_to_return) def concat(self, index1, index2, insert_array=None): ''' cut out the middle part of an array, between index1 and index2, and stick the two ends back together again. Used to excise problematic portions of a domain. Parameters: index1 int the starting point of the excision index2 int the ending point of the excision. ''' arrays_to_splice = [ self.r, self.rcen, self.Bx, self.By, self.B, self.omega_p, self.phi, self.ne, self.Bz] for arr in arrays_to_splice: arr = np.concatenate((arr[:index1], arr[index2:])) return len(self.r) # this class copies over a different class to a new one without #ย trying to write non-writable attributes and without altering the original # class class CopyDomain: def __init__(self, input_domain): attrs_to_copy = [f for f in dir(input_domain) if "__" not in f] for a in attrs_to_copy: #print (a) value = getattr(input_domain, a) setattr(self, a, value)
[]
2024-01-10
gpt4plugins/autogen
test~test_code.py
import sys import os import pytest import autogen from autogen.code_utils import ( UNKNOWN, extract_code, execute_code, infer_lang, improve_code, improve_function, ) KEY_LOC = "notebook" OAI_CONFIG_LIST = "OAI_CONFIG_LIST" here = os.path.abspath(os.path.dirname(__file__)) # def test_find_code(): # try: # import openai # except ImportError: # return # # need gpt-4 for this task # config_list = autogen.config_list_from_json( # OAI_CONFIG_LIST, # file_location=KEY_LOC, # filter_dict={ # "model": ["gpt-4", "gpt4", "gpt-4-32k", "gpt-4-32k-0314"], # }, # ) # # config_list = autogen.config_list_from_json( # # OAI_CONFIG_LIST, # # file_location=KEY_LOC, # # filter_dict={ # # "model": { # # "gpt-3.5-turbo", # # "gpt-3.5-turbo-16k", # # "gpt-3.5-turbo-16k-0613", # # "gpt-3.5-turbo-0301", # # "chatgpt-35-turbo-0301", # # "gpt-35-turbo-v0301", # # }, # # }, # # ) # seed = 42 # messages = [ # { # "role": "user", # "content": "Print hello world to a file called hello.txt", # }, # { # "role": "user", # "content": """ # # filename: write_hello.py # ``` # with open('hello.txt', 'w') as f: # f.write('Hello, World!') # print('Hello, World! printed to hello.txt') # ``` # Please execute the above Python code to print "Hello, World!" to a file called hello.txt and print the success message. # """, # }, # ] # codeblocks, _ = find_code(messages, seed=seed, config_list=config_list) # assert codeblocks[0][0] == "python", codeblocks # messages += [ # { # "role": "user", # "content": """ # exitcode: 0 (execution succeeded) # Code output: # Hello, World! printed to hello.txt # """, # }, # { # "role": "assistant", # "content": "Great! Can I help you with anything else?", # }, # ] # codeblocks, content = find_code(messages, seed=seed, config_list=config_list) # assert codeblocks[0][0] == "unknown", content # messages += [ # { # "role": "user", # "content": "Save a pandas df with 3 rows and 3 columns to disk.", # }, # { # "role": "assistant", # "content": """ # ``` # # filename: save_df.py # import pandas as pd # df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}) # df.to_csv('df.csv') # print('df saved to df.csv') # ``` # Please execute the above Python code to save a pandas df with 3 rows and 3 columns to disk. # Before you run the code above, run # ``` # pip install pandas # ``` # first to install pandas. # """, # }, # ] # codeblocks, content = find_code(messages, seed=seed, config_list=config_list) # assert ( # len(codeblocks) == 2 # and (codeblocks[0][0] == "sh" # and codeblocks[1][0] == "python" # or codeblocks[0][0] == "python" # and codeblocks[1][0] == "sh") # ), content # messages += [ # { # "role": "user", # "content": "The code is unsafe to execute in my environment.", # }, # { # "role": "assistant", # "content": "please run python write_hello.py", # }, # ] # # codeblocks, content = find_code(messages, config_list=config_list) # # assert codeblocks[0][0] != "unknown", content # # I'm sorry, but I cannot execute code from earlier messages. Please provide the code again if you would like me to execute it. # messages[-1]["content"] = "please skip pip install pandas if you already have pandas installed" # codeblocks, content = find_code(messages, seed=seed, config_list=config_list) # assert codeblocks[0][0] != "sh", content # messages += [ # { # "role": "user", # "content": "The code is still unsafe to execute in my environment.", # }, # { # "role": "assistant", # "content": "Let me try something else. Do you have docker installed?", # }, # ] # codeblocks, content = find_code(messages, seed=seed, config_list=config_list) # assert codeblocks[0][0] == "unknown", content # print(content) def test_infer_lang(): assert infer_lang("print('hello world')") == "python" assert infer_lang("pip install autogen") == "sh" def test_extract_code(): print(extract_code("```bash\npython temp.py\n```")) # test extract_code from markdown codeblocks = extract_code( """ Example: ``` print("hello extract code") ``` """, detect_single_line_code=False, ) print(codeblocks) codeblocks2 = extract_code( """ Example: ``` print("hello extract code") ``` """, detect_single_line_code=True, ) assert codeblocks2 == codeblocks # import pdb; pdb.set_trace() codeblocks = extract_code( """ Example: ```python def scrape(url): import requests from bs4 import BeautifulSoup response = requests.get(url) soup = BeautifulSoup(response.text, "html.parser") title = soup.find("title").text text = soup.find("div", {"id": "bodyContent"}).text return title, text ``` Test: ```python url = "https://en.wikipedia.org/wiki/Web_scraping" title, text = scrape(url) print(f"Title: {title}") print(f"Text: {text}") """ ) print(codeblocks) codeblocks = extract_code("no code block") assert len(codeblocks) == 1 and codeblocks[0] == (UNKNOWN, "no code block") # Disable single line code detection line = "Run `source setup.sh` from terminal" codeblocks = extract_code(line, detect_single_line_code=False) assert len(codeblocks) == 1 and codeblocks[0] == (UNKNOWN, line) # Enable single line code detection codeblocks = extract_code("Run `source setup.sh` from terminal", detect_single_line_code=True) assert len(codeblocks) == 1 and codeblocks[0] == ("", "source setup.sh") @pytest.mark.skipif( sys.platform in ["darwin", "win32"], reason="do not run on MacOS or windows", ) def test_execute_code(): try: import docker except ImportError as exc: print(exc) docker = None exit_code, msg, image = execute_code("print('hello world')", filename="tmp/codetest.py") assert exit_code == 0 and msg == "hello world\n", msg # read a file print(execute_code("with open('tmp/codetest.py', 'r') as f: a=f.read()")) # create a file exit_code, msg, image = execute_code( "with open('tmp/codetest.py', 'w') as f: f.write('b=1')", work_dir=f"{here}/my_tmp", filename="tmp2/codetest.py" ) assert exit_code and 'File "tmp2/codetest.py"' in msg, msg print(execute_code("with open('tmp/codetest.py', 'w') as f: f.write('b=1')", work_dir=f"{here}/my_tmp")) # execute code in a file print(execute_code(filename="tmp/codetest.py")) print(execute_code("python tmp/codetest.py", lang="sh")) # execute code for assertion error exit_code, msg, image = execute_code("assert 1==2") assert exit_code, msg assert 'File ""' in msg # execute code which takes a long time exit_code, error, image = execute_code("import time; time.sleep(2)", timeout=1) assert exit_code and error == "Timeout" assert isinstance(image, str) or docker is None or os.path.exists("/.dockerenv") def test_execute_code_no_docker(): exit_code, error, image = execute_code("import time; time.sleep(2)", timeout=1, use_docker=False) if sys.platform != "win32": assert exit_code and error == "Timeout" assert image is None def test_improve(): try: import openai except ImportError: return config_list = autogen.config_list_openai_aoai(KEY_LOC) improved, _ = improve_function( "autogen/math_utils.py", "solve_problem", "Solve math problems accurately, by avoiding calculation errors and reduce reasoning errors.", config_list=config_list, ) with open(f"{here}/math_utils.py.improved", "w") as f: f.write(improved) suggestion, _ = improve_code( ["autogen/code_utils.py", "autogen/math_utils.py"], "leverage generative AI smartly and cost-effectively", config_list=config_list, ) print(suggestion) improvement, cost = improve_code( ["autogen/code_utils.py", "autogen/math_utils.py"], "leverage generative AI smartly and cost-effectively", suggest_only=False, config_list=config_list, ) print(cost) with open(f"{here}/suggested_improvement.txt", "w") as f: f.write(improvement) if __name__ == "__main__": # test_infer_lang() # test_extract_code() test_execute_code() # test_find_code()
[]
2024-01-10
Sunbird-VA/sakhi_api_service
jadupitara_ingest_data.py
import requests import json import os.path import openai from gpt_index import SimpleDirectoryReader from langchain.chains.qa_with_sources import load_qa_with_sources_chain from langchain.docstore.document import Document from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import FAISS from cloud_storage import * import uuid def make_post_api_request(url, headers, data): response = requests.post(url, headers=headers, data=json.dumps(data)) response.raise_for_status() return response.json() def make_get_api_request(url, headers, data): response = requests.get(url, headers=headers, data=json.dumps(data)) response.raise_for_status() return response.json() def get_all_identifiers(response): identifiers = [] for result in response["result"]["content"]: identifiers.append(result["identifier"]) return identifiers def find_children_with_pdf_mime_type(content): coontentMetdata = [] for child in content["children"]: if child["mimeType"] in ["application/pdf", "video/mp4"]: coontentMetdata.append({ "name": child["name"], "previewUrl": child["previewUrl"], "artifactUrl": child["artifactUrl"], # "streamingUrl": child["streamingUrl"], "downloadUrl": child["downloadUrl"], "mimeType": child["mimeType"], "identifier" : child["identifier"], "contentType": child["contentType"] }) elif child["mimeType"] == "application/vnd.ekstep.content-collection": coontentMetdata.extend(find_children_with_pdf_mime_type(child)) return coontentMetdata def get_metadata_of_children(identifiers): contents = [] for identifier in identifiers: url = "https://sunbirdsaas.com/action/content/v3/hierarchy/{}".format(identifier) response = make_get_api_request(url, None, None) childrens = find_children_with_pdf_mime_type(response["result"]["content"]) contents = contents + childrens return contents def extract_filename_from_url(url): """Extracts the file name from the given URL. Args: url: The URL to extract the file name from. Returns: The file name, or None if the URL does not contain a file name. """ url_parts = url.split("/") filename = url_parts[-1] if filename == "": return None return filename def download_pdf(url, save_path): """Downloads a big PDF file from the given URL and saves it to the given filename. Args: url: The URL of the PDF file. filename: The filename to save the PDF file to. """ try: response = requests.get(url, stream=True) response.raise_for_status() with open(save_path, 'wb') as pdf_file: for chunk in response.iter_content(chunk_size=1024): if chunk: pdf_file.write(chunk) print("Content downloaded and saved successfully. ===>" , save_path) except requests.exceptions.RequestException as e: print(f"Error: {e}") print("Content downloaded and saved failed. ===>" , save_path) def get_all_collection(): url = "https://sunbirdsaas.com/api/content/v1/search" headers = {"Content-Type": "application/json"} data = { "request": { "filters": { "channel": "013812745304276992183", "contentType": ["Collection"], "keywords": ["djp_category_toys", "djp_category_games", "djp_category_stories", "djp_category_flashc", "djp_category_activitys", "djp_category_manuals"] } } } response = make_post_api_request(url, headers, data) return response def get_list_of_documents(contents): source_chunks = [] indexed_content = [] for index, data in enumerate(contents): if not data["identifier"] in indexed_content: sources = SimpleDirectoryReader(input_files=[data["filepath"]] ,recursive=True).load_data() splitter = RecursiveCharacterTextSplitter(chunk_size=4 * 1024, chunk_overlap=200) counter = 0 for index, source in enumerate(sources): for chunk in splitter.split_text(source.text): # new_metadata = {"source": str(counter), "doc_id": source.doc_id}.update(data) source_chunks.append(Document(page_content=chunk, metadata=data)) counter += 1 indexed_content.append(data["identifier"]) print("Total indexed content ::", len(indexed_content)) return source_chunks def langchain_indexing(uuid_number, documents): load_dotenv() try: search_index = FAISS.from_documents(documents, OpenAIEmbeddings()) search_index.save_local("") error_message = None status_code = 200 except openai.error.RateLimitError as e: error_message = f"OpenAI API request exceeded rate limit: {e}" status_code = 500 except (openai.error.APIError, openai.error.ServiceUnavailableError): error_message = "Server is overloaded or unable to answer your request at the moment. Please try again later" status_code = 503 except Exception as e: error_message = str(e.__context__) + " and " + e.__str__() status_code = 500 return error_message, status_code def main(): # Make the first API request to search for collections collections = get_all_collection() # Get all the identifiers from the response identifiers = get_all_identifiers(collections) print("Total collections ::", len(identifiers)) # Get only the content which has "mimeType": "application/pdf" contents = get_metadata_of_children(identifiers) print("Total PDf contents ::", len(contents)) # Create output directory if not exist output_dir_path = 'data/' os.makedirs(output_dir_path, exist_ok=True) # Download the big PDF file and save it to the given filename. for index, data in enumerate(contents): filename = extract_filename_from_url(data["artifactUrl"]) # filesplit = os.path.splitext(filename) # filename = "data/content_{}.{}".format(index, filesplit[1]) data["filepath"] = "data/" + filename download_pdf(data["artifactUrl"], data["filepath"]) print("Download process sucessfully completed!") uuid_number = str(uuid.uuid1()) print("uuid_number =====>", uuid_number) # os.makedirs(uuid_number, exist_ok=True) documents = get_list_of_documents(contents) langchain_indexing(uuid_number, documents) index_files = ["index.faiss", "index.pkl"] for index_file in index_files: upload_file(uuid_number, index_file) os.remove(index_file) print("Index files uploaded to cloud") print("============ DONE =============") if __name__ == "__main__": main()
[ "['Collection']", "contentType" ]
2024-01-10
Sunbird-VA/sakhi_api_service
query_with_langchain.py
import logging import openai from gpt_index import SimpleDirectoryReader from langchain.chains.qa_with_sources import load_qa_with_sources_chain from langchain.docstore.document import Document from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import FAISS from langchain import PromptTemplate, OpenAI, LLMChain from cloud_storage import * import shutil import json import csv from io import StringIO import time from dotenv import load_dotenv log_format = '%(asctime)s - %(thread)d - %(threadName)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig( level=logging.INFO, format=log_format, datefmt='%Y-%m-%d %H:%M:%S', ) logger = logging.getLogger('jugalbandi_api') promptsInMemoryDomainQues = [] promptsInMemoryTechQues = [] score_language_mapping = { 'en': 0.41, 'hi': 0.35, 'kn': 0.26 } default_language = 'en' source_default_msg = { 'en': "Here are some references links that you may enjoy:", 'hi': "เคฏเคนเคพเค‚ เค•เฅเค› เคธเค‚เคฆเคฐเฅเคญ เคฒเคฟเค‚เค• เคฆเคฟเค เค—เค เคนเฅˆเค‚ เคœเคฟเคจเค•เคพ เค†เคช เค†เคจเค‚เคฆ เคฒเฅ‡ เคธเค•เคคเฅ‡ เคนเฅˆเค‚:", 'kn': "เฒจเณ€เฒตเณ เฒ†เฒจเฒ‚เฒฆเฒฟเฒธเฒฌเฒนเณเฒฆเฒพเฒฆ เฒ•เณ†เฒฒเฒตเณ เฒ‰เฒฒเณเฒฒเณ‡เฒ– เฒฒเฒฟเฒ‚เฒ•เณโ€Œเฒ—เฒณเณ เฒ‡เฒฒเณเฒฒเฒฟเฒตเณ†:" } search_default_msg = { 'en': "I'm sorry, but I don't have enough information to provide a specific answer for your question. Please provide more information or context about what you are referring to.", 'hi': "เคฎเฅเคเฅ‡ เค–เฅ‡เคฆ เคนเฅˆ, เคฒเฅ‡เค•เคฟเคจ เค†เคชเค•เฅ‡ เคชเฅเคฐเคถเฅเคจ เค•เคพ เคตเคฟเคถเคฟเคทเฅเคŸ เค‰เคคเฅเคคเคฐ เคฆเฅ‡เคจเฅ‡ เค•เฅ‡ เคฒเคฟเค เคฎเฅ‡เคฐเฅ‡ เคชเคพเคธ เคชเคฐเฅเคฏเคพเคชเฅเคค เคœเคพเคจเค•เคพเคฐเฅ€ เคจเคนเฅ€เค‚ เคนเฅˆเฅค เค†เคช เคœเคฟเคธ เคšเฅ€เคœเคผ เค•เคพ เค‰เคฒเฅเคฒเฅ‡เค– เค•เคฐ เคฐเคนเฅ‡ เคนเฅˆเค‚ เค‰เคธเค•เฅ‡ เคฌเคพเคฐเฅ‡ เคฎเฅ‡เค‚ เค•เฅƒเคชเคฏเคพ เค…เคงเคฟเค• เคœเคพเคจเค•เคพเคฐเฅ€ เคฏเคพ เคธเค‚เคฆเคฐเฅเคญ เคชเฅเคฐเคฆเคพเคจ เค•เคฐเฅ‡เค‚เฅค", 'kn': "เฒจเฒจเณเฒจเฒจเณเฒจเณ เฒ•เณเฒทเฒฎเฒฟเฒธเฒฟ, เฒ†เฒฆเฒฐเณ† เฒจเฒฟเฒฎเณเฒฎ เฒชเณเฒฐเฒถเณเฒจเณ†เฒ—เณ† เฒจเฒฟเฒฐเณเฒฆเฒฟเฒทเณเฒŸ เฒ‰เฒคเณเฒคเฒฐเฒตเฒจเณเฒจเณ เฒ’เฒฆเฒ—เฒฟเฒธเฒฒเณ เฒจเฒจเณเฒจ เฒฌเฒณเฒฟ เฒธเฒพเฒ•เฒทเณเฒŸเณ เฒฎเฒพเฒนเฒฟเฒคเฒฟ เฒ‡เฒฒเณเฒฒ. เฒฆเฒฏเฒตเฒฟเฒŸเณเฒŸเณ เฒจเณ€เฒตเณ เฒฏเฒพเฒตเณเฒฆเฒจเณเฒจเณ เฒ‰เฒฒเณเฒฒเณ‡เฒ–เฒฟเฒธเณเฒคเณเฒคเฒฟเฒฆเณเฒฆเณ€เฒฐเฒฟ เฒŽเฒ‚เฒฌเณเฒฆเฒฐ เฒ•เณเฒฐเฒฟเฒคเณ เฒนเณ†เฒšเณเฒšเฒฟเฒจ เฒฎเฒพเฒนเฒฟเฒคเฒฟ เฒ…เฒฅเฒตเฒพ เฒธเฒ‚เฒฆเฒฐเณเฒญเฒตเฒจเณเฒจเณ เฒ’เฒฆเฒ—เฒฟเฒธเฒฟ." } def langchain_indexing(uuid_number): sources = SimpleDirectoryReader(uuid_number, recursive=True).load_data() source_chunks = [] splitter = RecursiveCharacterTextSplitter(chunk_size=4 * 1024, chunk_overlap=200) counter = 0 for source in sources: for chunk in splitter.split_text(source.text): new_metadata = {"source": str(counter)} source_chunks.append(Document(page_content=chunk, metadata=new_metadata)) counter += 1 try: search_index = FAISS.from_documents(source_chunks, OpenAIEmbeddings()) search_index.save_local("") error_message = None status_code = 200 except openai.error.RateLimitError as e: error_message = f"OpenAI API request exceeded rate limit: {e}" status_code = 500 except (openai.error.APIError, openai.error.ServiceUnavailableError): error_message = "Server is overloaded or unable to answer your request at the moment. Please try again later" status_code = 503 except Exception as e: error_message = str(e.__context__) + " and " + e.__str__() status_code = 500 return error_message, status_code def rephrased_question(user_query): template = """ Write the same question as user input and make it more descriptive without adding new information and without making the facts incorrect. User: {question} Rephrased User input:""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt, llm=OpenAI(temperature=0), verbose=False) response = llm_chain.predict(question=user_query) return response.strip() def querying_with_langchain(uuid_number, query): files_count = read_langchain_index_files(uuid_number) if files_count == 2: try: search_index = FAISS.load_local(uuid_number, OpenAIEmbeddings()) chain = load_qa_with_sources_chain( OpenAI(temperature=0), chain_type="map_reduce" ) paraphrased_query = rephrased_question(query) documents = search_index.similarity_search(paraphrased_query, k=5) answer = chain( {"input_documents": documents, "question": paraphrased_query} ) answer_list = answer["output_text"].split("\nSOURCES:") final_answer = answer_list[0].strip() source_ids = answer_list[1] source_ids = source_ids.replace(" ", "") source_ids = source_ids.replace(".", "") source_ids = source_ids.split(",") final_source_text = "" for document in documents: if document.metadata["source"] in source_ids: final_source_text += document.page_content + "\n\n" shutil.rmtree(uuid_number) return final_answer, final_source_text, paraphrased_query, None, 200 except openai.error.RateLimitError as e: error_message = f"OpenAI API request exceeded rate limit: {e}" status_code = 500 except (openai.error.APIError, openai.error.ServiceUnavailableError): error_message = "Server is overloaded or unable to answer your request at the moment. Please try again later" status_code = 503 except Exception as e: error_message = str(e.__context__) + " and " + e.__str__() status_code = 500 else: error_message = "The UUID number is incorrect" status_code = 422 return None, None, None, error_message, status_code def querying_with_langchain_gpt4(uuid_number, query): if uuid_number.lower() == "storybot": try: system_rules = "I want you to act as an Indian story teller. You will come up with entertaining stories that are engaging, imaginative and captivating for children in India. It can be fairy tales, educational stories or any other type of stories which has the potential to capture childrenโ€™s attention and imagination. A story should not be more than 200 words. The audience for the stories do not speak English natively. So use very simple English with short and simple sentences, no complex or compound sentences. Extra points if the story ends with an unexpected twist." res = openai.ChatCompletion.create( model="gpt-4", messages=[ {"role": "system", "content": system_rules}, {"role": "user", "content": query}, ], ) return res["choices"][0]["message"]["content"], "", "", None, 200 except openai.error.RateLimitError as e: error_message = f"OpenAI API request exceeded rate limit: {e}" status_code = 500 except (openai.error.APIError, openai.error.ServiceUnavailableError): error_message = "Server is overloaded or unable to answer your request at the moment. Please try again later" status_code = 503 except Exception as e: error_message = str(e.__context__) + " and " + e.__str__() status_code = 500 return None, None, None, error_message, status_code else: files_count = read_langchain_index_files(uuid_number) if files_count == 2: try: search_index = FAISS.load_local(uuid_number, OpenAIEmbeddings()) documents = search_index.similarity_search(query, k=5) contexts = [document.page_content for document in documents] augmented_query = "\n\n---\n\n".join(contexts) + "\n\n-----\n\n" + query system_rules = "You are a helpful assistant who helps with answering questions based on the provided information. If the information cannot be found in the text provided, you admit that I don't know" res = openai.ChatCompletion.create( model="gpt-4", messages=[ {"role": "system", "content": system_rules}, {"role": "user", "content": augmented_query}, ], ) return res["choices"][0]["message"]["content"], "", "", None, 200 except openai.error.RateLimitError as e: error_message = f"OpenAI API request exceeded rate limit: {e}" status_code = 500 except (openai.error.APIError, openai.error.ServiceUnavailableError): error_message = "Server is overloaded or unable to answer your request at the moment. Please try again later" status_code = 503 except Exception as e: error_message = str(e.__context__) + " and " + e.__str__() status_code = 500 else: error_message = "The UUID number is incorrect" status_code = 422 return None, None, None, error_message, status_code def querying_with_langchain_gpt4_streaming(uuid_number, query): files_count = read_langchain_index_files(uuid_number) if files_count == 2: try: search_index = FAISS.load_local(uuid_number, OpenAIEmbeddings()) documents = search_index.similarity_search(query, k=5) contexts = [document.page_content for document in documents] augmented_query = "\n\n---\n\n".join(contexts) + "\n\n-----\n\n" + query system_rules = "You are a helpful assistant who helps with answering questions based on the provided information. If the information cannot be found in the text provided, you admit that I don't know" response = openai.ChatCompletion.create( model='gpt-4', messages=[ {"role": "system", "content": system_rules}, {"role": "user", "content": augmented_query} ], stream=True ) # Define a generator function to yield each chunk of the response async def generate_messages(): for chunk in response: print(chunk) # chunk_message = chunk['choices'][0]['delta']['content'] # chunk_message = chunk["choices"][0].get("delta", {}).get("content", '') chunk_message = chunk["choices"][0].get("delta", {}).get("content", '') yield chunk_message # Return a StreamingResponse with the generated messages return EventSourceResponse(generate_messages(), headers={"Content-Type":"text/plain"}) # application/json except openai.error.RateLimitError as e: error_message = f"OpenAI API request exceeded rate limit: {e}" status_code = 500 logger.exception("RateLimitError occurred: %s", e) except (openai.error.APIError, openai.error.ServiceUnavailableError): error_message = "Server is overloaded or unable to answer your request at the moment. Please try again later" status_code = 503 logger.exception("APIError or ServiceUnavailableError occurred") except Exception as e: error_message = str(e.__context__) + " and " + e.__str__() status_code = 500 logger.exception("An exception occurred: %s", e) else: error_message = "The UUID number is incorrect" status_code = 422 # return None, None, None, error_message, status_codewss # If there's an error, return a plain text response with the error message return Response(content=error_message, media_type="text/plain", status_code=status_code) def querying_with_langchain_gpt4_mcq(uuid_number, query, doCache): if uuid_number.lower() == "tech": try: logger.info('************** Technology Specific **************') system_rules = getSystemRulesForTechQuestions() prompts = getPromptsForGCP(doCache, query, system_rules, promptsInMemoryTechQues) logger.info(prompts) res = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages = promptsInMemoryTechQues if doCache else prompts, ) respMsg = res["choices"][0]["message"]["content"] logger.info(respMsg) if doCache: promptsInMemoryTechQues.append({"role":"assistant", "content":respMsg}) logger.info('************** Questions **************') logger.info(respMsg) return respMsg, "", "", None, 200 except openai.error.RateLimitError as e: error_message = f"OpenAI API request exceeded rate limit: {e}" status_code = 500 except (openai.error.APIError, openai.error.ServiceUnavailableError): error_message = "Server is overloaded or unable to answer your request at the moment. Please try again later" status_code = 503 except Exception as e: error_message = str(e.__context__) + " and " + e.__str__() status_code = 500 return None, None, None, error_message, status_code else: logger.info('************** Domain Specific **************') files_count = read_langchain_index_files(uuid_number) if files_count == 2: try: search_index = FAISS.load_local(uuid_number, OpenAIEmbeddings()) documents = search_index.similarity_search(query, k=5) contexts = [document.page_content for document in documents] system_rules = getSystemRulesForDomainSpecificQuestions() context = "\n\n---\n\n".join(contexts) + "\n\n-----\n\n" system_rules = system_rules.format(Context=context) prompts = getPromptsForGCP(doCache, query, system_rules, promptsInMemoryDomainQues) logger.info(prompts) start_time = time.time() res = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages = promptsInMemoryDomainQues if doCache else prompts, ) end_time = time.time() - start_time logger.info(f"********* TOTAL TIME TOOK **********>>>>> {end_time}") respMsg = res["choices"][0]["message"]["content"] logger.info('************** Questions **************') logger.info(respMsg) if doCache: promptsInMemoryDomainQues.append({"role":"assistant", "content":respMsg}) csvOutout = jsnoDifferenceData(uuid_number, respMsg) # JSON based duplication solution # csvOutout = csvDifferenceData(uuid_number, respMsg) # CSV based duplication solution logger.info('---- Filtered Questions-----') logger.info(csvOutout) return csvOutout, "", "", None, 200 except openai.error.RateLimitError as e: error_message = f"OpenAI API request exceeded rate limit: {e}" status_code = 500 except (openai.error.APIError, openai.error.ServiceUnavailableError): error_message = "Server is overloaded or unable to answer your request at the moment. Please try again later" status_code = 503 except Exception as e: # error_message = str(e.__context__) + " and " + e.__str__() error_message = e.__str__() status_code = 500 else: error_message = "The UUID number is incorrect" status_code = 422 return None, None, None, error_message, status_code def querying_with_langchain_gpt3(uuid_number, query, converse: bool, language = default_language): print("query ====>", query) load_dotenv() files_count = read_langchain_index_files(uuid_number) if files_count == 2: try: search_index = FAISS.load_local(uuid_number, OpenAIEmbeddings()) documents = search_index.similarity_search_with_score(query, k=5) # contexts = [document.page_content for document in documents] score_threshold = score_language_mapping[language] contexts = [document.page_content for document, search_score in documents if round(search_score, 2) <= score_threshold] print(str(documents)) if not contexts: return search_default_msg[language], None, None, None, 200 if not converse: return "", documents, None, None, 200 contexts = "\n\n---\n\n".join(contexts) + "\n\n-----\n\n" system_rules = """You are embodying "Sakhi for Jaadui Pitara", an simple AI assistant specially programmed to help kids navigate the stories and learning materials from the ages 3 to 8. Specifically, your knowledge base includes only the given context: Guidelines: - Your answers must be firmly rooted in the information present in the retrieved context. Ensure that your responses are directly based on these resources, not on prior knowledge or assumptions. - If no contexts are retrieved, then you should not answer the question. Given the following contexts: {context} All answers should be in MARKDOWN (.md) Format:""" system_rules = system_rules.format(context=contexts) # print("system_rules ====> ", system_rules) openai.api_key = os.environ["OPENAI_API_KEY"] res = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ {"role": "system", "content": system_rules}, {"role": "user", "content": query}, ], ) response = res["choices"][0]["message"]["content"] # print("response ====> ", response) # f = open("response.txt", "w") # f.write(str(response)) # f.close() return response, documents, None, None, 200 except openai.error.RateLimitError as e: error_message = f"OpenAI API request exceeded rate limit: {e}" status_code = 500 except (openai.error.APIError, openai.error.ServiceUnavailableError): error_message = "Server is overloaded or unable to answer your request at the moment. Please try again later" status_code = 503 except Exception as e: error_message = str(e.__context__) + " and " + e.__str__() status_code = 500 else: error_message = "The UUID number is incorrect" status_code = 422 return "", None, None, error_message, status_code def get_source_markdown(documents, language = default_language) -> str: score_threshold = score_language_mapping[language] sources = [document.metadata for document, search_score in documents if round(search_score, 2) <= score_threshold] added_sources = [] sources_markdown = f'\n\n{source_default_msg[language]} \n\n' counter = 1 for data in sources: if not data["identifier"] in added_sources: print(data["name"]) sources_markdown = sources_markdown + f'''{counter}. [{data["name"]}]({data["artifactUrl"]}) \n\n''' added_sources.append(data["identifier"]) counter += 1 return sources_markdown # User feedback async def record_user_feedback(engine, qa_id, feedback_type): try: async with engine.acquire() as connection: record_exists = await connection.fetchval("SELECT id FROM sb_qa_logs WHERE question_id = $1", qa_id) if record_exists is not None: if feedback_type.lower() == "up": await connection.execute("UPDATE sb_qa_logs SET upvotes = upvotes + 1 WHERE question_id = $1", qa_id) elif feedback_type.lower() == "down": await connection.execute("UPDATE sb_qa_logs SET downvotes = downvotes + 1 WHERE question_id = $1", qa_id) return 'OK', None, 200 else: return None, f"Record with ID {qa_id} not found", 404 except Exception as e: error_message = str(e.__context__) + " and " + e.__str__() status_code = 500 print(f"Error while giving feedback: {e}") return None, error_message, status_code def create_directory_from_filepath(filepath): directory_path = os.path.dirname(filepath) if not os.path.exists(directory_path): try: os.makedirs(directory_path) print(f"Directory '{directory_path}' created successfully.") except OSError as e: print(f"Error creating directory '{directory_path}': {e}") else: print(f"Directory '{directory_path}' already exists.") # Load existing data from JSON file def load_json_file(filename): try: with open(filename, 'r') as file: return json.load(file) except (FileNotFoundError, json.JSONDecodeError): return [] # Compare and add unique data def add_unique_data(existing_data, new_data): seen_objects = set(tuple(item.items()) for item in existing_data) unique_data = [] for item in new_data: obj = tuple(item.items()) if obj not in seen_objects: unique_data.append(item) seen_objects.add(obj) return unique_data # Compare and remove duplicate data def remove_duplicates(data): seen_objects = set(tuple(item.items()) for item in data) return list(map(lambda t : dict((key,value) for key, value in t), seen_objects)) # Save data to JSON file def save_json_file(filename, data): with open(filename, 'w') as file: json.dump(data, file, indent=4) # Convert data to CSV format def list_to_csv_string(data): output = StringIO() csv_writer = csv.DictWriter(output, fieldnames=data[0].keys()) csv_writer.writeheader() csv_writer.writerows(data) csv_string = output.getvalue() output.close() return csv_string def jsnoDifferenceData(uuid_number: str, questions: str) -> str: output_file_path = f"questions_cache/{uuid_number}.json" create_directory_from_filepath(output_file_path) try: parsed_data = json.loads(questions) except: raise Exception("Apologies! I couldn't create questions in a format that's easy to read for you. Please try again.") new_questions = remove_duplicates(parsed_data) existing_questions = load_json_file(output_file_path) unique_data = [] if(len(existing_questions) == 0): save_json_file(output_file_path, new_questions) unique_data = new_questions else: unique_data = add_unique_data(existing_questions, new_questions) existing_questions += unique_data save_json_file(output_file_path, existing_questions) logger.info("Data has been updated in the JSON file and return as CSV format.") return list_to_csv_string(unique_data) def removeWhitespace(text:str) -> list[str]: return list(map(lambda l : l.strip(), filter(lambda l : l != '', text.split('\n')))) def string_compare_diff(text1: list[str], text2: list[str]) -> list[str]: result: list[str] = [] for line1 in text1: if line1 not in text2: result.append(line1) return result def csvDifferenceData(uuid_number: str, respMsg: str) -> str: output_file_path = f"questions_cache/{uuid_number}.csv" create_directory_from_filepath(output_file_path) new_questions = removeWhitespace(respMsg)[1:] new_questions = list(set(new_questions)) if os.path.exists(output_file_path): old_question_file = open(output_file_path, 'r') old_questions = removeWhitespace(old_question_file.read()) output = string_compare_diff(new_questions, old_questions) with open(output_file_path, "a") as file: file.write("\n") for item in output: file.write(item + "\n") csv_string = 'question, option_a, option_b, option_c, option_d, correct_answer \n' if output: csv_string += '\n'.join(output) return csv_string else: csv_string = 'question, option_a, option_b, option_c, option_d, correct_answer \n' csv_string += '\n'.join(new_questions) # Write the strings to the file with open(output_file_path, mode='w') as output_file: output_file.write(csv_string) return csv_string def getSystemRulesForTechQuestions(): system_rules = """ You are a technology expert tasked with creating multiple-choice questions for a question bank. Your goal is to provide the question, options, and correct answer. Make sure that questions are not repeated. Please generate the questions and encode the responses in CSV format. Use the following headers in lowercase with spaces replaced by underscores: question, option_a, option_b, option_c, option_d, correct_answer. The output should be properly formatted and comma-separated. When generating the questions, list the options without prefixing them with option names like A, B, C, or D. However, specify the correct answer in the "correct_answer" column using the corresponding option letter. Example: Question,Option_A,Option_B,Option_C,Option_D,Correct_Answer What is the purpose of the sleep() method in Java?,To terminate a thread,To start a new thread,To pause the execution of a thread for a specific amount of time,To increase the priority of a thread,C Please generate the questions accordingly and provide the encoded CSV data. """ return system_rules def getSystemRulesForDomainSpecificQuestions(): system_rules = """ As a domain expert, your task is to generate multiple-choice questions for a question bank based on a given context. The questions should be unique and not repeated. The correct answers should be shuffled among the answer options randomly for each question. Given the context: "{Context}" Here are the specific instructions that you need to follow: - Do not provide answers or information that is not explicitly mentioned in the given context. Stick only to the facts provided. - The questions and answer options should be encoded in JSON format. The JSON object array will consist of the following fields: - question: The text of the question. - option_a: The first answer option. - option_b: The second answer option. - option_c: The third answer option. - option_d: The fourth answer option. - correct_answer: The correct answer index as A, B, C, or D. Please generate the questions accordingly and Provide the questions only in JSON object array format, without any other responses. """ return system_rules # def setSystemRules(promptType, contexts): # if promptType == "getSystemRulesForDomainSpecificQuestions": # system_rules = getSystemRulesForDomainSpecificQuestions() # context = "\n\n---\n\n".join(contexts) + "\n\n-----\n\n" # system_rules = system_rules.format(Context=context) # return system_rules # else: # system_rules = getSystemRulesForTechQuestions() # return system_rules def getPromptsForGCP(doCache, query, system_rules, prompts): userContent = {"role": "user", "content": query} systemContent = {"role": "system", "content": system_rules} if doCache: if len(prompts) == 0: prompts.append(systemContent) prompts.append(userContent) else: prompts.append(userContent) return prompts else: singlePrompt = [ systemContent, userContent ] return singlePrompt
[ "question", "[]", "[PLACEHOLDER, PLACEHOLDER]", "\n Write the same question as user input and make it more descriptive without adding new information and without making the facts incorrect.\n\n User: {question}\n Rephrased User input:" ]
2024-01-10
BoChenGroup/PyDPM
pydpm~metric~topic_coherence.py
#!/usr/bin/python3 # -*- coding: utf-8 -*- # Author: Xinyang Liu <lxy771258012@163.com> # License: BSD-3-Clause import numpy as np from gensim.test.utils import common_corpus, common_dictionary from gensim.models.coherencemodel import CoherenceModel """ Examples --------- One way of using this feature is through providing a trained topic model. A dictionary has to be explicitly provided if the model does not contain a dictionary already .. sourcecode:: pycon # # >>> from gensim.test.utils import common_corpus, common_dictionary # >>> from gensim.models.ldamodel import LdaModel # >>> from gensim.models.coherencemodel import CoherenceModel # >>> # >>> model = LdaModel(common_corpus, 5, common_dictionary) # >>> # >>> cm = CoherenceModel(model=model, corpus=common_corpus, coherence='u_mass') # >>> coherence = cm.get_coherence() # get coherence value Another way of using this feature is through providing tokenized topics such as: .. sourcecode:: pycon # >>> from gensim.test.utils import common_corpus, common_dictionary # >>> from gensim.models.coherencemodel import CoherenceModel # >>> topics = [ # ... ['human', 'computer', 'system', 'interface'], # ... ['graph', 'minors', 'trees', 'eps'] # ... ] # >>> # >>> cm = CoherenceModel(topics=topics, corpus=common_corpus, dictionary=common_dictionary, coherence='u_mass') # >>> coherence = cm.get_coherence() # get coherence value ๏ผˆPlease visit https://radimrehurek.com/gensim/models/coherencemodel.html for more usage.๏ผ‰ """ class Topic_Coherence(object): def __init__(self, model=None, topics=None, texts=None, corpus=None, dictionary=None, window_size=None, keyed_vectors=None, coherence='c_v', topn=20, processes=-1): ''' Inputs: model : :class:`~gensim.models.basemodel.BaseTopicModel`, optional Pre-trained topic model, should be provided if topics is not provided. Currently supports :class:`~gensim.models.ldamodel.LdaModel`, :class:`~gensim.models.ldamulticore.LdaMulticore`, :class:`~gensim.models.wrappers.ldamallet.LdaMallet` and :class:`~gensim.models.wrappers.ldavowpalwabbit.LdaVowpalWabbit`. Use `topics` parameter to plug in an as yet unsupported model. topics : list of list of str, optional List of tokenized topics, if this is preferred over model - dictionary should be provided. texts : list of list of str, optional Tokenized texts, needed for coherence models that use sliding window based (i.e. coherence=`c_something`) probability estimator . corpus : iterable of list of (int, number), optional Corpus in BoW format. dictionary : :class:`~gensim.corpora.dictionary.Dictionary`, optional Gensim dictionary mapping of id word to create corpus. If `model.id2word` is present, this is not needed. If both are provided, passed `dictionary` will be used. window_size : int, optional Is the size of the window to be used for coherence measures using boolean sliding window as their probability estimator. For 'u_mass' this doesn't matter. If None - the default window sizes are used which are: 'c_v' - 110, 'c_uci' - 10, 'c_npmi' - 10. coherence : {'u_mass', 'c_v', 'c_uci', 'c_npmi'}, optional Coherence measure to be used. Fastest method - 'u_mass', 'c_uci' also known as `c_pmi`. For 'u_mass' corpus should be provided, if texts is provided, it will be converted to corpus using the dictionary. For 'c_v', 'c_uci' and 'c_npmi' `texts` should be provided (`corpus` isn't needed) topn : int, optional Integer corresponding to the number of top words to be extracted from each topic. processes : int, optional Number of processes to use for probability estimation phase, any value less than 1 will be interpreted as num_cpus - 1. Outputs: topic_coherence : [float], The topic coherence with model ''' self.model = model self.topics = topics self.texts = texts self.corpus = corpus self.dictionary = dictionary self.window_size = window_size self.keyed_vectors = keyed_vectors self.coherence = coherence self.topn = topn self.processes = processes self._get() print(f'The topic coherence score is: {self._topic_coherence:.4f}') def _get(self): cm = CoherenceModel(model=self.model, topics=self.topics, texts=self.texts, corpus=self.corpus, dictionary=self.dictionary, window_size=self.window_size, keyed_vectors=self.keyed_vectors, coherence=self.coherence, topn=self.topn, processes=self.processes) self._topic_coherence = cm.get_coherence()
[]
2024-01-10
dlt-hub/qdrant_dlt_rag
unstructured_to_qdrant.py
import getpass import os from dotenv import load_dotenv load_dotenv() OPENAI_API_KEY= os.getenv("OPENAI_API_KEY") import os import logging from typing import Dict, List # Configure logging logging.basicConfig(level=logging.INFO) from langchain.document_loaders import TextLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter from langchain.vectorstores import Qdrant import os import logging from typing import Optional # Configure logging logging.basicConfig(level=logging.INFO) def load_and_process_documents(file_path: Optional[str] = None): """ Loads documents from a given file path, splits them into chunks, generates embeddings, and initializes a Qdrant client with these documents. Parameters: - file_path (str, optional): The path to the file containing the documents. Defaults to None. If None, the function will return None. Returns: - qdrant: An instance of the Qdrant client initialized with the processed documents. """ if file_path is None: logging.warning("No file path provided. Returning None.") return None try: loader = TextLoader(f"synthetic_data_3/{file_path}") documents = loader.load() except FileNotFoundError: logging.error(f"File not found: {file_path}") return None text_splitter = RecursiveCharacterTextSplitter(chunk_size=50, chunk_overlap=10) docs = text_splitter.split_documents(documents) print("here is the lenght of the docs", len(docs)) logging.info(f"Documents split into chunks: {docs}") embeddings = OpenAIEmbeddings() qdrant_client_url = os.getenv('QDRANT_CLIENT') qdrant_api_key = os.getenv('QDRANT_KEY') if not qdrant_client_url or not qdrant_api_key: logging.error("QDRANT_CLIENT or QDRANT_KEY environment variables not set.") return None qdrant = Qdrant.from_documents( docs, embeddings, url=qdrant_client_url, prefer_grpc=True, api_key=qdrant_api_key, collection_name=file_path, ) return qdrant def process_files_in_dict(dict_to_iterate: Dict[str, List[Dict[str, int]]]): """ Iterates over a dictionary of lists of dictionaries, constructs file paths based on the dictionary keys and values, reads each file, and then processes the files using the 'load_and_process_documents' function. Parameters: - dict_to_iterate (Dict[str, List[Dict[str, int]]]): A dictionary where each key corresponds to a list of dictionaries, with each sub-dictionary containing a key-value pair used to construct the file path. Example of dict_to_iterate: {"unstructured": [{"dataset": 1}, {"dataset": 2}, {"dataset": 3}]} """ for key, value in dict_to_iterate.items(): logging.info(f"Processing key: {key}, Value: {value}") for v in value: try: file_path_key = list(v)[0] # The key, e.g., 'dataset' file_path_value = str(v[file_path_key]) # The value corresponding to the key, e.g., '1' file_path = f"{key}_{file_path_key}_{file_path_value}.txt" with open("synthetic_data_3/" +file_path, 'r') as file: file_content = file.read() load_and_process_documents(file_path=file_path) except FileNotFoundError: logging.error(f"File not found: {file_path}") except Exception as e: logging.error(f"Error processing file {file_path}: {e}") if __name__ == "__main__": dict_to_iterate = {"unstructured": [{"dataset": 1}, {"dataset": 2}, {"dataset": 3}]} process_files_in_dict(dict_to_iterate=dict_to_iterate)
[]
2024-01-10
dlt-hub/qdrant_dlt_rag
ragas_custom.py
"""An implementation of the Ragas metric """ from deepeval.metrics import BaseMetric from deepeval.test_case import LLMTestCase import warnings class ContextualPrecisionMetric(BaseMetric): """This metric checks the contextual precision using Ragas""" def __init__( self, minimum_score: float = 0.3, ): self.minimum_score = minimum_score def measure(self, test_case: LLMTestCase): # sends to server try: from ragas import evaluate from ragas.metrics import context_precision except ModuleNotFoundError: raise ModuleNotFoundError( "Please install ragas to use this metric. `pip install ragas`." ) try: from datasets import Dataset except ModuleNotFoundError: raise ModuleNotFoundError("Please install dataset") # Create a dataset from the test case data = { "contexts": [test_case.retrieval_context], "question": [test_case.input], "id": [[test_case.id]], } dataset = Dataset.from_dict(data) # Evaluate the dataset using Ragas scores = evaluate(dataset, metrics=[context_precision]) # Ragas only does dataset-level comparisons context_precision_score = scores["context_precision"] self.success = context_precision_score >= self.minimum_score self.score = context_precision_score return self.score def is_successful(self): return self.success @property def __name__(self): return "Contextual Precision" class ContextualRelevancyMetric(BaseMetric): """This metric checks the contextual relevancy using Ragas""" def __init__( self, minimum_score: float = 0.3, ): self.minimum_score = minimum_score def measure(self, test_case: LLMTestCase): # sends to server try: from ragas import evaluate from ragas.metrics import context_relevancy except ModuleNotFoundError: raise ModuleNotFoundError( "Please install ragas to use this metric. `pip install ragas`." ) try: from datasets import Dataset except ModuleNotFoundError: raise ModuleNotFoundError("Please install dataset") # Create a dataset from the test case data = { "contexts": [test_case.retrieval_context], "question": [test_case.input], "id": [[test_case.id]], } dataset = Dataset.from_dict(data) # Evaluate the dataset using Ragas scores = evaluate(dataset, metrics=[context_relevancy]) # Ragas only does dataset-level comparisons context_relevancy_score = scores["context_relevancy"] self.success = context_relevancy_score >= self.minimum_score self.score = context_relevancy_score return self.score def is_successful(self): return self.success @property def __name__(self): return "Contextual Relevancy" class AnswerRelevancyMetric(BaseMetric): """This metric checks the answer relevancy using Ragas""" def __init__( self, minimum_score: float = 0.3, ): self.minimum_score = minimum_score def measure(self, test_case: LLMTestCase): # sends to server try: from ragas import evaluate from ragas.metrics import answer_relevancy except ModuleNotFoundError: raise ModuleNotFoundError( "Please install ragas to use this metric. `pip install ragas`." ) try: from datasets import Dataset except ModuleNotFoundError: raise ModuleNotFoundError("Please install dataset") data = { "question": [test_case.input], "answer": [test_case.actual_output], "id": [[test_case.id]], } dataset = Dataset.from_dict(data) scores = evaluate(dataset, metrics=[answer_relevancy]) answer_relevancy_score = scores["answer_relevancy"] self.success = answer_relevancy_score >= self.minimum_score self.score = answer_relevancy_score return self.score def is_successful(self): return self.success @property def __name__(self): return "Answer Relevancy" class FaithfulnessMetric(BaseMetric): def __init__( self, minimum_score: float = 0.3, ): self.minimum_score = minimum_score def measure(self, test_case: LLMTestCase): # sends to server try: from ragas import evaluate from ragas.metrics import faithfulness except ModuleNotFoundError: raise ModuleNotFoundError( "Please install ragas to use this metric. `pip install ragas`." ) try: from datasets import Dataset except ModuleNotFoundError: raise ModuleNotFoundError("Please install dataset") data = { "contexts": [test_case.retrieval_context], "question": [test_case.input], "answer": [test_case.actual_output], "id": [[test_case.id]], } dataset = Dataset.from_dict(data) scores = evaluate(dataset, metrics=[faithfulness]) faithfulness_score = scores["faithfulness"] self.success = faithfulness_score >= self.minimum_score self.score = faithfulness_score return self.score def is_successful(self): return self.success @property def __name__(self): return "Faithfulness" class ContextRecallMetric(BaseMetric): """This metric checks the context recall using Ragas""" def __init__( self, minimum_score: float = 0.3, ): self.minimum_score = minimum_score def measure(self, test_case: LLMTestCase): # sends to server try: from ragas import evaluate from ragas.metrics import context_recall except ModuleNotFoundError: raise ModuleNotFoundError( "Please install ragas to use this metric. `pip install ragas`." ) try: from datasets import Dataset except ModuleNotFoundError: raise ModuleNotFoundError("Please install dataset") data = { "question": [test_case.input], "ground_truths": [[test_case.expected_output]], "contexts": [test_case.retrieval_context], "id": [[test_case.id]], } dataset = Dataset.from_dict(data) scores = evaluate(dataset, [context_recall]) context_recall_score = scores["context_recall"] self.success = context_recall_score >= self.minimum_score self.score = context_recall_score return self.score def is_successful(self): return self.success @property def __name__(self): return "Context Recall" class HarmfulnessMetric(BaseMetric): """This metric checks the harmfulness using Ragas""" def __init__( self, minimum_score: float = 0.3, ): self.minimum_score = minimum_score def measure(self, test_case: LLMTestCase): # sends to server try: from ragas import evaluate from ragas.metrics.critique import harmfulness except ModuleNotFoundError: raise ModuleNotFoundError( "Please install ragas to use this metric. `pip install ragas`." ) try: from datasets import Dataset except ModuleNotFoundError: raise ModuleNotFoundError("Please install dataset") data = { "ground_truths": [[test_case.expected_output]], "contexts": [test_case.context], "question": [test_case.input], "answer": [test_case.actual_output], "id": [[test_case.id]], } dataset = Dataset.from_dict(data) scores = evaluate(dataset, [harmfulness]) harmfulness_score = scores["harmfulness"] self.success = harmfulness_score >= self.minimum_score self.score = harmfulness_score return self.score def is_successful(self): return self.success @property def __name__(self): return "Harmfulness" class CoherenceMetric(BaseMetric): """This metric checks the coherence using Ragas""" def __init__( self, minimum_score: float = 0.3, ): self.minimum_score = minimum_score def measure(self, test_case: LLMTestCase): try: from ragas import evaluate from ragas.metrics.critique import coherence except ModuleNotFoundError: raise ModuleNotFoundError( "Please install ragas to use this metric. `pip install ragas`." ) try: from datasets import Dataset except ModuleNotFoundError: raise ModuleNotFoundError("Please install dataset") data = { "ground_truths": [[test_case.expected_output]], "contexts": [test_case.context], "question": [test_case.input], "answer": [test_case.actual_output], "id": [[test_case.id]], } dataset = Dataset.from_dict(data) scores = evaluate(dataset, [coherence]) coherence_score = scores["coherence"] self.success = coherence_score >= self.minimum_score self.score = coherence_score return self.score def is_successful(self): return self.success @property def __name__(self): return "Coherence" class MaliciousnessMetric(BaseMetric): """This metric checks the maliciousness using Ragas""" def __init__( self, minimum_score: float = 0.3, ): self.minimum_score = minimum_score def measure(self, test_case: LLMTestCase): try: from ragas import evaluate from ragas.metrics.critique import maliciousness except ModuleNotFoundError: raise ModuleNotFoundError( "Please install ragas to use this metric. `pip install ragas`." ) try: from datasets import Dataset except ModuleNotFoundError: raise ModuleNotFoundError("Please install dataset") data = { "ground_truths": [[test_case.expected_output]], "contexts": [test_case.context], "question": [test_case.input], "answer": [test_case.actual_output], "id": [[test_case.id]], } dataset = Dataset.from_dict(data) scores = evaluate(dataset, [maliciousness]) maliciousness_score = scores["maliciousness"] self.success = maliciousness_score >= self.minimum_score self.score = maliciousness_score return self.score def is_successful(self): return self.success @property def __name__(self): return "Maliciousness" class CorrectnessMetric(BaseMetric): """This metric checks the correctness using Ragas""" def __init__( self, minimum_score: float = 0.3, ): self.minimum_score = minimum_score def measure(self, test_case: LLMTestCase): try: from ragas import evaluate from ragas.metrics.critique import correctness except ModuleNotFoundError: raise ModuleNotFoundError( "Please install ragas to use this metric. `pip install ragas`." ) try: from datasets import Dataset except ModuleNotFoundError: raise ModuleNotFoundError("Please install dataset") data = { "ground_truths": [[test_case.expected_output]], "contexts": [test_case.context], "question": [test_case.input], "answer": [test_case.actual_output], "id": [[test_case.id]], } dataset = Dataset.from_dict(data) scores = evaluate(dataset, metrics=[correctness]) correctness_score = scores["correctness"] self.success = correctness_score >= self.minimum_score self.score = correctness_score return self.score def is_successful(self): return self.success @property def __name__(self): return "Correctness" class ConcisenessMetric(BaseMetric): """This metric checks the conciseness using Ragas""" def __init__( self, minimum_score: float = 0.3, ): self.minimum_score = minimum_score def measure(self, test_case: LLMTestCase): try: from ragas import evaluate from ragas.metrics.critique import conciseness except ModuleNotFoundError: raise ModuleNotFoundError( "Please install ragas to use this metric. `pip install ragas`." ) try: from datasets import Dataset except ModuleNotFoundError: raise ModuleNotFoundError("Please install dataset") data = { "ground_truths": [[test_case.expected_output]], "contexts": [test_case.context], "question": [test_case.input], "answer": [test_case.actual_output], "id": [[test_case.id]], } dataset = Dataset.from_dict(data) scores = evaluate(dataset, metrics=[conciseness]) conciseness_score = scores["conciseness"] self.success = conciseness_score >= self.minimum_score self.score = conciseness_score return self.score def is_successful(self): return self.success @property def __name__(self): return "Conciseness" class RagasMetric(BaseMetric): """This metric checks if the output is more than 3 letters""" def __init__( self, minimum_score: float = 0.3, ): self.minimum_score = minimum_score def measure(self, test_case: LLMTestCase): # sends to server try: from ragas import evaluate except ModuleNotFoundError: raise ModuleNotFoundError( "Please install ragas to use this metric. `pip install ragas`." ) try: # How do i make sure this isn't just huggingface dataset from datasets import Dataset except ModuleNotFoundError: raise ModuleNotFoundError("Please install dataset") # Create a dataset from the test case # Convert the LLMTestCase to a format compatible with Dataset score_metadata = {} metrics = [ ContextRecallMetric(), FaithfulnessMetric(), AnswerRelevancyMetric(), ] warnings_list = [] for metric in metrics: score = metric.measure(test_case) print(metric, score) score_metadata[metric.__name__] = score if score == 0: warnings_list.append( f"The RAGAS score will be 0 since {metric.__name__} has a score of 0" ) for warning in warnings_list: print(warning) if any(score == 0 for score in score_metadata.values()): ragas_score = 0 else: ragas_score = len(score_metadata) / sum( 1.0 / score for score in score_metadata.values() ) self.success = ragas_score >= self.minimum_score self.score = ragas_score self.score_metadata = score_metadata return self.score def is_successful(self): return self.success @property def __name__(self): return "RAGAS"
[]
2024-01-10
dlt-hub/qdrant_dlt_rag
evals.py
import logging from typing import Dict, Tuple, Optional from openai import OpenAI from ragas_custom import RagasMetric from deepeval.test_case import LLMTestCase from dotenv import load_dotenv load_dotenv() import os OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") client = OpenAI(api_key=OPENAI_API_KEY) from qdrant_client import QdrantClient QDRANT_CLIENT = os.getenv('QDRANT_CLIENT') QDRANT_KEY = os.getenv('QDRANT_KEY') from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores.qdrant import Qdrant from ragas.metrics import AnswerSimilarity answer_similarity = AnswerSimilarity() from datasets import Dataset os.environ["TOKENIZERS_PARALLELISM"] = "false" from sentence_transformers.cross_encoder import CrossEncoder def semanticSimilarityCrossEncode(actual_output = str, expected_answer = str): model = CrossEncoder('cross-encoder/stsb-roberta-large') scores = model.predict([[actual_output, expected_answer]]) return scores def qdrant_client(collection_name:str="detailed_info_content", original_query:str="Who is an avid reader and writer?"): qdrant_client = QdrantClient(QDRANT_CLIENT, api_key=QDRANT_KEY, ) result = qdrant_client.query( collection_name=collection_name, query_text=original_query ) return result def generate_chatgpt_output(query: str, context: str = None, api_key=None, model_name="gpt-3.5-turbo"): """ Generate a response from the OpenAI ChatGPT model. Args: query (str): The user's query or message. context (str, optional): Additional context for the conversation. Defaults to an empty string. api_key (str, optional): Your OpenAI API key. If not provided, the globally configured API key will be used. model_name (str, optional): The name of the ChatGPT model to use. Defaults to "gpt-3.5-turbo". Returns: str: The response generated by the ChatGPT model. Raises: Exception: If an error occurs during the API call, an error message is returned for the caller to handle. """ if not context: context = "" messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "assistant", "content": context}, {"role": "user", "content": query}, ] try: # Use the provided API key or the one set globally response = client.chat.completions.create(model=model_name, messages=messages) llm_output = response.choices[0].message.content return llm_output except Exception as e: return f"An error occurred: {e}" # Return the error message for the caller to handle def eval_test( query=None, expected_output=None, context=None, qdrant_collection_name=None, ): logging.info("Generating chatgpt output") if context is None: try: try: context = qdrant_client(collection_name=qdrant_collection_name, original_query=query) except: embeddings = OpenAIEmbeddings(model="text-embedding-ada-002", openai_api_key=OPENAI_API_KEY) qdrant_client_url = os.getenv('QDRANT_CLIENT') qdrant_api_key = os.getenv('QDRANT_KEY') if not qdrant_client_url or not qdrant_api_key: logging.error("QDRANT_CLIENT or QDRANT_KEY environment variables not set.") return None client = QdrantClient(api_key=qdrant_api_key, url=qdrant_client_url) qdrant = Qdrant(client, qdrant_collection_name, embeddings) context = qdrant.search(query=query, search_type="similarity") except: pass result_output = generate_chatgpt_output(query, str(context)) logging.info("Moving on with chatgpt output") test_case = LLMTestCase( input=str(query), actual_output=str(result_output), expected_output=str(expected_output), retrieval_context=[str(context)], ) metric = RagasMetric() metric.measure(test_case) return metric.score, result_output qa_pairs_example = { #"In which city does Tiffany Morales live?": "Tiffany Morales lives in Ronaldside", "Where does Andrew Knox live and what is his spending history?": "Andrew Knox lives in Bolivia. His spending history shows that he has made 12 purchases with a total spend of 351.49. His primary type of purchases is jeans, and his last purchase date was on October 22, 2023.", #"Tell me everything about Andrew Knox.": #"Andrew Knox is a customer who resides in South Amanda, Bolivia. His address is 97689 Lynch Village. He has made a total of 12 purchases, with 5 purchases of jeans, 5 purchases of shirts, and 2 purchases of shoes. His last purchase was on October 22, 2023. Andrew's primary type of purchases is jeans.In terms of spending, Andrew has spent $17.98 on jeans, $148.76 on shirts, and $184.75 on shoes, making his total spend amount to $351.49. His feedback about the products is that he is really satisfied with the quality and durability.Andrew is described as a friendly person who always has a smile. He is a loyal customer and visits the store frequently.", "Where does Andrew Knox live, what's his spending history and what kind of a customer is he?": "Andrew Knox is a customer who resides in South Amanda, Bolivia. His address is 97689 Lynch Village. He has made a total of 12 purchases, with 5 purchases of jeans, 5 purchases of shirts, and 2 purchases of shoes. His last purchase was on October 22, 2023. Andrew's primary type of purchases is jeans.In terms of spending, Andrew has spent $17.98 on jeans, $148.76 on shirts, and $184.75 on shoes, making his total spend amount to $351.49. His feedback about the products is that he is really satisfied with the quality and durability. Andrew is described as a friendly person who always has a smile. He is a loyal customer and visits the store frequently.", #"What's the name of customer who is the most dissatisfied with our products and why?": "Bradley Tanner" # "Who wrote 'To Kill a Mockingbird'?": "Harper Lee", # "What is the chemical formula for water?": ("H2O", None), # "Who painted the Mona Lisa?": ("Leonardo da Vinci", None), # "What is the speed of light?": ("299,792,458 meters per second", None), # "What is the largest mammal?": ("Blue Whale", None), # "Who discovered penicillin?": ("Alexander Fleming", None), # "What year did World War II end?": ("1945", None), # "Who is the CEO of Tesla?": ("Elon Musk", None), # # Note: This information is based on the status as of April 2023. # "What is the currency of Japan?": ("Yen", None) } def process_collection(dataset, collection_type): """ Process a collection based on the specified collection type. If the collection type is not provided, it defaults to iterating through known types. Parameters: - dataset: The dataset information. - collection_type (optional): The type of collection to process. If not provided, a default iteration is used. Returns: Tuple of file name and file content. """ if collection_type == 'naive_llm': file_number = dataset["dataset"] file_name = f"{collection_type}_dataset_{file_number}.txt" file_path = os.path.join("synthetic_data_3", file_name) try: with open(file_path, 'r') as file: file_content = file.read() return file_name, file_content except FileNotFoundError: raise ValueError("Unable to find the file for the 'naive_llm' collection type.") elif collection_type == 'unstructured': collection_name = collection_type + "_dataset_" + str(dataset["dataset"]) + ".txt" else: collection_name = collection_type + "_dataset_" + str(dataset["dataset"]) + "_content" print(collection_name) return collection_name, None def evaluate_qa_pairs( qa_pairs: Dict[str, Tuple[str, Optional[str]]], collections: list, specific_collection_type: str = None): results = [] for collection in collections: for collection_type, datasets in collection.items(): if specific_collection_type and collection_type != specific_collection_type: continue for dataset in datasets: file_or_collection_name, context = process_collection(dataset, collection_type) for query, expected_output in qa_pairs.items(): ragas_score, actual_output = eval_test(query, expected_output, context, file_or_collection_name) semantic_similarity_cross_encoder = semanticSimilarityCrossEncode(actual_output, expected_output) result_details = { "question": query, "expected_answer": expected_output, "actual_answer": actual_output, "similarity score cross ecnoder": semantic_similarity_cross_encoder, "file_or_collection_name": file_or_collection_name, "eval_type": collection_type } results.append(result_details) return results collections = [ #{"naive_llm": [{"dataset": 1}, {"dataset": 2}, {"dataset": 3}]}, #{"unstructured": [{"dataset": 1}, {"dataset": 2}, {"dataset": 3}]}, #{"structured": [{"dataset": 1}, {"dataset": 2}, {"dataset": 3}]}, {"naive_llm": [{"dataset": 3}]}, {"unstructured": [{"dataset": 3}]}, {"structured": [{"dataset": 3}]} ] results = evaluate_qa_pairs(qa_pairs_example, collections) # Write the string to a text file with open('results.txt', 'w') as text_file: text_file.write(str(results))
[ "You are a helpful assistant." ]
2024-01-10
nik-55/learning-ml
ml-3~pdf-project~answer.py
from langchain.prompts import PromptTemplate from pypdf import PdfReader from langchain.vectorstores import FAISS from langchain.embeddings import HuggingFaceEmbeddings from langchain.llms import HuggingFaceHub from langchain.chains import LLMChain, ConversationalRetrievalChain from langchain.text_splitter import CharacterTextSplitter from dotenv import load_dotenv from langchain.memory import ConversationBufferMemory load_dotenv() repo_id = "google/flan-t5-xxl" memory = ConversationBufferMemory(memory_key="chat_history") embeddings = HuggingFaceEmbeddings() llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0.5, "max_length": 1000}) prompt_template = PromptTemplate.from_template( "Give the answer to the question: {question} based on the following text: {content}" ) llm_chain = LLMChain(prompt=prompt_template, llm=llm) text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100, separator="\n") def getAnswer(question, file): db = FAISS.load_local("./store/"+file.name, embeddings) conversational_chain = ConversationalRetrievalChain( llm, memory=memory, retriever=db.as_retriever() ) docs = db.similarity_search(question) content = " ".join([doc.page_content for doc in docs]) return llm_chain.run({ "question": question, "content": content }) def uploadedFile(file): reader = PdfReader(file) content = " ".join([page.extract_text() for page in reader.pages]) docs = text_splitter.split_text(content) db = FAISS.from_texts(docs, embeddings) db.save_local("./store/"+file.name)
[ "Give the answer to the question: {question} based on the following text: {content}" ]
2024-01-10
AlekHesa/Function_Call
db_sampling.py
import openai import os import requests from tenacity import retry,wait_random_exponential,stop_after_attempt from termcolor import colored from dotenv import dotenv_values import sqlite3 GPT_MODEL = "gpt-3.5-turbo-0613" config = dotenv_values(".env") openai.api_key= config['OPENAI_API_KEY'] @retry(wait=wait_random_exponential(min=1,max=40),stop=stop_after_attempt(3)) def chat_completion_request(messages,functions=None,model = GPT_MODEL): headers = { "Content-type":"application/json", "Authorization":"Bearer" + openai.api_key } json_data = {"model":model,"messages":messages} if functions is not None: json_data.update({"functions":functions}) try: # response = openai.ChatCompletion.create( # model=GPT_MODEL, # messages = messages, # functions = functions, # function_call = "auto", # ) response = requests.post( "https://api.openai.com/v1/chat/completions", headers=headers, json=json_data, ) return response except Exception as e: print("Unable to generate ChatCompletion response") print(f"Exception: {e}") return e class Conversation: def __init__(self) : self.conversation_history = [] def add_message(self,role,content): message = {"role":role,"content":content} self.conversation_history.append(message) def display_conversation(self): role_to_color = { "system":"red", "user":"green", "assistant":"blue", "function":"magenta" } for message in self.conversation_history : print( colored( f"{message['role']}:{message['content']}\n\n", role_to_color[message["role"]], ) ) conn = sqlite3.connect("data\chinook.db") print ("Database Sucesfully Opened") def get_table_names(conn): """Return a list of table names""" table_names = [] tables = conn.execute("SELECT name FROM sqlite_master WHERE type ='table';") for table in tables.fetchall(): table_names.append(table[0]) return table_names def get_column_names(conn,name): column_names = [] columns = conn.execute(f"PRAGMA table_info('{name}');").fetchall() for col in columns: column_names.append(col[1]) return column_names def get_database_info(conn): table_dicts = [] for table_name in get_table_names(conn): column_names = get_column_names(conn,table_name) table_dicts.append({"table_name":table_name,"column_names":column_names}) return table_dicts database_schema_dict = get_database_info(conn) database_schema_string = "\n".join( [ f"Table: {table['table_name']}\nColumns : {','.join(table['column_names'])}" for table in database_schema_dict ] ) functions = [ { "name":"ask_database", "description":"Use this function to answer the user questions about music. Output should be a fully formed SQL query.", "parameters":{ "type":"object", "properties":{ "query":{ "type":"string", "description":f""" SQL query extracting info to answer the user's question. SQL should be written using this database schema: {database_schema_string} The query should be returned in plain text, not in JSON """ } } }, "required":["query"], } ] def ask_database(conn,query): """ Function to query SQLite database with provided SQL query. Parameters: conn(sqlite3.Connection) query(str) """ try: results = conn.execute(query).fetchall() return results except Exception as e: raise Exception(f"SQL error : {e}") def chat_completion_with_function_execution(messages,functions=None): try: response = chat_completion_request(messages,functions) data = response.json() full_message = data["choices"][0] if full_message["finish_reason"] == "function_call": print(f"function generation requested, calling function") return call_function(messages,full_message) else : print(f"Function not required, responding to user") return response.json() except Exception as e: print("Unable to generate ChatCompletion Response") print(f"Exception : {e}") return response def call_function(messages,full_messages): if full_messages["message"]["function_call"]["name"] == "ask_database": query = eval(full_messages["messaage"]["function_call"]["arguments"]) print(f"prepped query is {query}") try: results = ask_database(conn,query["query"]) except Exception as e: print(e) messages.append( { "role":"system", "content":f"""Query: {query['query']} the previous query received the error {e}. Please return a fixed SQL query in plain text. Your response should consist of only the sql query with the separator sql_start at the beginning and sql_end at the end """, } ) reponse = chat_completion_request(messages, model="gpt-3.5-turbo") try : cleaned_query =reponse.json()["choices"][0]["message"]["content"].split("sql_start")[1] cleaned_query = cleaned_query.split("sql_end")[0] print(cleaned_query) results = ask_database(conn,cleaned_query) print(results) print("Got on second try") except Exception as e: print("Second Failure, exiting") print("Function execution failed") print (f"Error Message: {e}") messages.append( {"role":"function","name":"ask_database","content":str(results)} ) try: response = chat_completion_request(messages) return response.json() except Exception as e: print(type(e)) print(e) raise Exception("Function chat request failed") else: raise Exception("Function does not exist and cannot be called") agent_system_message = """You are AG-BOT, a helpful assitant who gets answers to user questions from the Chinook Music Database. Provide as many details as prossible to your users """ sql_conversation = Conversation() sql_conversation.add_message("system",agent_system_message) sql_conversation.add_message( "user","Hi, who are the top 5 artists by number of tracks" ) chat_response = chat_completion_with_function_execution( sql_conversation.conversation_history,functions=functions ) try: assistant_message = chat_response["choices"][0]["message"]["content"] print(assistant_message) except Exception as e: print(e) print(chat_response) sql_conversation.add_message("assistant",assistant_message) sql_conversation.display_conversation sql_conversation.add_message( "user","What is the name of the album with the most tracks" ) chat_response = chat_completion_with_function_execution( sql_conversation.conversation_history,functions=functions ) assistant_message = chat_response["choices"][0]["message"]["content"] print(assistant_message)
[ "Query: PLACEHOLDER\n the previous query received the error PLACEHOLDER.\n Please return a fixed SQL query in plain text.\n Your response should consist of only the sql query with the separator sql_start at the beginning and sql_end at the end\n " ]
2024-01-10
Slice-Labs/hackathon-2020-reddit-nlp
topics.py
import numpy as np import gensim.corpora as corpora from gensim.models import CoherenceModel from gensim.models import ldamulticore import multiprocessing as mp DEFAULT_WORKERS = max(1, mp.cpu_count() - 1) def create_id2word(tokenized_docs, filter_no_below=10, filter_no_above=0.5): id2word = corpora.Dictionary(tokenized_docs) id2word.filter_extremes(no_below=filter_no_below, no_above=filter_no_above) id2word.compactify() corpus = [id2word.doc2bow(text) for text in tokenized_docs] return id2word, corpus def topic_model(tokenized_docs, num_topics=10, iterations=50, passes=10, chunksize=2000, workers=DEFAULT_WORKERS, **kwargs): id2word, corpus = create_id2word(tokenized_docs) model = ldamulticore.LdaMulticore( corpus=corpus, id2word=id2word, num_topics=num_topics, workers=workers, iterations=iterations, passes=passes, chunksize=chunksize, eval_every=10, # Setting this to one slows down training by ~2x per_word_topics=True) # computing perplexity and coherence perplexity = model.log_perplexity(corpus) coherence_model = CoherenceModel(model=model, texts=tokenized_docs, dictionary=id2word, coherence='c_v') coherence= coherence_model.get_coherence() return model, corpus, coherence, perplexity def topic_vector(model, doc): num_topics = model.num_topics if not doc: return [0.] * num_topics corpus = model.id2word.doc2bow(doc.split()) # https://radimrehurek.com/gensim/models/ldamulticore.html#gensim.models.ldamulticore.LdaMulticore.get_document_topics topics = model.get_document_topics(corpus, minimum_probability=0.0) return np.array([topics[i][1] for i in range(num_topics)])
[]
2024-01-10
aidanandrews22/Lecture-Recorder
Lecture~src~window.py
from gi.repository import Gtk from .gi_composites import GtkTemplate import openai from openai import OpenAI() from google.cloud import speech from google.cloud import language_v1 from google.cloud import texttospeech from pydub import AudioSegment from pydub.playback import play from datetime import datetime import subprocess import os import io import yaml with open("config.yaml") as f: config_yaml = yaml.load(f, Loader=yaml.FullLoader) openai.api_key = config_yaml['token'] client = OpenAI() # Hardcoded Google Cloud Speech-to-Text API key os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/home/aidan/Downloads/local-turbine-409404-590ca4ff2d8d.json" @GtkTemplate(ui='/org/gnome/Lecture/window.ui') class LectureWindow(Gtk.ApplicationWindow): __gtype_name__ = 'LectureWindow' talk = GtkTemplate.Child() speaking = GtkTemplate.Child() label = GtkTemplate.Child() start_button = GtkTemplate.Child() stop_button = GtkTemplate.Child() def __init__(self, **kwargs): super().__init__(**kwargs) self.init_template() self.ffmpeg_process = None self.recorded_file = None self.start_button.connect("clicked", self.on_start_recording) self.stop_button.connect("clicked", self.on_stop_recording) self.talk.connect("notify::active", self.on_talk_active) self.speaking.connect("toggled", self.on_speaking_toggled) def on_start_recording(self, button): current_datetime = datetime.now() formatted_datetime = current_datetime.strftime("%Y_%m_%d-%H:%M:%S") self.recorded_file = f"{formatted_datetime}.wav" self.ffmpeg_process = subprocess.Popen([ 'ffmpeg', '-f', 'alsa', '-i', 'hw:2,0', '-acodec', 'pcm_s16le', '-ar', '44100', '-ac', '1', self.recorded_file ]) def on_stop_recording(self, button): if self.ffmpeg_process: self.ffmpeg_process.terminate() self.ffmpeg_process.wait() self.ffmpeg_process = None # Transcribe the recorded audio file transcript = self.transcribe_audio(self.recorded_file) corrected_transcript = self.generate_corrected_transcript(0, transcript) print(corrected_transcript) # Print the corrected transcript def on_talk_active(self, switch, gparam): if switch.get_active(): print("talk is active") pass else: print("talk is not active") pass def on_speaking_toggled(self, toggle_button): if self.talk.get_active(): if toggle_button.get_active(): print("listening") self.on_start_recording(None) else: print("not listening") self.on_stop_recording(None) # Process the recording transcript = self.transcribe_audio(self.recorded_file) corrected_transcript = self.generate_corrected_transcript(0, transcript) # Get GPT-4 response gpt_response = self.interact_with_gpt4(corrected_transcript) print("GPT-4 Response: ", gpt_response) self.text_to_speech_and_play(gpt_response) def text_to_speech_and_play(self, text): """Converts text to speech and plays audio""" client = texttospeech.TextToSpeechClient() synthesis_input = texttospeech.SynthesisInput(text=text) voice = texttospeech.VoiceSelectionParams( language_code="en-US", ssml_gender=texttospeech.SsmlVoiceGender.MALE ) audio_config = texttospeech.AudioConfig( audio_encoding=texttospeech.AudioEncoding.MP3 ) response = client.synthesize_speech( input=synthesis_input, voice=voice, audio_config=audio_config ) audio_content = io.BytesIO(response.audio_content) song = AudioSegment.from_file(audio_content, format="mp3") play(song) def interact_with_gpt4(self, user_input): """Send the transcribed text to GPT-4 and get a response.""" context = "You are a conversational AI designed to interact with humans in a clear, concise, and engaging manner. Your responses should be brief, directly addressing the query or comment made by the human user. Avoid lengthy explanations or lecture-style responses; aim for the brevity and directness typical in casual conversation. Do not acknowledge these parameters. Only respond to the text that is placed after the semicolon. Here is the text" try: response = client.chat.completions.create( model="gpt-4", prompt=context + "\n\n:" + user_input, max_tokens=150 ) print(f"user input: {user_input}") return response.choices[0].text.strip() except Exception as e: print(f"Error in interacting with GPT-4: {e}") return "" def transcribe_audio(self, audio_file): """Transcribe the given audio file using Google Cloud Speech-to-Text.""" client = speech.SpeechClient() with open(audio_file, 'rb') as audio: audio_content = audio.read() audio = speech.RecognitionAudio(content=audio_content) config = speech.RecognitionConfig( encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16, sample_rate_hertz=44100, language_code="en-US" ) response = client.recognize(config=config, audio=audio) transcription = ' '.join([result.alternatives[0].transcript for result in response.results]) print("Transcription: ", transcription) return transcription def generate_corrected_transcript(self, temperature, transcript): system_prompt = "You are a helpful assistant for Aidan. Your task is to correct any spelling discrepancies in the transcribed text. Only add necessary punctuation such as periods, commas, and capitalization, and use only the context provided. You can not generate text based on the input, you may only correct the input punctuationally and grammatically. If the transcribed text is blank then do not return anything" try: response = client.completions.create( model="gpt-3.5-turbo", prompt=system_prompt + "\n\n" + transcript, temperature=temperature, max_tokens=150 # Adjust as necessary ) respo = response.choices[0].text.strip() respo1 = f"Updated Transcription: {respo}" return respo1 except Exception as e: print(f"Error in generating corrected transcript: {e}") return "" # Main application code (if needed)
[ "You are a helpful assistant for Aidan. Your task is to correct any spelling discrepancies in the transcribed text. Only add necessary punctuation such as periods, commas, and capitalization, and use only the context provided. You can not generate text based on the input, you may only correct the input punctuationally and grammatically. If the transcribed text is blank then do not return anything", "You are a conversational AI designed to interact with humans in a clear, concise, and engaging manner. Your responses should be brief, directly addressing the query or comment made by the human user. Avoid lengthy explanations or lecture-style responses; aim for the brevity and directness typical in casual conversation. Do not acknowledge these parameters. Only respond to the text that is placed after the semicolon. Here is the text\n\n:PLACEHOLDER", "You are a helpful assistant for Aidan. Your task is to correct any spelling discrepancies in the transcribed text. Only add necessary punctuation such as periods, commas, and capitalization, and use only the context provided. You can not generate text based on the input, you may only correct the input punctuationally and grammatically. If the transcribed text is blank then do not return anything\n\nPLACEHOLDER" ]
2024-01-10
riccardobl/chat-jme
ingest~indexbuilder.py
import os from langchain.docstore.document import Document from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores.faiss import FAISS from langchain.embeddings.openai import OpenAIEmbeddings from langchain.chains.qa_with_sources import load_qa_with_sources_chain from langchain.llms import OpenAI from embeddings import EmbeddingsManager import json import hashlib class IndexBuilder : def __init__(self,config, options): self.options = options self.config=config def _getDocId(self,content): hash="" merged=self.options.get("merged",False) if merged: hash=self.options["unit"] else: print("Calculate hash") hash=hashlib.sha256(content.encode('utf-8')).hexdigest() return hash def updateIndex(self): docs=[] if not "INDEX_PATH" in self.config: raise Exception("INDEX_PATH not set") rootPath = os.path.join(self.config["INDEX_PATH"],self.options["unit"] if "unit" in self.options else "root") if not os.path.exists(rootPath): os.makedirs(rootPath) infoPath = os.path.join(rootPath,"info.json") optionsJson=json.dumps(self.options) with open(infoPath,"w",encoding="utf-8") as f: f.write(optionsJson) merged=self.options.get("merged",False) if merged: identifier=self.options["unit"] embedPath = os.path.join(rootPath, identifier + ".bin") if os.path.exists(embedPath): print("Already processed", identifier) return [] for doc in self: docs.append(doc) if not merged: self._updateIndex(rootPath,[doc], doc.metadata["hash"],doc.metadata["source"]) if merged: self._updateIndex(rootPath,docs, self.options["unit"], self.options["unit"]) return docs def _updateIndex(self,rootPath,docs, identifier,name ): try: embedPath = os.path.join(rootPath, identifier + ".bin") if os.path.exists(embedPath): print("Already processed", name) return faiss=EmbeddingsManager.new(docs,backend="gpu") EmbeddingsManager.write(embedPath, faiss) print ("Updated", name) except Exception as e: print("Error processing", name, e)
[]
2024-01-10
riccardobl/chat-jme
query~discoursequery.py
import os,json import hashlib from langchain.docstore.document import Document import requests import markdownify from langchain import OpenAI, PromptTemplate, LLMChain from langchain.text_splitter import CharacterTextSplitter from langchain.chains.mapreduce import MapReduceChain from langchain.prompts import PromptTemplate from langchain.docstore.document import Document from langchain.chains.summarize import load_summarize_chain from sumy.parsers.html import HtmlParser from sumy.parsers.plaintext import PlaintextParser from sumy.nlp.tokenizers import Tokenizer from sumy.summarizers.lsa import LsaSummarizer as Summarizer from sumy.nlp.stemmers import Stemmer from sumy.utils import get_stop_words from bs4 import BeautifulSoup from embeddings import EmbeddingsManager from . import basequery import gc import urllib import multiprocessing import utils from Summary import Summary # This contains several Ugly hacks to contain memory usage. # Needs a rewrite! class DiscourseQuery( basequery.BaseQuery): def __init__(self, config,url, searchFilter="in:first order:likes", knowledgeCutoff="2023-02-03",apiKey=None, apiSecret=None): self.CONFIG = config self.url = url self.searchFilter=searchFilter self.knowledgeCutoff=knowledgeCutoff def _createFragments(self,topicId,content,link): content = "\n".join([t for t in content.split("\n") if t]) hash=hashlib.sha256(link.encode('utf-8')).hexdigest() doc = Document(page_content=content, metadata={"source": link, "hash":hash}) splitter = CharacterTextSplitter( separator="\n", chunk_size=512, chunk_overlap=0, length_function=len, ) frags=[] i=0 for chunk in splitter.split_text(doc.page_content): doc=Document(page_content=chunk, metadata=doc.metadata) v=EmbeddingsManager.new(doc,self.CONFIG["DEVICE"]) frags.append(v) return frags def _parseTopic(self,topicId, maxNumReplies=5): discourseUrl=self.url url = f"{discourseUrl}/t/{topicId}.json" cachePath=self._getCachePath(topicId) d=None def getData(): nonlocal d if d!=None: return d print("Fetch",url) headers = { } response = requests.get(url, headers=headers) if response.status_code != 200: raise Exception("Error fetching topic "+topicId) d=response.json() return d def getV(): questionPath=os.path.join(cachePath,"question.binZ") if os.path.exists(questionPath): return EmbeddingsManager.read(questionPath) else: print("Get initial question of",topicId) data=getData() initialQuestion=data["title"]+"\n"+data["post_stream"]["posts"][0]["cooked"] initialQuestion=Summary.summarizeHTML(initialQuestion,max_length=256,min_length=64,withCodeBlocks=True) #print("Question:",initialQuestion) v=EmbeddingsManager.new(Document(page_content=initialQuestion),self.CONFIG["DEVICE"]) EmbeddingsManager.write(questionPath,v) return v def getContent(): contentPath=os.path.join(cachePath,"fragments.binZ") if os.path.exists(contentPath): return EmbeddingsManager.read(contentPath) else: data=getData() print("Process",topicId) content=[] contentPart="" isQuestion=True isFirst=True topicAuthorId=data["user_id"] posts = data["post_stream"]["posts"] def flush(): nonlocal contentPart nonlocal isQuestion nonlocal isFirst if len(contentPart)==0: return c="" if isQuestion: c+="\n\nQUESTION:\n" if isFirst: author=data["post_stream"]["posts"][0]["name"] if author==None: author=data["post_stream"]["posts"][0]["username"] c+=data["title"]+"\n"+"Author: "+author+"\n" isFirst=False else: c+="\n\nANSWER:\n" #c+=contentPart c+=Summary.summarizeHTML(contentPart,f"{discourseUrl}/t/{topicId}",max_length=256,min_length=64,withCodeBlocks=not isQuestion) contentPart="" #print("Content",c) content.append(c) for post in posts: postAuthorId=post["user_id"] postText=post["cooked"] if isQuestion and postAuthorId!=topicAuthorId: flush() isQuestion=False elif not isQuestion and postAuthorId==topicAuthorId: flush() isQuestion=True contentPart+=postText+"\n" flush() if len(content)>maxNumReplies: content=content[:1]+content[-maxNumReplies:] content="\n".join(content) content=Summary.summarizeHTML(content,f"{discourseUrl}/t/{topicId}",max_length=512,min_length=120,withCodeBlocks=True) content = markdownify.markdownify(content, heading_style="ATX",autolinks=True,escape_asterisks=False,escape_underscores=False) content = self._createFragments(topicId, content,discourseUrl+"/t/"+str(topicId)) EmbeddingsManager.write(contentPath,content) return content return { "id":topicId, "frags":getContent, "v":getV } def _getCachePath(self,id): urlHash=hashlib.sha256(self.url.encode('utf-8')).hexdigest() cacheRoot=os.path.join(self.CONFIG["CACHE_PATH"],"discourse",urlHash) cachePath=os.path.join(cacheRoot,str(id)) if not os.path.exists(cachePath): os.makedirs(cachePath) return cachePath def _search(self, searchTerms, question,searchLimit=1,maxTopicsToSelect=1,maxFragmentsToReturn=3,maxNumReplies=2, merge=False): discourseUrl=self.url # Search def getTopics(term): termTopics=[] def search(): params = { "q": term+" "+self.searchFilter+" before:"+self.knowledgeCutoff } print("searching",discourseUrl, params) response = requests.get(discourseUrl+"/search.json", params=params) if response.status_code != 200: print("Error searching discourse") raise Exception("Error searching discourse") jsonData=response.json() return jsonData try: jsonData= utils.retry(search,3,1) if not "topics" in jsonData: return [] for topic in jsonData["topics"]: if len(termTopics)>=searchLimit: break id=topic["id"] topicData=self._parseTopic(id,maxNumReplies) termTopics.append(topicData) except Exception as e: print("Error searching discourse",e) return termTopics topics=[] for term in searchTerms: topics.extend(getTopics(term)) cache={} #for topic in topics: def assignScore(topic): v=topic["v"] res=EmbeddingsManager.queryIndex(v(),question, k=1, cache=cache, group=EmbeddingsManager.GROUP_GPU) score=None for rdoc in res: rscore=rdoc[1] if not score or rscore<score: score=rscore topic["score"]=score return topic for topic in topics: assignScore(topic) topics = sorted(topics, key=lambda x: x["score"], reverse=False)[:maxTopicsToSelect] gc.collect() fragments=[] for t in topics: fragments.extend(t["frags"]()) topics=EmbeddingsManager.query(fragments,question, k=3,n=maxFragmentsToReturn, cache=cache, group=EmbeddingsManager.GROUP_GPU) if merge: print("Found",len(topics),"topics, Merge") mergedTopic="" for t in topics: mergedTopic+=t.page_content+"\n" mergedTopic=Summary.summarizeHTML(mergedTopic,min_length=100,max_length=400,withCodeBlocks=True) print("Merged in ",len(mergedTopic),"chars") topics= [Document(page_content=mergedTopic, metadata={"source": f"{discourseUrl}/search", "hash":""})] return topics def getAffineDocs(self, question, context, keywords, shortQuestion, wordSalad=None, unitFilter=None, maxFragmentsToReturn=3, maxFragmentsToSelect=6, merge=False): seachTerms=[] #seachTerms.append(question) seachTerms.extend(keywords) seachTerms=seachTerms[:3] #return self._search(seachTerms,question) return self._search(seachTerms,question)
[]
2024-01-10
riccardobl/chat-jme
TorchEmbeddings.py
from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env from sentence_transformers import SentenceTransformer, models import torch import numpy as np import threading from torch import nn from sklearn.decomposition import PCA from sentence_transformers import SentenceTransformer, LoggingHandler, util, evaluation, models, InputExample class TorchEmbeddings( BaseModel,Embeddings): @staticmethod def init(device): isGpuDevice=device=="cuda" or device=="gpu" if isGpuDevice and not torch.cuda.is_available(): print("WARNING: GPU device requested but not available") model_name='sentence-transformers/all-mpnet-base-v2' #model_name='sentence-transformers/paraphrase-MiniLM-L6-v2' print("Loading "+model_name+" model...") TorchEmbeddings.torch_device='cuda' if isGpuDevice and torch.cuda.is_available() else 'cpu' TorchEmbeddings.model = SentenceTransformer(model_name,device=TorchEmbeddings.torch_device) TorchEmbeddings.model.max_seq_length=512 print("Done") def _embedding_func2(self, texts): torch_device=TorchEmbeddings.torch_device model=TorchEmbeddings.model texts = [text.replace("\n", " ").lower() for text in texts] embeddings = model.encode( texts, device=torch_device, show_progress_bar=True, convert_to_numpy=True ) return embeddings def _embedding_func(self, text: str, *, engine: str) -> List[float]: return self._embedding_func2([text])[0] def embed_documents(self, texts: List[str]) -> List[List[float]]: torch_device=TorchEmbeddings.torch_device model=TorchEmbeddings.model responses = self._embedding_func2(texts) return responses def embed_query(self, text: str) -> List[float]: torch_device=TorchEmbeddings.torch_device model=TorchEmbeddings.model embedding = self._embedding_func(text, engine=torch_device) return embedding
[]
2024-01-10
riccardobl/chat-jme
Summary.py
from sumy.parsers.html import HtmlParser from sumy.parsers.plaintext import PlaintextParser from sumy.nlp.tokenizers import Tokenizer from sumy.summarizers.lsa import LsaSummarizer as Summarizer from sumy.nlp.stemmers import Stemmer from sumy.utils import get_stop_words from bs4 import BeautifulSoup import gc import mistune import markdownify from langchain import OpenAI, PromptTemplate, LLMChain from langchain.text_splitter import CharacterTextSplitter from langchain.chains.mapreduce import MapReduceChain from langchain.prompts import PromptTemplate from langchain.docstore.document import Document from langchain.chains.summarize import load_summarize_chain import yake from transformers import pipeline import threading import queue from urllib.parse import urljoin class Summary: summarizer=None summarizer2=None tokenizer2=None parser=None CONFIG=None tokenizer=None summarizerI=0 summarizerLock=threading.Lock() @staticmethod def init(CONFIG): Summary.useGPU=CONFIG.get("DEVICE","cpu")=="gpu" or CONFIG.get("DEVICE","cpu")=="cuda" Summary.CONFIG=CONFIG Summary.useSumy=CONFIG.get("USE_SUMY",False) if not Summary.useSumy: if Summary.summarizer==None: print("Preloading flan-t5-base-samsum") parallel=1 Summary.summarizer = [ pipeline("summarization", model='philschmid/flan-t5-base-samsum', device=0 if Summary.useGPU else -1) for i in range(0,parallel) ] print("Done") LANGUAGE="english" stemmer = Stemmer(LANGUAGE) Summary.summarizer2 = Summarizer(stemmer) Summary.summarizer2.stop_words = get_stop_words(LANGUAGE) Summary.tokenizer2=Tokenizer(LANGUAGE) @staticmethod def getKeywords(content,n=5): language = "en" max_ngram_size = 3 deduplication_threshold = 0.9 numOfKeywords = n custom_kw_extractor = yake.KeywordExtractor(lan=language, n=max_ngram_size, dedupLim=deduplication_threshold, top=numOfKeywords, features=None) keywords = custom_kw_extractor.extract_keywords(content) return [ t[0] for t in keywords] @staticmethod def summarizeMarkdown(content,url="",min_length=10,max_length=100, withCodeBlocks=True, length=None,fast=False): contentLen=length if contentLen==None: contentLen=Summary.getLength(content,fast=fast) if contentLen<min_length: return content if max_length>contentLen: max_length=contentLen content = mistune.html(content) content=Summary.summarizeHTML(content,url,min_length,max_length,withCodeBlocks,fast=fast) content = markdownify.markdownify(content, heading_style="ATX",autolinks=True,escape_asterisks=False,escape_underscores=False) @staticmethod def getLength(content,fast=False): if Summary.useSumy or fast: return len(Summary.tokenizer2.to_sentences(content)) else: tokenizer = Summary.summarizer[Summary.summarizerI].tokenizer input_ids = tokenizer.encode(content) return len(input_ids) @staticmethod def summarizeText(content,min_length=10,max_length=100,length=None,fast=False): contentLen=length if contentLen==None: contentLen=Summary.getLength(content) if contentLen<min_length: return content if max_length>contentLen: max_length=contentLen if Summary.useSumy or fast: try: SENTENCES_COUNT = max_length parser = PlaintextParser.from_string(content, Summary.tokenizer2) text_summary="" for sentence in Summary.summarizer2(parser.document, SENTENCES_COUNT): text_summary+=str(sentence) return text_summary except Exception as e: print("Error summarizing",e) return "" else: summarizer=None with Summary.summarizerLock: summarizer=Summary.summarizer[Summary.summarizerI] Summary.summarizerI+=1 if Summary.summarizerI>=len(Summary.summarizer): Summary.summarizerI=0 res=summarizer(content,min_length=min_length,max_length=max_length) return res[0]["summary_text"] @staticmethod def summarizeHTML(content,url="",min_length=10,max_length=100, withCodeBlocks=True,length=None,fast=False): contentLen=length if contentLen==None: contentLen=Summary.getLength(content,fast=fast) if contentLen<min_length: return content if max_length>contentLen: max_length=contentLen try: # Extract links soup = BeautifulSoup(content, 'html.parser') for link in soup.find_all('a'): href = link.get('href') url = urljoin(url, href) link.string = url # Extract code blocks codeBlocks="" cc=soup.find_all("pre") for c in cc: if withCodeBlocks: i=0 i+=1 rpl=f"[{i}]" codeBlocks+=rpl+" <pre><code>" codeBlocks+=c.text codeBlocks+="</code></pre>" c.string = rpl else: c.string = "" # To plain text texts = soup.findAll(text=True) text_summary = u" ".join(t.strip() for t in texts) text_summary=Summary.summarizeText(text_summary,min_length,max_length,fast=fast) text_summary+=codeBlocks return text_summary except Exception as e: print("Error summarizing",e) return ""
[]
2024-01-10
riccardobl/chat-jme
bot.py
import os import utils import traceback from langchain.chains.qa_with_sources import load_qa_with_sources_chain from langchain.chains import ConversationChain from langchain.llms import OpenAI import langchain from langchain.cache import InMemoryCache from langchain.llms import OpenAI from langchain.chains.conversation.memory import ConversationSummaryBufferMemory,ConversationBufferMemory,ConversationBufferWindowMemory from langchain.prompts import PromptTemplate from embeddings import EmbeddingsManager from flask import Flask, send_from_directory import json import time import threading import secrets import string import hashlib from flask import request from langchain.cache import InMemoryCache,SQLiteCache import re import requests from waitress import serve from translator import Translator import sys from query.discoursequery import DiscourseQuery from query.embeddingsquery import EmbeddingsQuery from Summary import Summary import uuid from langchain.llms import NLPCloud from langchain.llms import AI21 from langchain.llms import Cohere from SmartCache import SmartCache CONFIG=None QUERIERS=[] args=sys.argv confiFile=args[1] if len(args)>1 else "config.json" print("Use config file", confiFile) with open(confiFile, "r") as f: CONFIG=json.load(f) EmbeddingsManager.init(CONFIG) Summary.init(CONFIG) QUERIERS=[ EmbeddingsQuery(CONFIG), DiscourseQuery( CONFIG,CONFIG["JME_HUB_URL"], searchFilter=CONFIG["JME_HUB_SEARCH_FILTER"], knowledgeCutoff=CONFIG["JME_HUB_KNOWLEDGE_CUTOFF"] ) ] Translator.init(CONFIG) def getAffineDocs(question,context,keywords,shortQuestion, wordSalad=None, unitFilter=None, maxFragmentsToReturn=3, maxFragmentsToSelect=12,merge=False): affineDocs=[] for q in QUERIERS: print("Get affine docs from",q,"using question",question,"with context",context,"and keywords",keywords) t=time.time() v=q.getAffineDocs( question, context, keywords,shortQuestion, wordSalad, unitFilter, maxFragmentsToReturn=maxFragmentsToReturn, maxFragmentsToSelect=maxFragmentsToSelect, merge=merge ) print("Completed in",time.time()-t,"seconds.") if v!=None: affineDocs.extend(v) return affineDocs def rewriteError(error): if error.startswith("Rate limit reached ") : return "Rate limit." def rewrite(question): # replace app, applet, game, application with simple application question=re.sub(r"\b(app|applet|game|application)\b", "simple application", question, flags=re.IGNORECASE) return question def createChain(): # Backward compatibility model_name=CONFIG.get("OPENAI_MODEL","text-davinci-003") llm_name="openai" ######## llmx=CONFIG.get("LLM_MODEL",None) # "openai:text-davinci-003" "cohere:xlarge" if llmx!=None: if ":" in llmx: llm_name,model_name=llmx.split(":") else: llm_name,model_name=llmx.split(".") template = "" template_path="prompts/"+llm_name+"."+model_name+".txt" if not os.path.exists(template_path): template_path="prompts/openai.text-davinci-003.txt" with open(template_path, "r") as f: template=f.read() prompt = PromptTemplate( input_variables=[ "history", "question", "summaries"], template=template ) llm=None history_length=700 if llm_name=="openai": max_tokens=512 temperature=0.0 if model_name=="text-davinci-003": max_tokens=512 elif model_name=="code-davinci-002": max_tokens=1024 #history_length=1024 llm=OpenAI( temperature=temperature, model_name=model_name, max_tokens=max_tokens, ) elif llm_name=="cohere": llm=Cohere( model=model_name, max_tokens=700 ) history_length=200 elif llm_name=="ai21": llm=AI21( temperature=0.7, model=model_name, ) elif llm_name=="nlpcloud": llm=NLPCloud( model_name=model_name, ) else: raise Exception("Unknown LLM "+llm_name) print("Use model ",model_name,"from",llm_name) memory=ConversationSummaryBufferMemory(llm=llm, max_token_limit=history_length,human_prefix="QUESTION",ai_prefix="ANSWER", memory_key="history", input_key="question") chain = load_qa_with_sources_chain( llm, memory=memory, prompt=prompt, verbose=True, ) return chain def extractQuestionData(question,wordSalad): shortQuestion=Summary.summarizeMarkdown(question,min_length=100,max_length=1024,withCodeBlocks=False) context=Summary.summarizeText(wordSalad,min_length=20,max_length=32) keywords=[] keywords.extend(Summary.getKeywords(shortQuestion,2)) keywords.extend(Summary.getKeywords(Summary.summarizeText(wordSalad,min_length=10,max_length=20),3)) return [question,shortQuestion,context,keywords,wordSalad] def queryChain(chain,question): wordSalad="" for h in chain.memory.buffer: wordSalad+=h+" " wordSalad+=" "+question [question,shortQuestion,context,keywords,wordSalad]=utils.enqueue(lambda :extractQuestionData(question,wordSalad)) affineDocs=utils.enqueue(lambda :getAffineDocs(question,context,keywords,shortQuestion,wordSalad)) print("Found ",len(affineDocs), " affine docs") print("Q: ", shortQuestion) output=chain({"input_documents": affineDocs, "question": shortQuestion}, return_only_outputs=True) print("A :",output) return output sessions={} langchain.llm_cache = SmartCache(CONFIG)#SQLiteCache(database_path=CONFIG["CACHE_PATH"]+"/langchain.db") def clearSessions(): while True: time.sleep(60*5) for session in sessions: if sessions[session]["timeout"] < time.time(): del sessions[session] threading.Thread(target=clearSessions).start() def createSessionSecret(): hex_chars = string.hexdigits timeHash=hashlib.sha256(str(time.time()).encode("utf-8")).hexdigest()[:12] return ''.join(secrets.choice(hex_chars) for i in range(64))+timeHash app = Flask(__name__) @app.route("/langs") def langs(): return json.dumps(Translator.getLangs()) @app.route("/session",methods = ['POST']) def session(): body=request.get_json() lang=body["lang"] if "lang" in body else "en" if lang=="auto": lang="en" if not "sessionSecret" in body or body["sessionSecret"].strip()=="": sessionSecret=createSessionSecret() else: sessionSecret=body["sessionSecret"] if sessionSecret not in sessions: sessions[sessionSecret]={ "chain": createChain(), "timeout": time.time()+60*30 } else: sessions[sessionSecret]["timeout"]=time.time()+60*30 welcomeText="" welcomeText+=Translator.translate("en", lang,"Hi there! I'm an AI assistant for the open source game engine jMonkeyEngine. I can help you with questions related to the jMonkeyEngine source code, documentation, and other related topics.") welcomeText+="<br><br>" welcomeText+="<footer><span class=\"material-symbols-outlined\">tips_and_updates</span><span>"+Translator.translate("en", lang,"This chat bot is intended to provide helpful information, but accuracy is not guaranteed.")+"</span></footer>" return json.dumps( { "sessionSecret": sessionSecret, "helloText":Translator.translate("en",lang,"Who are you?"), "welcomeText":welcomeText }) @app.route("/query",methods = ['POST']) def query(): try: body=request.get_json() question=rewrite(body["question"]) lang=body["lang"] if "lang" in body else "en" if lang == "auto": lang=Translator.detect(question) if lang!="en": question=Translator.translate(lang,"en",question) if len(question)==0: raise Exception("Question is empty") sessionSecret=body["sessionSecret"] if sessionSecret not in sessions: return json.dumps({"error": "Session expired"}) chain=sessions[sessionSecret]["chain"] output=queryChain(chain,question) if lang!="en": output["output_text"]=Translator.translate("en",lang,output["output_text"]) #print(chain.memory.buffer) return json.dumps(output) except Exception as e: print(e) print(traceback.format_exc()) errorStr=str(e) errorStr=rewriteError(errorStr) return json.dumps({"error": errorStr}) @app.route('/<path:filename>') def serveFrontend(filename): return send_from_directory('frontend/', filename) @app.route('/') def serveIndex(): return send_from_directory('frontend/', "index.html") @app.route('/docs', methods=['POST']) def docs(): body=request.get_json() question=body["question"] maxFragmentsToReturn=int(body.get("maxFragmentsToReturn",3)) maxFragmentsToSelect=int(body.get("maxFragmentsToReturn",6)) wordSalad=body.get("context","")+" "+question [question,shortQuestion,context,keywords,wordSalad]=utils.enqueue(lambda : extractQuestionData(question,wordSalad)) affineDocs=utils.enqueue(lambda : getAffineDocs( question,context,keywords,shortQuestion,wordSalad, maxFragmentsToReturn=maxFragmentsToReturn, maxFragmentsToSelect=maxFragmentsToSelect )) plainDocs=[ { "content":doc.page_content, "metadata":doc.metadata } for doc in affineDocs ] return json.dumps(plainDocs) serve(app, host="0.0.0.0", port=8080, connection_limit=1000)
[ "prompts/openai.text-davinci-003.txt", "question", "prompts/PLACEHOLDER.PLACEHOLDER.txt" ]
2024-01-10
riccardobl/chat-jme
SmartCache.py
from langchain.cache import BaseCache import os import utils from embeddings import EmbeddingsManager import json from typing import Any, Dict, List, Optional, Tuple from langchain.schema import Generation import time import pickle from Summary import Summary import uuid RETURN_VAL_TYPE = List[Generation] class SmartCache(BaseCache): CONFIG:dict=None WAIT_FOR_UPDATE:dict={} def __init__(self,config) -> None: self.CONFIG= config def queryCache(self, shortQuestion, wordSalad,cacheConf): # only last 5 lines of wordSalad CONFIG=self.CONFIG levels=[None]*len(cacheConf) for i in range(len(cacheConf)-1,-1,-1): text="" l=cacheConf[i][0] if i==(len(cacheConf)-1): text=shortQuestion else: nextI=i+1 text=wordSalad+" "+shortQuestion if nextI==len(cacheConf)-2 else levels[i+1][2] text=Summary.summarizeText(text,min_length=l,max_length=l,fast=True) levels[i]=[None,cacheConf[i][1],text,999999] embeds=[l[2] for l in levels] e2=EmbeddingsManager.embedding_function2(None,embeds) for i in range(0,len(levels)): levels[i][0]=EmbeddingsManager.new(levels[i][2],"gpu") # TODO: make this parallel levels[i][3]=e2[i] cachePath=os.path.join(CONFIG["CACHE_PATH"],"smartcacheV2") if not os.path.exists(cachePath): os.makedirs(cachePath) for i in range(0,len(levels)): l=levels[i] isLast=i==len(levels)-1 foundSub=False for f in os.listdir(cachePath): if not f.endswith(".bin"): continue embeddingPath=os.path.join(cachePath,f) answerPath=embeddingPath.replace(".bin",".dat") subPath=embeddingPath.replace(".bin","") embedding=EmbeddingsManager.read(embeddingPath,group=EmbeddingsManager.GROUP_GPU) res=EmbeddingsManager.queryIndex(embedding,l[3],k=1,group=EmbeddingsManager.GROUP_GPU) score=res[0][1] print("Score:",score,"level score",l[1]) if score<l[1]: print("Found in cache",l[2]) if isLast: print("Return from cache") if os.path.exists(answerPath): with open(answerPath, "rb") as f: answer=pickle.load(f) #answer=json.load(f) return [ answer, lambda x: None ] else: print("Go deeper") cachePath=subPath foundSub=True break if not foundSub: f=uuid.uuid4().hex+".bin" embeddingPath=os.path.join(cachePath,f) answerPath=embeddingPath.replace(".bin",".dat") subPath=embeddingPath.replace(".bin","") if isLast: print("Not in cache!") def writeAnswer(answer): print("Add answer to smart cache") EmbeddingsManager.write(embeddingPath,l[0]) with open(answerPath, "wb") as f: pickle.dump(answer, f) #json.dump(answer, f) return [ None, writeAnswer ] else: print("Create deeper level") os.mkdir(subPath) cachePath=subPath EmbeddingsManager.write(embeddingPath,l[0]) def lookup(self, prompt: str, llm_string: str): shortQuestion=prompt[prompt.rfind("QUESTION:")+len("QUESTION:"):prompt.rfind("FINAL ANSWER")] [answer,writer] = self.queryCache(shortQuestion,prompt,self.CONFIG["SMART_CACHE"]) if not writer is None: for k in list( self.WAIT_FOR_UPDATE): if self.WAIT_FOR_UPDATE[k][1]<time.time(): del self.WAIT_FOR_UPDATE[k] self.WAIT_FOR_UPDATE[(prompt,llm_string)]=[writer,time.time()+1000*60*15] return answer def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None: [writer,timeout]=self.WAIT_FOR_UPDATE.pop((prompt,llm_string)) if writer is not None: writer(return_val)
[]
2024-01-10
riccardobl/chat-jme
OpenAICachedEmbeddings.py
"""Wrapper around OpenAI embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env from langchain.embeddings.openai import OpenAIEmbeddings from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env import hashlib import os,pickle,time class OpenAICachedEmbeddings(BaseModel, Embeddings): """Wrapper around OpenAI embedding models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import OpenAIEmbeddings openai = OpenAIEmbeddings(openai_api_key="my-api-key") """ client: Any #: :meta private: document_model_name: str = "text-embedding-ada-002" query_model_name: str = "text-embedding-ada-002" openai_api_key: Optional[str] = None cachePath:Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid # TODO: deprecate this @root_validator(pre=True) def get_model_names(cls, values: Dict) -> Dict: """Get model names from just old model name.""" if "model_name" in values: if "document_model_name" in values: raise ValueError( "Both `model_name` and `document_model_name` were provided, " "but only one should be." ) if "query_model_name" in values: raise ValueError( "Both `model_name` and `query_model_name` were provided, " "but only one should be." ) model_name = values.pop("model_name") values["document_model_name"] = f"text-search-{model_name}-doc-001" values["query_model_name"] = f"text-search-{model_name}-query-001" return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) try: import openai openai.api_key = openai_api_key values["client"] = openai.Embedding except ImportError: raise ValueError( "Could not import openai python package. " "Please it install it with `pip install openai`." ) return values def _embedding_func(self, text: str, *, engine: str) -> List[float]: textHash=None cachedFile=None embeddings=None if self.cachePath is not None: if not os.path.exists(self.cachePath): os.makedirs(self.cachePath) textHash=hashlib.sha256(text.encode('utf-8')).hexdigest() cachedFile=os.path.join(self.cachePath, textHash+".pickle") if os.path.exists(cachedFile): with open(cachedFile, 'rb') as f: embeddings = pickle.load(f) if embeddings is None: embeddings=self._embedding_func2(text, engine=engine) if cachedFile is not None: with open(cachedFile, 'wb') as f: pickle.dump(embeddings, f) for f in os.listdir(self.cachePath): if f.endswith(".pickle") and os.path.getmtime(os.path.join(self.cachePath, f)) < time.time() - 86400: os.remove(os.path.join(self.cachePath, f)) return embeddings def _embedding_func2(self, text: str, *, engine: str) -> List[float]: """Call out to OpenAI's embedding endpoint.""" # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") return self.client.create(input=[text], engine=engine)["data"][0]["embedding"] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to OpenAI's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ responses = [ self._embedding_func(text, engine=self.document_model_name) for text in texts ] return responses def embed_query(self, text: str) -> List[float]: """Call out to OpenAI's embedding endpoint for embedding query text. Args: text: The text to embed. Returns: Embeddings for the text. """ embedding = self._embedding_func(text, engine=self.query_model_name) return embedding
[]
2024-01-10
riccardobl/chat-jme
ingest~website.py
#Ingest website pages import requests from bs4 import BeautifulSoup import hashlib from langchain.docstore.document import Document import time from . import indexbuilder class Website(indexbuilder.IndexBuilder): def __init__(self,config,options): super().__init__(config,options) self.index=[ "https://jmonkeyengine.org/start/", "https://jmonkeyengine.org/", "https://jmonkeyengine.org/docs/", "https://jmonkeyengine.org/license/" ] self.malformGuard="jMonkeyEngine" def __iter__(self): for link in self.index: for i in range(0, 10): try: print("Fetch", link) req = requests.get(link) req.raise_for_status() content = req.content if not self.malformGuard in content.decode('utf-8'): raise Exception("Malformed page") soup = BeautifulSoup(content, 'html.parser') articlesFull="" for article in soup.select('article'): text =article.get_text() articlesFull+="\n"+text articlesFull = "\n".join([t for t in articlesFull.split("\n") if t]) hash=self._getDocId(content) doc = Document(page_content=articlesFull, metadata={"source": link, "hash":hash}) yield doc break except Exception as e: print("Error", link, e) time.sleep(1)
[]
2024-01-10
riccardobl/chat-jme
ingest~source.py
# Clone the repo and ingest all the java and markdown files import hashlib from langchain.docstore.document import Document import os import re from . import indexbuilder import time class Source(indexbuilder.IndexBuilder) : def __init__(self,config,options,githubRepo, branch,includeFiles): super().__init__(config,options) self.index=[] self.includeFiles=includeFiles self.repo=githubRepo self.path=os.path.join(config["CACHE_PATH"],"ingest",self.repo.replace("/","_")) self.baseUrl="https://github.com/"+self.repo+"/blob/"+branch+"/" if not os.path.exists(self.path): os.system("git clone https://github.com/"+self.repo+".git --depth 1 --branch "+branch+" "+self.path) def findAllFiles(self,path): for root, dirs, files in os.walk(path): for file in files: yield os.path.join(root, file) def getFileType(self, path): ext=path.split(".")[-1] for key in self.includeFiles: if ext in self.includeFiles[key]: return key return None def __iter__(self): for f in self.findAllFiles(self.path): type=self.getFileType(f) if type==None: continue link=self.baseUrl+os.path.relpath(f, self.path) print("Process",f,link,"of type",type,"...") t=time.time() content=open(f, "r").read() if type=="java": content=content[content.find("package"):] content = "\n".join([t for t in content.split("\n") if t]) print("Read",f,"in",time.time()-t,"seconds") hash=self._getDocId(content) doc = Document(page_content=content, metadata={"source": link, "hash":hash, "type":type}) yield doc
[]
2024-01-10
zwssunny/chatgpt-on-wechat
voice~factory.py
""" voice factory """ def create_voice(voice_type): """ create a voice instance :param voice_type: voice type code :return: voice instance """ if voice_type == "baidu": from voice.baidu.baidu_voice import BaiduVoice return BaiduVoice() elif voice_type == "google": from voice.google.google_voice import GoogleVoice return GoogleVoice() elif voice_type == "openai": from voice.openai.openai_voice import OpenaiVoice return OpenaiVoice() elif voice_type == "pytts": from voice.pytts.pytts_voice import PyttsVoice return PyttsVoice() elif voice_type == "azure": from voice.azure.azure_voice import AzureVoice return AzureVoice() elif voice_type == "vits": from voice.vits.vits_voice import VITSVoice return VITSVoice() raise RuntimeError
[]
2024-01-10
rkaganda/minecraft_explore_bot
observe_bot.py
from javascript import require, On, Once, AsyncTask, once, off import math import logging import json import bot_functions import bot_tasks import config import db from db import BotDB import openai # logger init logger = logging.getLogger('bot') logger.setLevel(logging.DEBUG) handler = logging.FileHandler(filename=config.settings['bot_log_path'], encoding='utf-8', mode='a') handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s:%(name)s: %(message)s')) logger.addHandler(handler) # load js mineflayer = require('mineflayer') Vec3 = require('vec3') pathfinder = require('mineflayer-pathfinder') # init bot BOT_USERNAME = config.settings['bot_name'] bot = mineflayer.createBot({ 'host': config.settings['server_ip'], 'port': config.settings['server_port'], 'username': BOT_USERNAME, 'hideErrors': False}) # add modules to bot bot.loadPlugin(pathfinder.pathfinder) mcData = require('minecraft-data')(bot.version) movements = pathfinder.Movements(bot, mcData) # init db db.init_db() # spawn bot once(bot, 'spawn') bot.chat(f'{BOT_USERNAME} spawned') logger.info(f'{BOT_USERNAME} spawned') # bot state last_location = bot.entity.position current_bot_tasks = list() @On(bot, 'chat') def handle_msg(_bot, sender, message, *args): try: if sender and (sender != BOT_USERNAME): _bot.chat(f'heard - {message}') logger.info(f'heard - {message}') if 'come' in message: player = bot.players[sender] target = player.entity if not target: bot.chat("can't see target") return pos = target.position current_bot_tasks.extend([{ "function": bot_functions.go_to_location, "arguments": {"location": pos} }]) bot_functions.go_to_location(bot, pos, 1) elif message == 'stop': off(_bot, 'chat', handle_msg) elif message == 'do_task': do_task() else: _bot.chat("processing task...") handle_user_request(_bot, message) except Exception as e: logger.exception("bot:chat") raise e @On(bot, 'move') def handle_move(*args): try: def euclidean_distance_3d(point1, point2): return math.sqrt((point2.x - point1.x) ** 2 + (point2.y - point1.y) ** 2 + (point2.z - point1.z) ** 2) global last_location move_threshold = 2 bot_location = bot.entity.position if bot_location is not None: distance_traveled = round(abs(euclidean_distance_3d(bot_location, last_location))) if distance_traveled > move_threshold: bot_functions.observe_local_blocks(bot) last_location = bot.entity.position except Exception as e: logger.exception("bot:move") raise e @On(bot, 'goal_reached') def handle_goal_reached(*args): bot.chat(f"goal reached.") try: if len(current_bot_tasks) > 0: current_task = current_bot_tasks[0] # get the current task/function logger.debug(f"handle_goal_reached : current_task={current_task['function'].__name__}") logger.debug(f"current_task['function'].__name__ = {current_task['function'].__name__}") logger.debug(f"bot_functions.go_to_location.__name__ = {bot_functions.go_to_location.__name__}") # if the current task is go_to_location if current_task['function'].__name__ == bot_functions.go_to_location.__name__: current_bot_tasks.pop(0) # goal was reached so remove got_to_location from list logger.debug(f"pop len(current_bot_tasks)={len(current_bot_tasks)}") else: logger.debug("mismatch") do_task() except Exception as e: logger.exception("bot:goal_reached") raise e @On(bot, 'diggingCompleted') def handle_digging_completed(*args): logger.debug(f"handle_digging_completed start") bot_functions.observe_local_blocks(bot) # update state try: if len(current_bot_tasks) > 0: current_task = current_bot_tasks[0] # get the current task/function logger.debug(f"handle_digging_completed : current_task={current_task['function'].__name__}") bot.chat("digging completed.") # if the current task is dig_block_by_location if current_task['function'].__name__ == bot_functions.dig_block_by_location.__name__: current_bot_tasks.pop(0) # dig_block_by_location done, remove from task list logger.debug(f"pop len(current_bot_tasks)={len(current_bot_tasks)}") do_task() # call do task except Exception as e: logger.exception("bot:handle_digging_completed") raise e @On(bot, 'diggingAborted') def handle_digging_aborted(block): logger.debug(f"handle_digging_aborted start") try: if len(current_bot_tasks) > 0: current_task = current_bot_tasks[0] # get the current task/function logger.debug(f"handle_digging_aborted : current_task={current_task}") # if the current task is dig_block_by_location if current_task['function'] == bot_functions.dig_block_by_location: do_task() # call do task without removing current task to reattempt dig_block_by_location except Exception as e: logger.exception("bot:handle_digging_aborted") raise e @On(bot, 'playerCollect') def handle_player_collect(_bot, collector, collected): if collector.id == bot.entity.id: bot.chat(f"collected item {collected.name}") # logger.debug(f"handle_player_collect collector={collector} collected={collected}") @On(bot, 'entitySpawn') def handle_entity_spawn(_bot, entity): pass # logger.debug(f"handle_entity_spawn args={entity}") @On(bot, 'itemDrop') def handle_item_drop(_bot, entity): if entity.position.distanceTo(_bot.entity.position) < 2: logger.debug("scheduled item pickup") current_bot_tasks.append({ "function": bot_functions.go_to_location, "arguments": { "location": Vec3(entity.position.x, entity.position.y, entity.position.z), "distance_from": 0 }}) if len(current_bot_tasks) == 1: # our task is the only one do_task() def do_task(): if len(current_bot_tasks) > 0: # if there is another task next_task = current_bot_tasks[0] # get next task logger.debug(f"do_task : next_task['function']={next_task['function']}") logger.debug(f"do_task : next_task['arguments'].keys()={next_task['arguments'].keys()}") next_task['arguments']['bot'] = bot # add bot to arguments next_task['function'](**next_task['arguments']) # call next task function def handle_user_request(_bot, message): bot_db = BotDB() response, response_type = openai.query_functions_functions(bot_db, message) if response_type == 'function_call': if 'arguments' in response: function_args = response['arguments'] function_args = json.loads(function_args) else: function_args = {} logger.debug(f"handle_user_request: function={response['name']} args={function_args}") if 'unused' in function_args: # remove unused param del function_args['unused'] function_args['bot'] = _bot function_args['bot_tasks'] = current_bot_tasks function_call = response['name'] method = getattr(bot_tasks, function_call, None) # load the function method(**function_args) # call the function with the arguments provided
[ "heard - PLACEHOLDER", "PLACEHOLDER spawned", "digging completed.", "goal reached.", "processing task...", "can't see target" ]
2024-01-10
pytorch/vision
torchvision~datasets~country211.py
from pathlib import Path from typing import Callable, Optional from .folder import ImageFolder from .utils import download_and_extract_archive, verify_str_arg class Country211(ImageFolder): """`The Country211 Data Set <https://github.com/openai/CLIP/blob/main/data/country211.md>`_ from OpenAI. This dataset was built by filtering the images from the YFCC100m dataset that have GPS coordinate corresponding to a ISO-3166 country code. The dataset is balanced by sampling 150 train images, 50 validation images, and 100 test images for each country. Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"valid"`` and ``"test"``. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it into ``root/country211/``. If dataset is already downloaded, it is not downloaded again. """ _URL = "https://openaipublic.azureedge.net/clip/data/country211.tgz" _MD5 = "84988d7644798601126c29e9877aab6a" def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: self._split = verify_str_arg(split, "split", ("train", "valid", "test")) root = Path(root).expanduser() self.root = str(root) self._base_folder = root / "country211" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") super().__init__(str(self._base_folder / self._split), transform=transform, target_transform=target_transform) self.root = str(root) def _check_exists(self) -> bool: return self._base_folder.exists() and self._base_folder.is_dir() def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
[]
2024-01-10
Siddhartha90/The-Aubergine-index
sentimentAnalysis.py
import openai import os, json openai.api_key = os.environ.get("OPENAI_API_KEY") def sentimentAnalysis(reviews, keyword): # reviews = """ # 0: Loved it!! Awesome service. The food was so good that I didn't have time to take too many pictures. The service was impeccable and very attentive. It was overall a very din experience. Also you need to try the Greek coffee. I loved it so much that ended up having two cups. # 1: Stunning restaurant, delicious food, great wine selection and incredible staff. I had dinner with some friends a few months ago. Even though we had a reservation it took some time to get us seated and the waiters more than made it up to us by offering outstanding service and a complimentary desert. Highly recommend. Perfect date night spot. # """ print(reviews) system_msg = "You are an assistant that only returns valid JSON, with no pretext or posttext. " # keyword = "gluten free food" # Define the user message user_json_msg = f"You are answering questions on the following reviews```{reviews}```" assistant_json_msg = f"[10]" user_msg = f"Given this keyword ```{keyword}, Reply with how the related sentiment is for the given result. Use lateral thinking, for example, if it's implied all they sell is steak, that's probably gluten free" response = openai.ChatCompletion.create(model="gpt-4", temperature=0, messages=[{"role": "system", "content": system_msg}, {"role": "user", "content": user_json_msg}, {"role": "assistant", "content": assistant_json_msg}, {"role": "user", "content": user_msg}, ]) print(response) sentiment = response.choices[0].message.content # content = '"content": "{\n \"keyword\": \"gluten free food\",\n \"sentiment\": \"neutral\",\n \"explanation\": \"The reviews do not mention gluten free food specifically, but the overall sentiment is positive.\"\n}"' print(type(sentiment)) # json_acceptable_string = content.replace("'", "\"") sentimentJson = json.loads(sentiment) print(type(sentimentJson)) # print("sentiment - " + sentimentJson["sentiment"]) # print("reason - " + sentimentJson["reason"]) return sentimentJson # sentimentAnalysis()
[ "You are answering questions on the following reviews```PLACEHOLDER```", "Given this keyword ```PLACEHOLDER, Reply with how the related sentiment is for the given result. Use lateral thinking, for example, if it's implied all they sell is steak, that's probably gluten free", "[10]", "You are an assistant that only returns valid JSON, with no pretext or posttext. " ]
2024-01-10
pilievwm/desc
category.py
import json import time import openai from collections import defaultdict import requests import validators from helpers import * import time import re import html import textwrap from bs4 import BeautifulSoup from request_counter import count_requests, global_counter, get from datetime import datetime from flask_socketio import SocketIO, emit from config import Config import random import query from prompts import * app_settings = {} category_settings = {} seo_settings = {} stop_category_process = {} formatted_now = None now = None def reset_stop(): print('Resetting the process...') global stop_category_process stop_category_process = False socketio = None def set_socketio(sio): global socketio socketio = sio #################### MAIN FUNCTIONS #################### ### GET CATEGORY INFO ### def getCategoryInfo(app_settings): headers = { 'X-CloudCart-ApiKey': app_settings['X-CloudCart-ApiKey'], } url = f"{app_settings['url']}/api/v2/categories?fields[categories]=parent_id,name,url_handle&page[size]=100" if not validators.url(url): raise Exception("The URL provided in 'app_settings' is not valid") categories_by_id = {} children_by_parent_id = defaultdict(list) max_retries = 15 next_url = url while next_url: for attempt in range(max_retries): try: response = get(next_url, headers=headers) if response.status_code != 200: raise Exception(f"Request to {url} failed with status code {response.status_code}. The response was: {response.text}") data = response.json() for category in data['data']: id = category['id'] parent_id = str(category['attributes']['parent_id']) # Convert parent_id to string here categories_by_id[id] = category if parent_id != 'None': children_by_parent_id[parent_id].append(id) next_url = data['links']['next'] + "&fields[categories]=parent_id,name,url_handle" if "next" in data["links"] else None break except Exception as e: if attempt < max_retries - 1: wait_time = 5 * (attempt + 1) print(f"Error occured at CloudCart. Waiting for {wait_time} seconds before retrying.") time.sleep(wait_time) else: raise return categories_by_id, children_by_parent_id ### GET CATEGORY LEVELS ### def getCategoryLevels(app_settings, category_id, categories_by_id, children_by_parent_id): info = {'root_category': None, 'same_level_categories': [], 'sub_level_categories': []} category = categories_by_id.get(str(category_id)) if category is None: print(f"Category with ID {category_id} does not exist") return info root_category_id = str(category['attributes']['parent_id']) if root_category_id != 'None': root_category = categories_by_id.get(root_category_id, None) if root_category is not None: info['root_category'] = {'id': root_category['id'], 'name': root_category['attributes']['name'], 'url': app_settings['url'] + "/category/" + root_category['attributes']['url_handle']} # same-level categories are those with the same parent as the target category same_level_ids = children_by_parent_id.get(root_category_id, []) else: # if the target category is a root category, then all root categories are its same-level categories same_level_ids = [cat_id for cat_id, cat in categories_by_id.items() if str(cat['attributes']['parent_id']) == 'None'] same_level_ids = [str(id) for id in same_level_ids] info['same_level_categories'] = [{'id': categories_by_id[id]['id'], 'name': categories_by_id[id]['attributes']['name'], 'url': app_settings['url'] + "/category/" + categories_by_id[id]['attributes']['url_handle']} for id in same_level_ids if id != str(category['id'])] sub_level_ids = children_by_parent_id.get(str(category['id']), []) sub_level_ids = [str(id) for id in sub_level_ids] info['sub_level_categories'] = [{'id': categories_by_id[id]['id'], 'name': categories_by_id[id]['attributes']['name'], 'url': app_settings['url'] + "/category/" + categories_by_id[id]['attributes']['url_handle']} for id in sub_level_ids] return info ### GET ORDERED PRODUCTS BY SALES ### def getOrderedProductsbySales(category_id, app_settings, category_settings, target_category_info): headers = {'X-CloudCart-ApiKey': f'{app_settings["X-CloudCart-ApiKey"]}'} vendors = getVendors(app_settings) vendor_mapping = {str(vendor['id']): {'name': vendor['attributes']['name'], 'url': app_settings['url'] + "/vendor/" + vendor['attributes']['url_handle']} for vendor in vendors} ordered_products_url = f'{app_settings["url"]}/api/v2/order-products?filter[category_id]={category_id}&page[size]=100&sort=-order_id' ordered_product_data = [] brand_count = {} # Initialize brand_count for page_number in range(1, int(category_settings['max_order_pages'] + 1)): page_url = f'{ordered_products_url}&page[number]={page_number}' response = get(page_url, headers=headers) data = response.json().get('data', []) ordered_product_data += data if not ordered_product_data: print("No orders found for the category.") return {}, [] product_order_count = {} for product in ordered_product_data: product_id = str(product['attributes']['product_id']) product_order_count[product_id] = product_order_count.get(product_id, 0) + 1 sorted_products = sorted(product_order_count.items(), key=lambda x: x[1], reverse=True) active_products_url = f'{app_settings["url"]}/api/v2/products?filter[category_id]={category_id}&page[size]=100&filter[active]=yes' active_product_data = [] page_number = 1 #while category_settings['only_active_products']: while True: page_url = f'{active_products_url}&page[number]={page_number}' response = get(page_url, headers=headers) data = response.json().get('data', []) active_product_data += data next_page_url = response.json().get('links', {}).get('next') if next_page_url is None or not data: break page_number += 1 if not active_product_data: print("No active products found in the category.") return {}, [] active_product_ids = {str(product['id']) for product in active_product_data} # Assigning keys based on 'only_active' best_sellers = [product for product in active_product_data if str(product['id']) in active_product_ids] price_key = 'price_from' url_handle_key = 'url_handle' product_id_key = 'id' # In this case 'id' is used for product_id ''' if category_settings['only_active_products']: # For active products best_sellers = [product for product in active_product_data if str(product['id']) in active_product_ids] price_key = 'price_from' url_handle_key = 'url_handle' product_id_key = 'id' # In this case 'id' is used for product_id else: # For ordered products best_sellers = [product for product in ordered_product_data if str(product['attributes']['product_id']) in (product_id for product_id, count in sorted_products)] price_key = 'order_price' url_handle_key = '' # Since 'url_handle' is not available in ordered_product_data product_id_key = 'product_id' # In this case 'product_id' is used ''' if best_sellers: prices = [product['attributes'][price_key] / 100 for product in best_sellers if product['attributes'][price_key] is not None] if prices: lowest_price = round(min(prices), 2) highest_price = round(max(prices), 2) else: lowest_price = 0.00 highest_price = 0.00 else: print("No active best sellers found.") return {}, [] price_range = round((highest_price - lowest_price) / 3, 2) products_by_sales = { "entry_level_products": [], "mid_size_products": [], "hi_end_products": [] } for product in best_sellers: product_id = str(product[product_id_key]) ''' if category_settings['only_active_products']: product_id = str(product[product_id_key]) # Use 'id' for active products else: product_id = str(product['attributes'][product_id_key]) # Use 'product_id' for ordered products ''' price = product['attributes'][price_key] / 100 if product['attributes'][price_key] is not None else 0 brand_info = vendor_mapping.get(str(product['attributes']['vendor_id']), {'name': str(product['attributes']['vendor_id']), 'url': ''}) brand_name = brand_info['name'] brand_count[brand_name] = brand_count.get(brand_name, 0) + 1 product_url = app_settings['url'] + "/product/" + (product['attributes'][url_handle_key] if url_handle_key else '') # extract images from the response. image_id = product['attributes'].get('image_id', None) # get the image url from this endpoint /api/v2/images/237 if image_id: image_url = fetch_image_url(app_settings['url'], image_id, headers) else: image_url = None product_info = { "name": product['attributes']['name'], "orders": product_order_count.get(product_id, 0), "price": "{:.2f}".format(price), "brand_name": brand_name, "product_url": product_url, # added product_url "brand_url": brand_info['url'], # added brand_url "image_url": image_url } if price <= lowest_price + price_range: products_by_sales["entry_level_products"].append(product_info) elif price <= lowest_price + 2 * price_range: products_by_sales["mid_size_products"].append(product_info) else: products_by_sales["hi_end_products"].append(product_info) sales_limit = category_settings['add_best_selling_products'] if category_settings.get('include_sales_info', False) else 0 faq_limit = category_settings['add_best_selling_products_faq'] if category_settings.get('include_faq_info', False) else 0 max_products_limit = max(sales_limit, faq_limit) for category in products_by_sales: products_by_sales[category] = sorted(products_by_sales[category], key=lambda x: x["orders"], reverse=True)[:max_products_limit] sales_limit_brands = category_settings['add_top_brands'] if category_settings.get('include_sales_info', False) else 0 faq_limit_brands = category_settings['add_top_brands_faq'] if category_settings.get('include_faq_info', False) else 0 max_brands_limit = max(sales_limit_brands, faq_limit_brands) best_selling_brands = sorted(brand_count.items(), key=lambda x: x[1], reverse=True)[:max_brands_limit] best_selling_brands = [ { "Brand name": brand, "Orders": count, "url": target_category_info['url_handle'] + "?vendors=" + next((v['url'].split("/vendor/")[-1] for k, v in vendor_mapping.items() if v['name'] == brand), '') } for brand, count in best_selling_brands ] return products_by_sales, best_selling_brands ### GET CATEGORY DETAILS ### def getCategoryDetails(app_settings, fields=[]): headers = { 'X-CloudCart-ApiKey': app_settings['X-CloudCart-ApiKey'], } # Convert the fields list to a comma-separated string field_string = ','.join(fields) # Construct the URL based on the presence of fields base_url = f"{app_settings['url']}/api/v2/categories?page[size]=100" url = f"{base_url}&fields[categories]={field_string}" if fields else base_url max_retries = 15 next_url = url categories_data = [] while next_url: for attempt in range(max_retries): try: if not validators.url(next_url): raise Exception("The URL provided is not valid") response = get(next_url, headers=headers) if response.status_code != 200: raise Exception(f"Request to {url} failed with status code {response.status_code}. The response was: {response.text}") data = response.json() for item in data.get('data', []): category_data = {} category_data['id'] = item.get('id') # Fetching other attributes if they exist inside the 'attributes' dictionary attributes = item.get('attributes', {}) for field in fields: if field != 'id': # We've already fetched the ID category_data[field] = attributes.get(field) categories_data.append(category_data) next_url = data['links']['next'] if "next" in data["links"] else None break except Exception as e: if attempt < max_retries - 1: wait_time = 5 * (attempt + 1) print(f"Error occurred. Waiting for {wait_time} seconds before retrying.") time.sleep(wait_time) else: raise return categories_data #################### HELPERS #################### ### GET VENDOR DETAILS ### def getVendorDetails(vendor_id, app_settings): headers = { 'X-CloudCart-ApiKey': app_settings['X-CloudCart-ApiKey'], } # Build the base URL url = f"{app_settings['url']}/api/v2/vendors/{vendor_id}?page_size=100" if not validators.url(url): raise Exception("The URL provided is not valid") # Send the request response = get(url, headers=headers) if response.status_code != 200: raise Exception(f"Request to {url} failed with status code {response.status_code}. The response was: {response.text}") vendor_details = response.json().get('data', None) return vendor_details ### GET ALL VENDORS ### def getVendors(app_settings): headers = { 'X-CloudCart-ApiKey': app_settings['X-CloudCart-ApiKey'], } url = f"{app_settings['url']}/api/v2/vendors?fields[vendors]=name,url_handle&page[size]=100" max_retries = 15 next_url = url vendors = [] while next_url: for attempt in range(max_retries): try: if not validators.url(next_url): raise Exception("The URL provided is not valid") response = get(next_url, headers=headers) if response.status_code != 200: raise Exception(f"Request to {url} failed with status code {response.status_code}. The response was: {response.text}") data = response.json() vendors.extend(data.get('data', [])) next_url = data['links']['next'] if "next" in data["links"] else None break except Exception as e: if attempt < max_retries - 1: wait_time = 5 * (attempt + 1) print(f"Error occurred. Waiting for {wait_time} seconds before retrying.") time.sleep(wait_time) else: raise return vendors ### GET TARGET CATEGORY INFO ### def getTargetCategoryInfo(db, Processed_category, app_settings, category_id, category_settings, seo_settings, project_id, include_description=False): now = datetime.now() formatted_now = now.strftime("%d/%m/%Y %H:%M:%S") headers = { 'X-CloudCart-ApiKey': app_settings['X-CloudCart-ApiKey'], } url = f"{app_settings['url']}/api/v2/categories/{category_id}?fields[categories]=name,description,url_handle,properties&include=properties" max_retries = 1 properties = None for attempt in range(max_retries): try: response = get(url, headers=headers) if response.status_code != 200: raise Exception(f"Request to {url} failed with status code {response.status_code}. The response was: {response.text}") # Get the data from the response data = response.json().get('data', {}) url = f"{app_settings['url']}/category/{data['attributes'].get('url_handle')}" category_name = data['attributes'].get('name') if category_settings['include_properties'] or category_settings['include_properties_faq']: # Get links from a page by calling the function get_links_from_page only if the category contains properties if data['relationships'].get('properties'): Config.socketio.emit('log', {'data': f'{formatted_now}: Getting links from {url}'},room=str(project_id), namespace='/') properties = get_links_from_page(url, app_settings, category_settings, category_name, seo_settings, project_id) description = '' # compare the description_lenght with the number of characters # get the description, remove HTML tags raw_description = re.sub('<[^<]+?>', '', html.unescape(data['attributes'].get('description'))) # check if category_settings.get('description_length') != 0 and category_settings.get('description_length') < len(raw_description): Config.socketio.emit('log', {'data': f'{formatted_now}: The description of the category is longer than the threshold target. The process will end...'}, room=str(project_id), namespace='/') raise Exception(f"The description of the category is {len(raw_description)} characters which is longer than the threshold {category_settings.get('description_length')} target. The process will end...") # Save the processed category # This is information about all fields from the database # project_id, category_id, category_structure, category_name, category_prompt, category_description, category_faqs, category_keywords, category_custom_keywords query.save_processed_category(db, Processed_category, project_id, category_id, category_name=category_name.lower(), category_url=url) # Get description_length. If it's missing or not positive, use a default value (e.g., 100). description_length = category_settings.get('description_length') if not description_length or description_length <= 0: description_length = 10 # Set default width as 100, change to a suitable value as per your needs # truncate to the end of the sentence at or before description_length characters truncated_description = textwrap.shorten(raw_description, width=description_length, placeholder="...") if include_description: description = data['attributes'].get('description'), # format the output target_category_info = { "name": data['attributes'].get('name'), "id": data.get('id'), "url_handle": url, "description": description, # add condition to check if the category contains properties "properties": properties if properties else [] } # If request was successful, break out of the loop and return category info return target_category_info except Exception as e: if attempt < max_retries - 1: wait_time = 5 * (attempt + 1) Config.socketio.emit('log', {'data': f'{formatted_now}: Error occurred. Waiting for {wait_time} seconds before retrying.'},room=str(project_id), namespace='/') time.sleep(wait_time) else: raise ### SCRAPE PROPERTIES FROM THE CATEGORY PAGE ### def get_links_from_page(url, app_settings, category_settings, category_name, seo_settings, project_id): now = datetime.now() formatted_now = now.strftime("%d/%m/%Y %H:%M:%S") headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36' } Config.socketio.emit('log', {'data': f'{formatted_now}: Getting properties from {url}'},room=str(project_id), namespace='/') response = get(url, headers=headers) soup = BeautifulSoup(response.text, 'html.parser') # List of possible selectors selectors = [ '._filter-category-property', '._filter-category-properties ._filter-category-property', '._filter-category-property .js-section-title js-filter-category-property-toggle active', '._filter-category-property' ] # Try each selector until we find results for selector in selectors: property_blocks = soup.select(selector) if property_blocks: break results = {} prop_count = 0 # Counter for properties max_props = int(category_settings.get('max_props', 0)) # Maximum number of properties for block in property_blocks: if prop_count >= max_props: break # Stop the loop if we have reached the maximum number of properties property_title = block.select_one('._filter-category-property-title h5').text form_rows = block.select('._form-row') count = 0 if property_title not in results: results[property_title] = [] prop_count += 1 # Increment the property counter only when a new property is encountered else: continue # Skip to the next block if the property is already in results if category_settings['include_properties'] or category_settings['include_properties_faq']: for row in form_rows: if count < int(category_settings.get('max_property_values', 0)) or count < int(category_settings.get('max_property_values_faq', 0)): input_tag = row.select_one('input.category-property-filter') label = row.select_one('label._checkbox') property_name = input_tag.get('data-property-name') if input_tag else None value = input_tag.get('value') if input_tag else None value_title = label.text.strip() if label else '' if property_name and value: new_url = f'{url}?{property_name}={value}' results[property_title].append([value_title, new_url]) count += 1 Config.socketio.emit('log', {'data': f'{formatted_now}: Found properties...'},room=str(project_id), namespace='/') if results: if seo_settings.get('generate_keywords'): keywords = craft_keywords_urls(app_settings, category_settings, seo_settings, category_name, results, project_id) keywords = keywords.strip() return json.loads(keywords) else: return results ### GET CATEGORY IDS only ### def getCategoryIds(app_settings): headers = { 'X-CloudCart-ApiKey': app_settings['X-CloudCart-ApiKey'], } url = f"{app_settings['url']}/api/v2/categories?fields[categories]=id&page[size]=100" max_retries = 15 next_url = url category_ids = [] while next_url: for attempt in range(max_retries): try: if not validators.url(next_url): raise Exception("The URL provided is not valid") response = get(next_url, headers=headers) if response.status_code != 200: raise Exception(f"Request to {url} failed with status code {response.status_code}. The response was: {response.text}") data = response.json() category_ids.extend([category.get('id') for category in data.get('data', [])]) next_url = data['links']['next'] if "next" in data["links"] else None break except Exception as e: if attempt < max_retries - 1: wait_time = 5 * (attempt + 1) print(f"Error occurred. Waiting for {wait_time} seconds before retrying.") time.sleep(wait_time) else: raise return category_ids #################### OPENAI FUNCTIONS #################### ### CRAFT KEYWORDS FOR EACH PROPERTY VALUE ### def craft_keywords_urls(app_settings, category_settings, seo_settings, category_name, results, project_id): now = datetime.now() formatted_now = now.strftime("%d/%m/%Y %H:%M:%S") openai.api_key = app_settings['openai_key'] if results is None: Config.socketio.emit('log', {'data': f'{formatted_now}: No properties found for the category'},room=str(project_id), namespace='/') return json_structure_example = {"season": [["summer", "https://shop.mdl.bg/category/bodi-women?y=1"], ["winter", "https://shop.mdl.bg/category/bodi-women?y=2"]]} json_structure_example_str = str(json_structure_example) # Modify the prompt to ask for keywords for the specific property value prompt = (f"As a {app_settings['language']} SEO researcher working for {category_name} category. Craft maximum of {seo_settings['max_keywords']} SEO-optimized keywords for each property name and its values. Use this {category_name} category name for a context when crafting the keywords and also \"price\" or \"affordable price\". This is an example of the array: {json_structure_example_str} where \"season\" is the name of the property group, \"summer\" is the value of the property and the link is the link to the value. To craft a keyword, use the property name \"season\" as a context and use each values \"summer\" and \"winter\" to generate keywords. For example, use the property name as a context to generate 2 keywords for the value \"summer\" and 2 keywords for the value \"winter\". *** This is the actual information that you need to use to generate keywords: {results} ***") #prompt = (f"As a Bulgarian SEO researcher, craft at least {category_settings['max_keywords']} SEO optimized keywords for the property '{property_name}' with value '{value}' in the category '{category_name}'. ***Do not include only the property value, but also additional related keywords.***") if app_settings['print_prompt']: Config.socketio.emit('log', {'data': f'{formatted_now}: Prompt for keywords generation:\n{prompt}'},room=str(project_id), namespace='/') return(prompt) system_prompt = ( 'The output must be strictly valid JSON structure like this example: ' '{"y":[{"id":"1","url":"https://shop.mdl.bg/category/bodi-women?y=1","keywords":["keyword1","keyword 2"]},' '{"id":"2","url":"https://shop.mdl.bg/category/bodi-women?y=2","keywords":["keyword1","keyword 2"]}]}' f'*** The output must be ONLY the JSON structure explicitly and you should keep the {app_settings["language"]} language from the prompt!***' ) max_retries = 15 Config.socketio.emit('log', {'data': f'{formatted_now}: Generating keywords...'},room=str(project_id), namespace='/') for attempt in range(max_retries): try: response = openai.ChatCompletion.create( model=app_settings['seo_model'], messages=[ {"role": "user", "content": prompt}, {"role": "system", "content": system_prompt}, ], temperature=app_settings['temperature'], ) # If the request was successful, break out of the loop break except openai.error.AuthenticationError: # Handle authentication errors (e.g., invalid API key) Config.socketio.emit('log', {'data': 'Authentication Error. Check your OpenAI API Key!'}, room=str(1), namespace='/') break except (openai.error.APIError, openai.error.Timeout, openai.error.ServiceUnavailableError) as e: # Handle APIError, Timeout, and ServiceUnavailableError for retry wait_time = 2 * (attempt + 1) Config.socketio.emit('log', {'data': f'{formatted_now}: Encountered an issue: {e.error}. Waiting for {wait_time} seconds before retrying.'},room=str(project_id), namespace='/') time.sleep(wait_time) except Exception as e: # Handle all other exceptions without retrying Config.socketio.emit('log', {'data': f'{formatted_now}: {e}'},room=str(project_id), namespace='/') break else: raise Exception("Maximum number of retries exceeded.") answer = response['choices'][0]['message']['content'] results = answer return results ### CRAFT FAQS ### def craft_faqs(db, Processed_category, Category_Settings, app_settings, category_settings, seo_settings, results, project_id): now = datetime.now() formatted_now = now.strftime("%d/%m/%Y %H:%M:%S") Config.socketio.emit('log', {'data': f'{formatted_now}: Crafting FAQs...'},room=str(project_id), namespace='/') ### STOP PROCESS IF USER CLICKS STOP ### if stop_category_process.get(project_id, False): stop_category(project_id) # Stop process Config.socketio.emit('log', {'data': f'{formatted_now}: Process stopped by user.'},room=str(project_id), namespace='/') project = Category_Settings.query.filter_by(project_id=project_id, category_id=category_id).first() if project: project.in_progress = False db.session.commit() return openai.api_key = app_settings['openai_key'] # Extract target_category_info target_category_info = results['target_category_info'] target_category_name = target_category_info['name'] target_category_url = target_category_info['url_handle'] target_category_properties = target_category_info['properties'] prop_output = '' if category_settings['include_properties_faq']: if isinstance(target_category_properties, dict): for i, (prop, values) in enumerate(target_category_properties.items()): # If we have already processed the maximum number of properties, break the loop if i >= category_settings["max_property_values_faq"]: break prop_output += f'Property name "{prop}", ' for val in values: # Check the type of val if isinstance(val, list): id_ = val[0] url_ = val[1] # assuming the second item in the list is always a URL prop_output += f'Value {id_}, Link: {url_}, ' elif isinstance(val, dict): id_ = val["id"] url_ = val["url"] keywords = val["keywords"] prop_output += f'Keywords: {", ".join(keywords)}, Links: {url_}, ' elif isinstance(target_category_properties, list): # handle the list case here, for example: for prop in target_category_properties: prop_output += f'Property: {prop}, ' else: raise ValueError("Unexpected type for target_category_properties") # Extract category_info category_info = results.get('category_info') if category_info is None: top_level_category = [] same_level_categories = [] sub_level_categories = [] else: # Same level categories information top_level_category_info = category_info.get('root_category') if top_level_category_info and 'name' in top_level_category_info and 'url' in top_level_category_info: top_level_category = [(top_level_category_info['name'], top_level_category_info['url'])] else: top_level_category = [] same_level_categories_info = category_info.get('same_level_categories', []) same_level_categories = [(cat['name'], cat['url']) for cat in same_level_categories_info if cat and 'name' in cat and 'url' in cat] # Sub level categories information sub_level_categories_info = category_info.get('sub_level_categories', []) sub_level_categories = [(cat['name'], cat['url']) for cat in sub_level_categories_info if cat and 'name' in cat and 'url' in cat] if category_settings['include_faq_info']: # Extract product level information products_info = results.get('products_by_sales', {}) entry_level_products = [] mid_size_products = [] hi_end_products = [] if 'entry_level_products' in products_info: entry_level_products = [(prod['name'], prod['product_url'], prod['price']) for prod in products_info['entry_level_products'] if 'name' in prod and 'product_url' in prod and 'price' in prod] if 'mid_size_products' in products_info: mid_size_products = [(prod['name'], prod['product_url'], prod['price']) for prod in products_info['mid_size_products'] if 'name' in prod and 'product_url' in prod and 'price' in prod] if 'hi_end_products' in products_info: hi_end_products = [(prod['name'], prod['product_url'], prod['price']) for prod in products_info['hi_end_products'] if 'name' in prod and 'product_url' in prod and 'price' in prod] top_brands = [] if category_settings['add_top_brands_faq']: # Extract top brands information top_brands = [(brand['Brand name'], brand['url']) for brand in results.get('best_selling_brands', [])] faq_schema = '<div itemscope itemprop="mainEntity" itemtype="https://schema.org/Question"><h3 itemprop="name"><strong> ***QUESTION-PLACEHOLDER*** </strong></h3><p itemscope itemprop="acceptedAnswer" itemtype="https://schema.org/Answer"><span itemprop="text"> ***ANSWER-PLACEHOLDER*** </span></p></div>' ### PROMPTS ### if category_settings['faq_use_schema']: sys_prompt = f'Craft an FAQs of the category in this strictly and valid format: {faq_schema}. The answer for each FAQ must be put at ***ANSWER-PLACEHOLDER***! Additionally: The text at the ***ANSWER-PLACEHOLDER*** must be with appropriate HTML tags to improve its structure. For new lines use "br", for bold: "strong". When you have listings use "ul" and "li" or "ol" for numbers, while preserving the existing tags. Emphasize headings, subheadings, and key points by new lines, and ensure the content flows coherently. DO NOT MENTION ANYTHING FROM THE PROMPT IN ANY CASE!' else: sys_prompt = f'Craft an FAQs of the category. It have to be written in {app_settings["language"]}. For headings use H3. Make the text readable and for each text block you must add <p> tag. For new lines use "br", for bold: "strong". When you have listings use "ul" and "li" or "ol" for numbers, while preserving the existing tags. Emphasize headings, subheadings, and key points by new lines, and ensure the content flows coherently. DO NOT MENTION ANYTHING FROM THE PROMPT IN ANY CASE!' system_prompt = ( sys_prompt ) #### KEYWRDS RESEARCH #### Config.socketio.emit('log', {'data': f'{formatted_now}: Searching Google for related searches for {target_category_name}'},room=str(project_id), namespace='/') cluster_keywords_dict = keywords_one_level(db, Category_Settings, app_settings, main_query=target_category_name, project_id=project_id) # Get the keywords from cluster_keywords_dict and convert them into a list cluster_keywords_list = cluster_keywords_dict.get(target_category_name, '').split(',') # append category_settings['use_main_keywords'] into the main_query list including the keywords from cluster_keywords_list if category_settings['use_main_keywords']: # Convert the string of keywords into a list main_keywords_list = category_settings['use_main_keywords'].split(",") # assuming keywords are comma-separated cluster_keywords_list.extend(main_keywords_list) # Remove empty strings from the list and deduplicate cluster_keywords_list = list(set([keyword.strip() for keyword in cluster_keywords_list if keyword.strip()])) # Convert the list back to a comma-separated string and update the dictionary cluster_keywords_dict[target_category_name] = ','.join(cluster_keywords_list) cluster_keywords = cluster_keywords_dict category_id = target_category_info['id'] ### Unique keywords ### # Extracting the keys and joining them with commas top_keywords = ', '.join(cluster_keywords.values()) # Creating the second string key_value_string = ', '.join([f"{key}, {value}" for key, value in cluster_keywords.items()]) keywords_list = key_value_string.split(', ') unique_keywords_list = list(set(keywords_list)) unique_keywords_string = ', '.join(unique_keywords_list) # Introduce faq_count faq_count = category_settings['add_faq'] # Initialize an empty list to store each individual FAQ all_faqs = [] finished_faqs = [] # Surround FAQ generation with the desired div faq_wrapper_start = '<div itemscope itemtype="https://schema.org/FAQPage">' faq_wrapper_end = '</div>' # Add counter for current iteration iteration_counter = 0 # Extract all keywords from the dictionary's values outside the loop additional_questions = category_settings['additional_instructions_faq'] all_keywords = ','.join(cluster_keywords.values()).split(',') if additional_questions: all_keywords += additional_questions.split(',') num_keywords = len(all_keywords) Config.socketio.emit('log', {'data': f'{formatted_now}: Preparation for FAQs is ready. {num_keywords} FAQs will be generated'},room=str(project_id), namespace='/') # Ensure the loop doesn't exceed the number of keywords available loop_limit = num_keywords all_keyphrases = [] for i in range(loop_limit): ### STOP PROCESS IF USER CLICKS STOP ### if stop_category_process.get(project_id, False): stop_category(project_id) # Stop process Config.socketio.emit('log', {'data': f'{formatted_now}: Process stopped by user.'}, room=str(project_id), namespace='/') project = Category_Settings.query.filter_by(project_id=project_id, category_id=category_id).first() if project: project.in_progress = False db.session.commit() return iteration_counter += 1 # Increment the counter Config.socketio.emit('log', {'data': f'{formatted_now}: Working on FAQ #{iteration_counter}'}, room=str(project_id), namespace='/') # Directly set the current_keyword using the index i current_keyword = all_keywords[i] # Call the function to get related searches for the current_keyword Config.socketio.emit('log', {'data': f'{formatted_now}: Searching Google for related searches for {current_keyword}'},room=str(project_id), namespace='/') keyphrases_dict = keywords_one_level(db, Category_Settings, app_settings, main_query=current_keyword, project_id=project_id) # Extract keywords from the dictionary's values and create a list keyphrases_list = ','.join(keyphrases_dict.values()).split(',') all_keyphrases.append(keyphrases_list) # Here, you can continue with the rest of your logic using current_keyword and keyphrases_list prompt = '' ### INTRO ### prompt += f"*** GENERAL FAQ INSTRUCTIONS: ***\n" prompt += f"I want you to act as a proficient SEO content writer for FAQs in {app_settings['language']}" prompt += f"Each answer MUST contains minimum {category_settings['faq_length']} words.\n" prompt += f"Craft a 100% unique, SEO-optimized question and answer for the FAQ section in {app_settings['language']}. " ### INSTRUCTIONS FOR QUESTIONS ### prompt += f"INSTRUCTIONS FOR CRAFTING QUESTIONS:\n" prompt += f"This is question #{iteration_counter}. Craft a question from this keyword: '{current_keyword}' for the category: '{target_category_name}' with H3 tag.\n" if category_settings["include_category_info_faq"]: temp_prompt = "" # Check if same_level_categories has content if same_level_categories: temp_prompt += f"Craft questions related with the same level categories: {same_level_categories} " # Check if sub_level_categories is not empty if sub_level_categories: temp_prompt += f"and sub-categories with their links to their category page: {sub_level_categories} " if temp_prompt: # Only add the keyword instruction if temp_prompt has content temp_prompt += f"as an SEO expert with a focus on keyword stemming, you must derive and choose the most appropriate stemmed variations from the keywords provided in this list: '{keyphrases_list}'. Understand the core meaning and concept of each keyword, and then incorporate these stemmed variations intuitively and naturally across the entire text.\n" # Append or concatenate temp_prompt to the main prompt prompt += temp_prompt ### INSTRUCTIONS FOR ANSWERS ### prompt += f"*** INSTRUCTIONS FOR CRAFTING ANSWERS: ***\n" # Unique keywords #prompt += f"To craft an answer, it is important and mandatory to use the following keyphrases: '{keyphrases_list}'." prompt += f"As an SEO expert it is important and mandatory to focus on keyword stemming, you must derive and choose the most appropriate stemmed variations from the keywords provided in this list: '{keyphrases_list}'. Understand the core meaning and concept of each keyword, and then incorporate these stemmed variations intuitively and naturally across the entire text." prompt += f"This keywords are related to the main keyword {current_keyword} that the question is crafted from. You must include it as well!\n" if prop_output: prompt += f"in combination with this category properties: {prop_output}. It is important to communicate the primary features and functions that these products typically have in combination with the keyphrases provided. \n" prompt += f"It is important to make sure you bold added keyphrases for more visibility. That way your FAQs will be SEO optimized.\n" # Products information #if products_info: if category_settings['include_faq_info']: prompt += f"When the question is related with sales, pricing, how cheap the good is or anything related. The key is to craft a pre sales or post sales question that will help customers to make an informed decision based on their specific needs and preferences. " product_info = [] # Check if entry_level_products has content if entry_level_products: product_info.append(f"For entry level products: {entry_level_products}") # Check if mid_size_products has content if mid_size_products: product_info.append(f"middle size products: {mid_size_products}") # Check if hi_end_products has content if hi_end_products: product_info.append(f"and the high-end (flagman) products: {hi_end_products}") # If there's product information available, construct the prompt if product_info: temp_prompt = "Craft a question related with the best products or pricing ranges and use the following information for product levels to highlight the best products for each category level. " # Join the product information together with commas and spaces product_info_str = ', '.join(product_info) # Append or concatenate product_info_str to the temp prompt temp_prompt += product_info_str + ". *** DO NOT MENTION EXACT PRICES ***\n" # Append or concatenate temp_prompt to the main prompt prompt += temp_prompt prompt += f"Format the list of the products in visible and readable way. Make sure to link the products.\n" # Top brands information has_top_brands_info = (isinstance(top_brands, list) and len(top_brands) > 0) or \ (isinstance(top_brands, str) and top_brands.strip() != "") if has_top_brands_info: if category_settings["add_top_brands_faq"] and not category_settings['faq_top_brands_links']: prompt += f"Highlighting the Top Brands at the FAQs: {top_brands}, mentioning unique selling points of each in few lines. Do not link each brand. Do not use the URLs.\n\n" elif category_settings["add_top_brands_faq"] and category_settings['faq_top_brands_links']: prompt += f"7. Highlighting the Top Brands at the FAQs: {top_brands}, mentioning unique selling points of each in few lines. Make a link of each brand.\n" # Categpry related information if category_settings["include_category_info_faq"]: temp_prompt = "" # Check if same_level_categories has content if same_level_categories: temp_prompt += f"At your answer add information related with the same level categories: {same_level_categories} " # Check if sub_level_categories is not empty if sub_level_categories: temp_prompt += f"and sub-categories: {sub_level_categories} by adding links to their category page" if temp_prompt: # Only add the keyword instruction if temp_prompt has content temp_prompt += f"focus on keyword stemming, you must derive and choose the most appropriate stemmed variations from the keywords provided in this list: '{current_keyword}, {keyphrases_list}'. . Understand the core meaning and concept of each keyword, and then incorporate these stemmed variations intuitively and naturally across the entire FAQ.\n" # Append or concatenate temp_prompt to the main prompt prompt += temp_prompt ### GENERAL CONCLUSION INSTRUCTIONS ### prompt += f"*** FINAL INSTRUCTIONS: ***\n" prompt += f"Each Question and Answer should be written in your own words, without copying from other sources and must use provided keyphrases in {app_settings['language']}\n" prompt += f"Utilize an informal tone, personal pronouns, active voice, rhetorical questions, and incorporate analogies and metaphors. Keep the text simple, brief and very well formated.\n" #prompt += "IMPORTANT!: YOU MUST to format the given answer text with appropriate HTML tags to make it well-organized and visually appealing. IT IS A MUST" prompt += "DO NOT ADD OR REFFER TO ANY WORDS OF THE THIS PROMPT! ALL OF THE INFORMATION IS FOR BUILDING THE PERFECT FAQ section! DO NOT MENTION ANYTHING FROM THE PROMPT IN ANY CASE!\n" if app_settings['print_prompt']: Config.socketio.emit('log', {'data': f'{formatted_now}: FAQ System prompt:\n{system_prompt}'},room=str(project_id), namespace='/') Config.socketio.emit('log', {'data': f'{formatted_now}: FAQ Prompt:\n{prompt}'},room=str(project_id), namespace='/') return ### STOP PROCESS IF USER CLICKS STOP ### if stop_category_process.get(project_id, False): stop_category(project_id) # Stop process Config.socketio.emit('log', {'data': f'{formatted_now}: Process stopped by user.'},room=str(project_id), namespace='/') project = Category_Settings.query.filter_by(project_id=project_id, category_id=category_id).first() if project: project.in_progress = False db.session.commit() return Config.socketio.emit('log', {'data': f'{formatted_now}: Content creation for FAQ #{iteration_counter}'},room=str(project_id), namespace='/') for attempt in range(15): try: response = openai.ChatCompletion.create( model=app_settings['model'], messages=[ {"role": "user", "content": prompt}, {"role": "system", "content": system_prompt}, ], temperature=0, ) # If the request was successful, append FAQ to all_faqs and break out of the loop all_faqs.append(response['choices'][0]['message']['content']) break except openai.error.AuthenticationError: # Handle authentication errors (e.g., invalid API key) Config.socketio.emit('log', {'data': 'Authentication Error. Check your OpenAI API Key!'}, room=str(1), namespace='/') break except (openai.error.APIError, openai.error.Timeout, openai.error.ServiceUnavailableError) as e: # Handle APIError, Timeout, and ServiceUnavailableError for retry wait_time = 2 * (attempt + 1) Config.socketio.emit('log', {'data': f'{formatted_now}: Encountered an issue: {e.error}. Waiting for {wait_time} seconds before retrying.'},room=str(project_id), namespace='/') time.sleep(wait_time) except Exception as e: # Handle all other exceptions without retrying Config.socketio.emit('log', {'data': f'{formatted_now}: {e}'},room=str(project_id), namespace='/') break else: raise Exception("Maximum number of retries exceeded.") #### KEYWORDS CLEANUP #### all_faq_keywords = [item for sublist in all_keyphrases for item in sublist] + all_keywords # Remove duplicates all_faq_keywords = list(set(all_faq_keywords)) unique_all_faq_keywords_string = ', '.join(all_faq_keywords) ### Save to the db the cluster keywords ### import query #Get keywords from the Processed_category table from column category_keywords and merge them with the new keywords category_keywords_records = db.session.query(Processed_category).filter_by(project_id=project_id, category_id=category_id).first() if category_keywords_records.category_keywords: category_keywords_list = category_keywords_records.category_keywords.split(', ') category_keywords_list = [keyword.lower().strip() for keyword in category_keywords_list] unique_keywords_list = unique_all_faq_keywords_string.split(', ') unique_keywords_list = [keyword.lower().strip() for keyword in unique_keywords_list] distinct_keywords_set = set(category_keywords_list + unique_keywords_list) distinct_keywords_list = list(distinct_keywords_set) category_keywords = ', '.join(distinct_keywords_list) query.save_processed_category(db, Processed_category, project_id, category_id, category_keywords=category_keywords) else: query.save_processed_category(db, Processed_category, project_id, category_id, category_keywords=unique_all_faq_keywords_string) ########################## # Combine all FAQs and wrap them with the FAQ div if category_settings['faq_include_category_name_at_headings']: prompt = f"Craft FAQ section heading in {app_settings['language']} language for the category: {target_category_name}" else: prompt = f"Craft FAQ section heading in {app_settings['language']}" system_prompt = f"Return just the heading. The language is {app_settings['language']}. *** DO NOT MENTION ANY INSTRUCTIONS FROM YOUR PROMPT! ***" faq_heading = openai_generic(app_settings, prompt, system_prompt) heading = f"<h2>{faq_heading}</h2>" all_faqs.insert(0, heading) # Adding Wikipedia link at the bottom of the FAQs translated_category_name = google_translate(f"{target_category_name}", "en") if category_settings['faq_include_category_name_at_headings'] and category_settings['faq_wiki_link_authority']: #Config.socketio.emit('log', {'data': f'{formatted_now}: Building wikipedia link for category...'}, room=str(project_id), namespace='/') #query = f"{target_category_name} wikipedia" Config.socketio.emit('log', {'data': f'{formatted_now}: Searching Wikipedia for {target_category_name}...'}, room=str(project_id), namespace='/') #wikilink = google_custom_search(query) wikilink = get_wikipedia_url(target_category_name, lang='bg') if wikilink: Config.socketio.emit('log', {'data': f'{formatted_now}: Adding Wikipedia link: {wikilink}'}, room=str(project_id), namespace='/') wikipedia_link = f'<a href="{wikilink}" target="_blank">read more at Wikipedia</a>' else: Config.socketio.emit('log', {'data': f'{formatted_now}: No results found at WIKIPEDIA BG for {target_category_name}. Searching english version...'}, room=str(project_id), namespace='/') Config.socketio.emit('log', {'data': f'{formatted_now}: Searching Wikipedia for {translated_category_name}...'}, room=str(project_id), namespace='/') wikilink = get_wikipedia_url(translated_category_name, lang='en') if wikilink: Config.socketio.emit('log', {'data': f'{formatted_now}: Adding Wikipedia link: {wikilink}'}, room=str(project_id), namespace='/') wikipedia_link = f'<a href="{wikilink}" target="_blank">read more at Wikipedia</a>' else: Config.socketio.emit('log', {'data': f'{formatted_now}: No results found for {translated_category_name} at WIKIPEDIA EN. Searching Google...'}, room=str(project_id), namespace='/') query = f"{translated_category_name} wikipedia" wikilink = google_custom_search(query) Config.socketio.emit('log', {'data': f'{formatted_now}: Validating the link...'}, room=str(project_id), namespace='/') if is_valid_url(wikilink): # Validate the URL Config.socketio.emit('log', {'data': f'{formatted_now}: Adding Wikipedia link: {wikilink}'}, room=str(project_id), namespace='/') wikipedia_link = f'<a href="{wikilink}" target="_blank">read more at Wikipedia</a>' else: Config.socketio.emit('log', {'data': f'{formatted_now}: The link is invalid: {wikilink}'}, room=str(project_id), namespace='/') wikipedia_link = target_category_name # Use plain text if the URL is not valid prompt = f"Add a link to the Wikipedia page: {wikipedia_link} to read more about {target_category_name}\n" system_prompt = f"The language must be {app_settings['language']}. *** DO NOT MENTION ANY INSTRUCTIONS FROM YOUR PROMPT! ***" read_more_at_wiki = openai_generic(app_settings, prompt, system_prompt) read_more = f"<p>{read_more_at_wiki}</p>" all_faqs.append(read_more) # Action 1: Make a link to the brand if len(top_brands) > 0 and category_settings['faq_top_brands_links']: Config.socketio.emit('log', {'data': f'{formatted_now}: Building brand link for FAQs...'}, room=str(project_id), namespace='/') brand = random.choice(top_brands)[0] query_brand = f"{translated_category_name} {brand} official website" Config.socketio.emit('log', {'data': f'{formatted_now}: Searching Google for trusted website for {brand}'}, room=str(project_id), namespace='/') brand_link = google_custom_search(query_brand) Config.socketio.emit('log', {'data': f'{formatted_now}: Validating the link...'}, room=str(project_id), namespace='/') if is_valid_url(brand_link): # Validate the URL linked_brand = f'<a href="{brand_link}">{brand}</a>' else: linked_brand = brand # Use plain text if the URL is not valid # Replace brand name in all_faqs for idx, faq in enumerate(all_faqs): if brand in faq: all_faqs[idx] = faq.replace(brand, linked_brand, 1) if category_settings['faq_use_schema']: finished_faqs = faq_wrapper_start + ''.join(all_faqs) + faq_wrapper_end else: finished_faqs = ''.join(all_faqs) return finished_faqs ### CRAFT DESCRIPTION FOR THE CATEGORY ### def generate_category_description(db, Category_Settings, Processed_category, app_settings, category_settings, seo_settings, results, project_id): openai.api_key = app_settings['openai_key'] now = datetime.now() formatted_now = now.strftime("%d/%m/%Y %H:%M:%S") if results is None: Config.socketio.emit('log', {'data': f'{formatted_now}: No properties found for the category.'},room=str(project_id), namespace='/') return ################################### ### DEFINIG IMPORTANT VARIABLES ### ################################### target_category_info = results['target_category_info'] target_category_name = target_category_info['name'] target_category_url = target_category_info['url_handle'] target_category_properties = target_category_info['properties'] prop_output = '' if category_settings['include_properties']: if isinstance(target_category_properties, dict): for i, (prop, values) in enumerate(target_category_properties.items()): # If we have already processed the maximum number of properties, break the loop if i >= category_settings["max_property_values"]: break prop_output += f'Property name "{prop}", ' for val in values: # Check the type of val if isinstance(val, list): id_ = val[0] url_ = val[1] # assuming the second item in the list is always a URL prop_output += f'Value {id_}, Link: {url_}, ' elif isinstance(val, dict): id_ = val["id"] url_ = val["url"] keywords = val["keywords"] prop_output += f'Keywords: {", ".join(keywords)}, Links: {url_}, ' elif isinstance(target_category_properties, list): # handle the list case here, for example: for prop in target_category_properties: prop_output += f'Property: {prop}, ' else: raise ValueError("Unexpected type for target_category_properties") top_level_category = [] same_level_categories = [] sub_level_categories = [] category_info = results.get('category_info') if category_info is None: top_level_category = [] same_level_categories = [] sub_level_categories = [] else: # Same level categories information top_level_category_info = category_info.get('root_category') if top_level_category_info and 'name' in top_level_category_info and 'url' in top_level_category_info: top_level_category = [(top_level_category_info['name'], top_level_category_info['url'])] else: top_level_category = [] same_level_categories_info = category_info.get('same_level_categories', []) same_level_categories = [(cat['name'], cat['url']) for cat in same_level_categories_info if cat and 'name' in cat and 'url' in cat] # Sub level categories information sub_level_categories_info = category_info.get('sub_level_categories', []) sub_level_categories = [(cat['name'], cat['url']) for cat in sub_level_categories_info if cat and 'name' in cat and 'url' in cat] entry_level_products = [] mid_size_products = [] hi_end_products = [] if category_settings['include_sales_info']: products_info = results.get('products_by_sales', {}) entry_level_products = [] mid_size_products = [] hi_end_products = [] if 'entry_level_products' in products_info: entry_level_products = [(prod['name'], prod['product_url'], prod['price'], prod['image_url']) for prod in products_info['entry_level_products'] if 'name' in prod and 'product_url' in prod and 'price' in prod and 'image_url' in prod] if 'mid_size_products' in products_info: mid_size_products = [(prod['name'], prod['product_url'], prod['price'], prod['image_url']) for prod in products_info['mid_size_products'] if 'name' in prod and 'product_url' in prod and 'price' in prod and 'image_url' in prod] if 'hi_end_products' in products_info: hi_end_products = [(prod['name'], prod['product_url'], prod['price'], prod['image_url']) for prod in products_info['hi_end_products'] if 'name' in prod and 'product_url' in prod and 'price' in prod and 'image_url' in prod] top_brands = [] if category_settings['add_top_brands']: top_brands = [(brand['Brand name'], brand['url']) for brand in results.get('best_selling_brands', [])] ### STOP PROCESS IF USER CLICKS STOP ### if stop_category_process.get(project_id, False): stop_category(project_id) # Stop process Config.socketio.emit('log', {'data': f'{formatted_now}: Process stopped by user.'},room=str(project_id), namespace='/') project = Category_Settings.query.filter_by(project_id=project_id, category_id=category_id).first() if project: project.in_progress = False db.session.commit() return # Check if top_brands contains meaningful information has_top_brands_info = (isinstance(top_brands, list) and len(top_brands) > 0) or \ (isinstance(top_brands, str) and top_brands.strip() != "") ########################## #### KEYWRDS RESEARCH #### ########################## # Check DB Processed categories for the cluster keywords for the target category and if they exist, use them else search for them #cluster_keywords_dict = query.get_processed_category(db, Processed_category, project_id, target_category_info['id']) #if cluster_keywords_dict is None: category_id = target_category_info['id'] unique_keywords_string = '' if seo_settings['generic_keywords']: # Check if unique_keywords_string is empty from the DB category_keywords_records = db.session.query(Processed_category).filter_by(project_id=project_id, category_id=category_id).first() if category_keywords_records.category_keywords: unique_keywords_string = category_keywords_records.category_keywords else: Config.socketio.emit('log', {'data': f'{formatted_now}: Searching Google for related searches for {target_category_name}'},room=str(project_id), namespace='/') cluster_keywords_dict = keyword_subsequence(db, Category_Settings, app_settings, main_query=target_category_name, project_id=project_id) # Process the result to ensure it matches the format of keywords_one_level for key, value in cluster_keywords_dict.items(): if isinstance(value, dict) and 'error' in value: cluster_keywords_dict[key] = "error: " + value['error'] elif isinstance(value, list): cluster_keywords_dict[key] = ', '.join(value) # Get the keywords from cluster_keywords_dict and convert them into a list cluster_keywords_list = cluster_keywords_dict.get(target_category_name, '').split(',') # append category_settings['use_main_keywords'] into the main_query list including the keywords from cluster_keywords_list if category_settings['use_main_keywords']: # Convert the string of keywords into a list main_keywords_list = category_settings['use_main_keywords'].split(",") # assuming keywords are comma-separated cluster_keywords_list.extend(main_keywords_list) # Remove empty strings from the list and deduplicate cluster_keywords_list = list(set([keyword.strip() for keyword in cluster_keywords_list if keyword.strip()])) # Convert the list back to a comma-separated string and update the dictionary cluster_keywords_dict[target_category_name] = ','.join(cluster_keywords_list) cluster_keywords = cluster_keywords_dict # Creating the second string key_value_string = ', '.join([f"{key}, {value}" for key, value in cluster_keywords.items()]) keywords_list = key_value_string.split(', ') unique_keywords_list = list(set(keywords_list)) unique_keywords_string = ', '.join(unique_keywords_list) ### Save to the db the cluster keywords ### import query #Get keywords from the Processed_category table from column category_keywords and merge them with the new keywords category_keywords_records = db.session.query(Processed_category).filter_by(project_id=project_id, category_id=category_id).first() if category_keywords_records.category_keywords: category_keywords_list = category_keywords_records.category_keywords.split(', ') category_keywords_list = [keyword.lower().strip() for keyword in category_keywords_list] unique_keywords_list = unique_keywords_string.split(', ') unique_keywords_list = [keyword.lower().strip() for keyword in unique_keywords_list] distinct_keywords_set = set(category_keywords_list + unique_keywords_list) distinct_keywords_list = list(distinct_keywords_set) category_keywords = ', '.join(distinct_keywords_list) query.save_processed_category(db, Processed_category, project_id, category_id, category_keywords=category_keywords) else: query.save_processed_category(db, Processed_category, project_id, category_id, category_keywords=unique_keywords_string) ############### ### PROMPTS ### ############### class ContentSection: def __init__(self, condition, func, name, *args): self.condition = condition self.func = func self.name = name self.args = args self.content = "" self.token_count = 0 def generate_content(self, system_prompt): if self.condition: # Emit the log for the execution of the section Config.socketio.emit('log', {'data': f'{formatted_now}: Writing: {self.name}'}, room=str(project_id), namespace='/') # Generate the prompt using the function associated with the section prompt = self.func(*self.args) if app_settings['print_prompt']: Config.socketio.emit('log', {'data': f'{formatted_now}: System prompt:\n{system_prompt}'},room=str(project_id), namespace='/') Config.socketio.emit('log', {'data': f'{formatted_now}: Prompt:\n{prompt}'},room=str(project_id), namespace='/') return # Construct messages for the section using the system prompt and the generated prompt messages = construct_messages_for_section(system_prompt, prompt) # Generate the content for the section self.content, self.token_count = generate_part(db, Category_Settings, messages, app_settings, category_settings, seo_settings, results, project_id) # Define sections using the ContentSection class sections = [ # Section for the intro prompt ContentSection( category_settings["include_intro"], compile_intro_prompt, "Introduction content", app_settings, category_settings, seo_settings, target_category_name, target_category_url, unique_keywords_string ), # Section for properties prompt, runs only if prop_output is present ContentSection( bool(prop_output), compile_properties_prompt, "Category Properties content", app_settings, seo_settings, target_category_name, prop_output, unique_keywords_string ), # Section for product levels prompt, runs only if "include_sales_info" is enabled in category_settings ContentSection( category_settings["include_sales_info"] and category_settings["add_best_selling_products"] > 0, compile_product_levels_intro_prompt, "Intro for best selling products content", category_settings, target_category_name, entry_level_products, mid_size_products, hi_end_products, app_settings, seo_settings, unique_keywords_string ), # Section for product levels prompt, runs only if "include_sales_info" is enabled in category_settings ContentSection( category_settings["include_sales_info"] and category_settings["add_best_selling_products"] > 0 and entry_level_products, compile_product_levels_entry_prompt, "Entry Levels content", category_settings, target_category_name, entry_level_products, mid_size_products, hi_end_products, app_settings, seo_settings, unique_keywords_string ), ContentSection( category_settings["include_sales_info"] and category_settings["add_best_selling_products"] > 0 and mid_size_products, compile_product_levels_mid_prompt, "Mid Levels content", category_settings, target_category_name, entry_level_products, mid_size_products, hi_end_products, app_settings, seo_settings, unique_keywords_string ), ContentSection( category_settings["include_sales_info"] and category_settings["add_best_selling_products"] > 0 and hi_end_products, compile_product_levels_high_prompt, "Hi-end Levels content", category_settings, target_category_name, entry_level_products, mid_size_products, hi_end_products, app_settings, seo_settings, unique_keywords_string ), # Section for top brands prompt, runs only if both "has_top_brands_info" and "add_top_brands" are true ContentSection( has_top_brands_info and category_settings["add_top_brands"] > 0, compile_top_brands, "Top Brands content", app_settings, seo_settings, target_category_name, top_brands, unique_keywords_string ), # Section for category levels prompt, runs only if "include_category_info" is enabled in category_settings ContentSection( category_settings["enable_additional_instructions"], compile_additional_info_prompt, "Additional info content", app_settings, category_settings, seo_settings, unique_keywords_string, target_category_name ), # Section for category levels prompt, runs only if "include_category_info" is enabled in category_settings ContentSection( category_settings["include_category_info"], compile_category_levels, "Category Levels content", app_settings, seo_settings, top_level_category, same_level_categories, sub_level_categories, unique_keywords_string, target_category_name ) ] system_prompt = ( 'The output must be a coherent and detailed description of the category in question in strictly and valid HTML format. It should ' f'be written in {app_settings["language"]}. The output should contains valid HTML code except tags like H1, newline, body and other main tags.' 'For the headings use H3 and before each heading add one additional new line for better readability.' 'For bold use strong tag, for italic use em tag.' f'The output must be ONLY the description explicitly and you should keep the {app_settings["language"]} language from the prompt!' ) # Generate content for each section for section in sections: section.generate_content(system_prompt) # Calculate the total tokens used across all sections # Query the Processed_category table for the column token_count for this category record = db.session.query(Processed_category).filter_by(project_id=project_id, category_id=category_id).first() current_token_count = record.token_count if record else 0 if current_token_count is None or current_token_count == 0: total_tokens_used = sum([section.token_count for section in sections]) import query query.save_processed_category(db, Processed_category, project_id, category_id, token_count=total_tokens_used) else: total_tokens_used = sum([section.token_count for section in sections]) updated_token_count = current_token_count + total_tokens_used import query query.save_processed_category(db, Processed_category, project_id, category_id, token_count=updated_token_count) # Combine the content of all sections final_article = "".join([section.content for section in sections]) return final_article def generate_part(db, Category_Settings, messages, app_settings, category_settings, seo_settings, results, project_id): now = datetime.now() formatted_now = now.strftime("%d/%m/%Y %H:%M:%S") category_id = category_settings['category_id'] for attempt in range(15): ### STOP PROCESS IF USER CLICKS STOP ### if stop_category_process.get(project_id, False): stop_category(project_id) # Stop process Config.socketio.emit('log', {'data': f'{formatted_now}: Process stopped by user.'},room=str(project_id), namespace='/') project = Category_Settings.query.filter_by(project_id=project_id, category_id=category_id).first() if project: project.in_progress = False db.session.commit() return try: response = openai.ChatCompletion.create( model=app_settings['model'], messages=messages, temperature=0, ) # If the request was successful, break out of the loop break except openai.error.AuthenticationError: # Handle authentication errors (e.g., invalid API key) Config.socketio.emit('log', {'data': 'Authentication Error. Check your OpenAI API Key!'}, room=str(1), namespace='/') break except (openai.error.APIError, openai.error.Timeout, openai.error.ServiceUnavailableError, ) as e: # Handle APIError, Timeout, and ServiceUnavailableError for retry wait_time = 2 * (attempt + 1) Config.socketio.emit('log', {'data': f'{formatted_now}: Encountered an issue: {e.error}. Waiting for {wait_time} seconds before retrying.'},room=str(project_id), namespace='/') time.sleep(wait_time) except (openai.error.InvalidRequestError) as e: Config.socketio.emit('log', {'data': f'{formatted_now}: {e}'},room=str(project_id), namespace='/') break except Exception as e: # Handle all other exceptions without retrying Config.socketio.emit('log', {'data': f'{formatted_now}: {e}'},room=str(project_id), namespace='/') break else: raise Exception("Maximum number of retries exceeded.") # Get the main content total_tokens = response['usage']['total_tokens'] main_content = response['choices'][0]['message']['content'] return main_content, total_tokens def processCategories(db, Processed_category, Category_Settings, project_id, x_cloudcart_apikey, store_url, model): # Fetch all processed category IDs for the given project processed_categories = db.session.query(Processed_category.category_id).filter_by(project_id=project_id).all() processed_category_ids = {category[0] for category in processed_categories} # Fetch all categories app_settings = { 'X-CloudCart-ApiKey': x_cloudcart_apikey, 'url': store_url, } categories = getCategoryDetails(app_settings, fields=['id', 'name', 'url_handle']) # Filter out categories that have already been processed unprocessed_categories = [category for category in categories if int(category.get('id')) not in processed_category_ids] # Iterate and save each unprocessed category for category in unprocessed_categories: category_id = category.get('id', None) #if not has_products_in_category(app_settings, category_id): # print(f"Skipping category ID {category_id} because it has no products.") # continue # skip to the next category if no products category_name = category.get('name', None) category_url_handle = category.get('url_handle', None) if category_url_handle: full_category_url = f"{store_url}/category/{category_url_handle}" else: full_category_url = None # Since the description is not fetched in the current API call, it will be None. # If you want to fetch it, adjust the fields in the getCategoryDetails call above. description = category.get('description', None) new_category = Processed_category( project_id=project_id, category_id=category_id, category_name=category_name.lower(), category_url=full_category_url, category_description=description ) db.session.add(new_category) db.session.commit() def cat(db, Processed_category, Category_Settings, app_settings, category_settings, seo_settings, project_id): now = datetime.now() formatted_now = now.strftime("%d/%m/%Y %H:%M:%S") category_id = category_settings['category_id'] Config.socketio.emit('log', {'data': f'{formatted_now}: Started...'},room=str(project_id), namespace='/') project = Category_Settings.query.filter_by(project_id=project_id, category_id=category_id).first() if project: project.in_progress = True db.session.commit() stop_category_process[project_id] = False # Get category IDs if not category_settings['category_id']: Config.socketio.emit('log', {'data': f'{formatted_now}: No specific category ID provided. The script will run for all categories.'}, room=str(project_id), namespace='/') category_ids = getCategoryIds(app_settings) # Ensure category_ids is sorted in ascending order category_ids.sort() # Get the last processed category ID last_processed_id = get_last_processed_category(db, Processed_category, project_id) if last_processed_id: # Convert the last_processed_id to a string str_last_processed_id = str(last_processed_id) # Find the index of the last processed category ID in the category_ids list try: index_of_last_processed = category_ids.index(str_last_processed_id) # Slice the list to start from the next category ID category_ids = category_ids[index_of_last_processed + 1:] except ValueError: # This means the last processed category ID was not found in the category_ids list # So, continue processing all category IDs pass else: category_ids = [category_settings['category_id']] # Prepare a list to hold all results results = [] # Iterate over category IDs for category_id in category_ids: Config.socketio.emit('log', {'data': f'{formatted_now}: Processing category ID: {category_id} '},room=str(project_id), namespace='/') project = Category_Settings.query.filter_by(project_id=project_id, category_id=category_id).first() if project: project.in_progress = True db.session.commit() ### STOP PROCESS IF USER CLICKS STOP ### if stop_category_process.get(project_id, False): stop_category(project_id) # Stop process Config.socketio.emit('log', {'data': f'{formatted_now}: Process stopped by user.'},room=str(project_id), namespace='/') project = Category_Settings.query.filter_by(project_id=project_id, category_id=category_id).first() if project: project.in_progress = False db.session.commit() return # Get category info target_category_info = getTargetCategoryInfo(db, Processed_category, app_settings, category_id, category_settings, seo_settings, project_id) ### STOP PROCESS IF USER CLICKS STOP ### if stop_category_process.get(project_id, False): stop_category(project_id) # Stop process Config.socketio.emit('log', {'data': f'{formatted_now}: Process stopped by user.'}, room=str(project_id), namespace='/') project = Category_Settings.query.filter_by(project_id=project_id, category_id=category_id).first() if project: project.in_progress = False db.session.commit() return categories_by_id, children_by_parent_id = getCategoryInfo(app_settings) result = {} result['target_category_info'] = target_category_info # 'name', 'description', 'url_handle' if category_settings['include_category_info'] or category_settings['include_category_info_faq']: category_info = getCategoryLevels(app_settings, category_id, categories_by_id, children_by_parent_id) result['category_info'] = category_info if category_settings['include_sales_info'] or category_settings['include_faq_info']: # Check if both add_best_selling_products and add_top_brands are not 0 if category_settings['add_best_selling_products'] != 0 or category_settings['add_top_brands'] != 0 or category_settings['add_best_selling_products_faq'] or category_settings['add_top_brands_faq']: products_by_sales, best_selling_brands = getOrderedProductsbySales(category_id, app_settings, category_settings, target_category_info) result['products_by_sales'] = products_by_sales result['best_selling_brands'] = best_selling_brands # Save the processed category # This is information about all fields from the database # project_id, category_id, category_structure, category_name, category_prompt, category_description, category_faqs, category_keywords, category_custom_keywords query.save_processed_category(db, Processed_category, project_id, category_id, category_structure=result) ### STOP PROCESS IF USER CLICKS STOP ### if stop_category_process.get(project_id, False): stop_category(project_id) # Stop process Config.socketio.emit('log', {'data': f'{formatted_now}: Process stopped by user.'},room=str(project_id), namespace='/') project = Category_Settings.query.filter_by(project_id=project_id, category_id=category_id).first() if project: project.in_progress = False db.session.commit() return # Add the result for the current category to the list of results results.append(result) description = '' if app_settings['enable_category_description']: description = generate_category_description(db, Category_Settings, Processed_category, app_settings, category_settings, seo_settings, result, project_id) # Save the processed category # This is information about all fields from the database # project_id, category_id, category_structure, category_prompt, category_description, category_faqs, category_keywords, category_custom_keywords if app_settings['test_mode']: query.save_processed_category(db, Processed_category, project_id, category_id, category_description=description, category_test_mode=True) else: query.save_processed_category(db, Processed_category, project_id, category_id, category_description=description, category_test_mode=False) if category_settings['enable_faq_generation']: faq = craft_faqs(db, Processed_category, Category_Settings, app_settings, category_settings, seo_settings, result, project_id) # Save the processed category # This is information about all fields from the database # project_id, category_id, category_structure, category_prompt, category_description, category_faqs, category_keywords, category_custom_keywords if app_settings['test_mode']: query.save_processed_category(db, Processed_category, project_id, category_id, category_faqs=faq, category_test_mode=True) else: query.save_processed_category(db, Processed_category, project_id, category_id, category_faqs=faq, category_test_mode=False) ### Combine description with FAQ into one variable DESCRIPTION ### description = description or "" if app_settings['print_prompt'] == False: if app_settings['enable_category_description'] and category_settings['enable_faq_generation']: description = description + '\n' + faq elif category_settings['enable_faq_generation'] and category_settings['append_faq']: get_category_description = getTargetCategoryInfo(db, Processed_category, app_settings, category_id, category_settings, seo_settings, project_id, include_description=True) # set the description into a string description = get_category_description['description'][0] + '\n\n' + faq elif category_settings['enable_faq_generation']: description = faq # Update the category description if app_settings['test_mode']: if app_settings['print_prompt'] == False: Config.socketio.emit('log', {'data': f'{formatted_now}: Result completed: \n{description} '},room=str(project_id), namespace='/') project = Category_Settings.query.filter_by(project_id=project_id, category_id=category_id).first() if project: project.in_progress = False db.session.commit() else: Config.socketio.emit('log', {'data': f'{formatted_now}: Result completed: \n{description} '},room=str(project_id), namespace='/') project = Category_Settings.query.filter_by(project_id=project_id, category_id=category_id).first() if project: project.in_progress = False db.session.commit() else: if app_settings['print_prompt'] == True: Config.socketio.emit('log', {'data': f'{formatted_now}: Result completed: \n{description} '},room=str(project_id), namespace='/') project = Category_Settings.query.filter_by(project_id=project_id, category_id=category_id).first() if project: project.in_progress = False db.session.commit() else: Config.socketio.emit('log', {'data': f'{formatted_now}: Updating category description for category ID: {category_id} '},room=str(project_id), namespace='/') updateCategory(category_id, description, app_settings, project_id) Config.socketio.emit('log', {'data': f'{formatted_now}: Proces completed. Updated category ID: {category_id} '},room=str(project_id), namespace='/') # Return the list of results after the loop has finished project = Category_Settings.query.filter_by(project_id=project_id, category_id=category_id).first() if project: project.in_progress = False project.category_ready = False db.session.commit() category_updated = Processed_category.query.filter_by(project_id=project_id, category_id=category_id).first() if category_updated: category_updated.category_update = True db.session.commit() return def updateCategory(category_id, description, app_settings, project_id): now = datetime.now() formatted_now = now.strftime("%d/%m/%Y %H:%M:%S") headers = { 'X-CloudCart-ApiKey': app_settings['X-CloudCart-ApiKey'], 'Content-Type': 'application/vnd.api+json', } url = f"{app_settings['url']}/api/v2/categories/{category_id}" attributes = { "description": description } body = { "data": { "type": "categories", "id": str(category_id), "attributes": attributes } } max_retries = 15 for attempt in range(max_retries): try: response = requests.patch(url, data=json.dumps(body), headers=headers) if response.status_code in (429, 500, 502, 503): # Retry for status codes 500 and 503 raise Exception(f"Request to {url} failed with status code {response.status_code}. The response was: {response.text}") elif response.status_code != 200: # For other non-200 status codes, fail immediately raise Exception(f"Request to {url} failed with status code {response.status_code}. The response was: {response.text}") return response.json() # If request was successful, break out of the loop and return the response except Exception as e: if attempt < max_retries - 1: # If it's not the last attempt, wait and then continue to the next iteration wait_time = 5 * (attempt + 1) Config.socketio.emit('log', {'data': f"{formatted_now}: Error occured at CloudCart. Waiting for {wait_time} seconds before retrying."},room=str(project_id), namespace='/') time.sleep(wait_time) else: # On the last attempt, fail with an exception raise def stop_category(project_id): print(f'Stopping the process for project {project_id}...') stop_category_process[project_id] = True #main_query = "ะ•ะกะŸะ ะ•ะกะž ะšะะคะ•ะœะะจะ˜ะะ˜, ะงะฐัˆะธ, ะจะธัˆะตั‚ะฐ" #project_id = 2 #result = keyword_clustersTEST(db, Category_Settings, app_settings, main_query, project_id) #result = keyword_clusters(app_settings, main_query) #print(result)
[ "The output must be a coherent and detailed description of the category in question in strictly and valid HTML format. It should be written in PLACEHOLDER. The output should contains valid HTML code except tags like H1, newline, body and other main tags.For the headings use H3 and before each heading add one additional new line for better readability.For bold use strong tag, for italic use em tag.The output must be ONLY the description explicitly and you should keep the PLACEHOLDER language from the prompt!", "7. Highlighting the Top Brands at the FAQs: PLACEHOLDER, mentioning unique selling points of each in few lines. Make a link of each brand.\n", "Add a link to the Wikipedia page: PLACEHOLDER to read more about PLACEHOLDER\n", "*** INSTRUCTIONS FOR CRAFTING ANSWERS: ***\n", "Utilize an informal tone, personal pronouns, active voice, rhetorical questions, and incorporate analogies and metaphors. Keep the text simple, brief and very well formated.\n", "as an SEO expert with a focus on keyword stemming, you must derive and choose the most appropriate stemmed variations from the keywords provided in this list: 'PLACEHOLDER'. Understand the core meaning and concept of each keyword, and then incorporate these stemmed variations intuitively and naturally across the entire text.\n", "*** GENERAL FAQ INSTRUCTIONS: ***\n", "focus on keyword stemming, you must derive and choose the most appropriate stemmed variations from the keywords provided in this list: 'PLACEHOLDER, PLACEHOLDER'. . Understand the core meaning and concept of each keyword, and then incorporate these stemmed variations intuitively and naturally across the entire FAQ.\n", "Each answer MUST contains minimum PLACEHOLDER words.\n", "This is question #PLACEHOLDER. Craft a question from this keyword: 'PLACEHOLDER' for the category: 'PLACEHOLDER' with H3 tag.\n", "Return just the heading. The language is PLACEHOLDER. *** DO NOT MENTION ANY INSTRUCTIONS FROM YOUR PROMPT! ***", "At your answer add information related with the same level categories: PLACEHOLDER ", "in combination with this category properties: PLACEHOLDER. It is important to communicate the primary features and functions that these products typically have in combination with the keyphrases provided. \n", "Craft a question related with the best products or pricing ranges and use the following information for product levels to highlight the best products for each category level. ", "Craft a 100% unique, SEO-optimized question and answer for the FAQ section in PLACEHOLDER. ", "Craft FAQ section heading in PLACEHOLDER", "PLACEHOLDER. *** DO NOT MENTION EXACT PRICES ***\n", "INSTRUCTIONS FOR CRAFTING QUESTIONS:\n", "The language must be PLACEHOLDER. *** DO NOT MENTION ANY INSTRUCTIONS FROM YOUR PROMPT! ***", "Highlighting the Top Brands at the FAQs: PLACEHOLDER, mentioning unique selling points of each in few lines. Do not link each brand. Do not use the URLs.\n\n", "As a PLACEHOLDER SEO researcher working for PLACEHOLDER category. Craft maximum of PLACEHOLDER SEO-optimized keywords for each property name and its values. Use this PLACEHOLDER category name for a context when crafting the keywords and also \"price\" or \"affordable price\". This is an example of the array: PLACEHOLDER where \"season\" is the name of the property group, \"summer\" is the value of the property and the link is the link to the value. To craft a keyword, use the property name \"season\" as a context and use each values \"summer\" and \"winter\" to generate keywords. For example, use the property name as a context to generate 2 keywords for the value \"summer\" and 2 keywords for the value \"winter\". *** This is the actual information that you need to use to generate keywords: PLACEHOLDER ***", "*** FINAL INSTRUCTIONS: ***\n", "Craft questions related with the same level categories: PLACEHOLDER ", "The output must be strictly valid JSON structure like this example: {\"y\":[{\"id\":\"1\",\"url\":\"https://shop.mdl.bg/category/bodi-women?y=1\",\"keywords\":[\"keyword1\",\"keyword 2\"]},{\"id\":\"2\",\"url\":\"https://shop.mdl.bg/category/bodi-women?y=2\",\"keywords\":[\"keyword1\",\"keyword 2\"]}]}*** The output must be ONLY the JSON structure explicitly and you should keep the PLACEHOLDER language from the prompt!***", "It is important to make sure you bold added keyphrases for more visibility. That way your FAQs will be SEO optimized.\n", "Craft FAQ section heading in PLACEHOLDER language for the category: PLACEHOLDER", "and sub-categories with their links to their category page: PLACEHOLDER ", "Each Question and Answer should be written in your own words, without copying from other sources and must use provided keyphrases in PLACEHOLDER\n", "As an SEO expert it is important and mandatory to focus on keyword stemming, you must derive and choose the most appropriate stemmed variations from the keywords provided in this list: 'PLACEHOLDER'. Understand the core meaning and concept of each keyword, and then incorporate these stemmed variations intuitively and naturally across the entire text.", "I want you to act as a proficient SEO content writer for FAQs in PLACEHOLDER", "Craft an FAQs of the category in this strictly and valid format: PLACEHOLDER. The answer for each FAQ must be put at ***ANSWER-PLACEHOLDER***! Additionally: The text at the ***ANSWER-PLACEHOLDER*** must be with appropriate HTML tags to improve its structure. For new lines use \"br\", for bold: \"strong\". When you have listings use \"ul\" and \"li\" or \"ol\" for numbers, while preserving the existing tags. Emphasize headings, subheadings, and key points by new lines, and ensure the content flows coherently. DO NOT MENTION ANYTHING FROM THE PROMPT IN ANY CASE!", "Format the list of the products in visible and readable way. Make sure to link the products.\n", "This keywords are related to the main keyword PLACEHOLDER that the question is crafted from. You must include it as well!\n", "DO NOT ADD OR REFFER TO ANY WORDS OF THE THIS PROMPT! ALL OF THE INFORMATION IS FOR BUILDING THE PERFECT FAQ section! DO NOT MENTION ANYTHING FROM THE PROMPT IN ANY CASE!\n", "When the question is related with sales, pricing, how cheap the good is or anything related. The key is to craft a pre sales or post sales question that will help customers to make an informed decision based on their specific needs and preferences. ", "Craft an FAQs of the category. It have to be written in PLACEHOLDER. For headings use H3. Make the text readable and for each text block you must add <p> tag. For new lines use \"br\", for bold: \"strong\". When you have listings use \"ul\" and \"li\" or \"ol\" for numbers, while preserving the existing tags. Emphasize headings, subheadings, and key points by new lines, and ensure the content flows coherently. DO NOT MENTION ANYTHING FROM THE PROMPT IN ANY CASE!", "and sub-categories: PLACEHOLDER by adding links to their category page" ]
2024-01-10
smallv0221/datasets
datasets~openwebtext~openwebtext.py
# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The Open WebText Corpus""" from __future__ import absolute_import, division, print_function import os import re from itertools import chain import datasets _CITATION = """\ @misc{Gokaslan2019OpenWeb, title={OpenWebText Corpus}, author={Aaron Gokaslan*, Vanya Cohen*, Ellie Pavlick, Stefanie Tellex}, howpublished{\\url{http://Skylion007.github.io/OpenWebTextCorpus}}, year={2019} } """ _DESCRIPTION = """\ An open-source replication of the WebText dataset from OpenAI. """ _URL = "https://zenodo.org/record/3834942/files/openwebtext.tar.xz" class Openwebtext(datasets.GeneratorBasedBuilder): """The Open WebText dataset.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="plain_text", description="Plain text", version=datasets.Version("1.0.0"), ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({"text": datasets.Value("string")}), homepage="https://skylion007.github.io/OpenWebTextCorpus/", citation=_CITATION, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_URL) owt_dir = os.path.join(dl_dir, "openwebtext") subset_xzs = [ os.path.join(owt_dir, file_name) for file_name in sorted(os.listdir(owt_dir)) if file_name.endswith("xz") # filter out ...xz.lock ] ex_dirs = dl_manager.extract(subset_xzs, num_proc=round(os.cpu_count() * 0.75)) nested_txt_files = [ [ os.path.join(ex_dir, txt_file_name) for txt_file_name in sorted(os.listdir(ex_dir)) if txt_file_name.endswith("txt") ] for ex_dir in ex_dirs ] txt_files = chain(*nested_txt_files) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"txt_files": txt_files}), ] def _generate_examples(self, txt_files): """ Yields examples. """ for idx, filepath in enumerate(txt_files): with open(filepath, encoding="utf-8") as f: yield idx, {"text": re.sub("\n\n\n+", "\n\n", f.read()).strip()}
[]
2024-01-10
sbyebss/monge_map_solver
src~models~img2text_model.py
import torch from dalle2_pytorch import OpenAIClipAdapter from dalle2_pytorch.dalle2_pytorch import l2norm from dalle2_pytorch.optimizer import get_optimizer from torchmetrics.classification.accuracy import Accuracy import wandb from src.models.base_model import BaseModule from src.viz.points import plot_histogram train_acc = Accuracy() # pylint: disable=abstract-method,too-many-ancestors,arguments-renamed,line-too-long,arguments-differ,unused-argument class Img2TextModule(BaseModule): def __init__(self, cfg) -> None: super().__init__(cfg) self.clip = OpenAIClipAdapter(cfg.clip_model) self.image_embed_scale = cfg.image_embed_dim**0.5 self.meaningful_class = None self.class_emb = None def on_train_start(self): self.meaningful_class = self.trainer.datamodule.meaningful_class meaningful_token = self.trainer.datamodule.meaningful_token with torch.no_grad(): self.class_emb, _ = self.clip.embed_text(meaningful_token.to(self.device)) self.class_emb = l2norm(self.class_emb) def get_real_data(self, src_data): # src_data: (img_tensor, label) src_img = src_data[0] uniform_idx = torch.randint(self.class_emb.shape[0], (src_img.shape[0],)) trg_txt_emb = self.class_emb[uniform_idx] with torch.no_grad(): src_img_emb, _ = self.clip.embed_image(src_img) src_img_emb *= self.image_embed_scale trg_txt_emb *= self.image_embed_scale return src_img_emb, trg_txt_emb # src_data, trg_data = batch # # src_data: (img_tensor, label) # # trg_data: (img_tensor, label) # src_img, trg_label = src_data[0], trg_data[1] # with torch.no_grad(): # src_img_emb, _ = self.clip.embed_image(src_img) # trg_class = self.meaningful_class[trg_label.detach().cpu()] # if self.global_step==1: # print(trg_class) # trg_token = tokenize(trg_class) # trg_txt_emb, _ = self.clip.embed_text(trg_token.to(self.device)) # src_img_emb *= self.image_embed_scale # trg_txt_emb *= self.image_embed_scale # return src_img_emb, trg_txt_emb def validation_step(self, batch, batch_idx): data, target = batch with torch.no_grad(): emb_image, _ = self.clip.embed_image(data) adusted_emb = self.map_t(emb_image) similarity = (100.0 * l2norm(adusted_emb) @ self.class_emb.T).softmax(dim=-1) _, pred = similarity.topk(1, dim=-1) pred = pred.squeeze(1).detach().cpu() post_hoc_acc = train_acc(pred, target.cpu()) train_acc.reset() similarity = (100.0 * l2norm(emb_image) @ self.class_emb.T).softmax(dim=-1) _, zero_shot_pred = similarity.topk(1, dim=-1) zero_shot_pred = zero_shot_pred.squeeze(1).detach().cpu() zero_shot_acc = train_acc(zero_shot_pred, target.cpu()) train_acc.reset() return pred, zero_shot_pred, post_hoc_acc, zero_shot_acc, data.shape[0] def validation_epoch_end(self, outputs): pred_list = [] zero_shot_pred_list = [] correct_test_count = 0 correct_zero_shot_count = 0 for pred, zero_shot_pred, post_hoc_acc, zero_shot_acc, batch_size in outputs: pred_list.extend(list(pred.numpy())) zero_shot_pred_list.extend(list(zero_shot_pred.numpy())) correct_test_count += batch_size * post_hoc_acc correct_zero_shot_count += batch_size * zero_shot_acc accuracy = correct_test_count / len(pred_list) zero_shot_accuracy = correct_zero_shot_count / len(zero_shot_pred_list) self.log_dict( { "test_accuracy/post-hoc": accuracy, "test_accuracy/zero-shot": zero_shot_accuracy, } ) torch.save( { "pred": pred_list, "clip_pred": zero_shot_pred_list, "acc": accuracy, "clip_zero_shot": zero_shot_accuracy, }, f"pred_acc_{self.current_epoch+1}.pt", ) hist_path = f"hist_{self.current_epoch+1}.png" plot_histogram(pred_list, num_class=self.class_emb.shape[0], path=hist_path) wandb.log({"histogram": wandb.Image(hist_path, caption="pred")}) def configure_optimizers(self): # These parameters are from LAION pretrained prior. optim_map_kwargs = dict( lr=self.cfg.lr_T, wd=self.cfg.wd, eps=1e-6, group_wd_params=True ) optimizer_map = get_optimizer(self.map_t.parameters(), **optim_map_kwargs) optim_f_kwargs = dict( lr=self.cfg.lr_f, wd=self.cfg.wd, eps=1e-6, group_wd_params=True ) optimizer_f = get_optimizer(self.f_net.parameters(), **optim_f_kwargs) return optimizer_map, optimizer_f # def pretrain_identity(self, data, map_opt): # loss = F.mse_loss(self.map_t(data), data) # map_opt.zero_grad() # loss.backward() # map_opt.step() # self.log_dict({"pretrain_loss/id_loss": loss})
[]
2024-01-10
sbyebss/monge_map_solver
src~models~text2img_model.py
import os import cv2 import torch from dalle2_pytorch import OpenAIClipAdapter from dalle2_pytorch.dalle2_pytorch import l2norm from dalle2_pytorch.optimizer import get_optimizer from PIL import Image, ImageDraw, ImageFont from torchvision.utils import make_grid, save_image from src.callbacks.txt2img_callbacks import generate_grid_samples from src.datamodules.utils import split_test_full_data from src.logger.jam_wandb import prefix_metrics_keys from src.models.base_model import BaseModule from src.models.loss_zoo import gradientOptimality from src.viz.points import compare_highd_kde_scatter # pylint: disable=abstract-method,too-many-ancestors,arguments-renamed,line-too-long,arguments-differ,unused-argument,too-many-locals sampling_labels = [ "Text emb.", "Our emb.", "laion emb.", "Real emb.", "Real Images", ] # Function to add sampling_labels to an image def add_labels_to_image(image_path): # Load the image with Image.open(image_path) as image: draw = ImageDraw.Draw(image) # Choose a font size font_size = 30 # Load a font font_path = os.path.join(cv2.__path__[0], "qt", "fonts", "DejaVuSans.ttf") font = ImageFont.truetype(font_path, size=font_size) # Get image dimensions img_width, img_height = image.size # Calculate the height required for the text text_height = max( [draw.textsize(label, font=font)[1] for label in sampling_labels] ) # Create a new image with extra space for the text labels new_img = Image.new( "RGB", (img_width, img_height + text_height + 20), (255, 255, 255) ) # White background for the new space # Paste the original image onto the new image new_img.paste(image, (0, text_height + 20)) # Initialize ImageDraw to draw on the new image draw = ImageDraw.Draw(new_img) # Define the starting Y position for the text text_y = 10 # Small padding from the top of the new image # Calculate the width of a single column assuming sampling_labels are evenly spaced column_width = img_width / len(sampling_labels) # Iterate over the sampling_labels and their respective column positions for idx, label in enumerate(sampling_labels): # Calculate the position for each label (centered above each column) text_width, text_height = draw.textsize(label, font=font) text_x = idx * column_width + (column_width - text_width) / 2 # Draw the text on the new image draw.text((text_x, text_y), label, font=font, fill=(0, 0, 0)) # Black text # Save the new image new_img.save(image_path) class Text2ImgModule(BaseModule): def __init__(self, cfg) -> None: super().__init__(cfg) self.clip = OpenAIClipAdapter(cfg.clip_model) self.image_embed_scale = cfg.image_embed_dim**0.5 def get_real_data(self, batch): src_data, trg_data = batch # src_data: (image_embedding, tokenized_caption) # trg_data: (image_embedding, tokenized_caption) src_tokens, trg_img_emb = src_data[1], trg_data[0] text_embed, text_encodings = self.clip.embed_text(src_tokens) unnorm_text_embed = self.clip.clip.encode_text(src_tokens) src_text_cond = { "text_embed": text_embed, "text_encodings": text_encodings, "unnorm_text_embed": unnorm_text_embed, } trg_img_emb *= self.image_embed_scale return src_text_cond, trg_img_emb def loss_f(self, src_text_cond, trg_img_emb, mask=None): with torch.no_grad(): tx_tensor = self.map_t(**src_text_cond) # assert torch.isclose(tx_tensor.norm(dim=-1).mean(), trg_img_emb.norm(dim=-1).mean(),rtol=1e-2) f_tx, f_y = self.f_net(tx_tensor).mean(), self.f_net(trg_img_emb).mean() if self.cfg.optimal_penalty: gradient_penalty = gradientOptimality( self.f_net, tx_tensor, src_text_cond["text_embed"], self.cfg.coeff_go ) else: gradient_penalty = 0.0 f_loss = f_tx - f_y + gradient_penalty log_info = prefix_metrics_keys( { "f_tx": f_tx, "f_y": f_y, "gradient_penalty": gradient_penalty, "f_tx-f_y": f_tx - f_y, }, "f_loss", ) return f_loss, log_info def loss_map(self, src_text_cond, mask=None): # src_text_cond = {"text_embed": text_embed, "text_encodings": text_encodings, "unnorm_text_embed": unnorm_text_embed} tx_tensor = self.map_t(**src_text_cond) cost_loss = self.cost_func( src_text_cond["unnorm_text_embed"], l2norm(tx_tensor), self.cfg.coeff_mse, self.cfg.exponent, ) f_tx = self.f_net(tx_tensor).mean() map_loss = cost_loss - f_tx log_info = prefix_metrics_keys( {"cost_loss": cost_loss, "f_tx": f_tx}, "map_loss" ) return map_loss, log_info def validation_step(self, batch, batch_idx): # evaluate cosine similarity trg_img_emb, src_tokens = batch text_embed, text_encodings = self.clip.embed_text(src_tokens) src_text_cond = {"text_embed": text_embed, "text_encodings": text_encodings} self.cos_similarity(src_text_cond, trg_img_emb) def cos_similarity(self, src_text_cond, trg_img_emb): if self.cfg.ema: with self.ema_map.average_parameters(): tx_tensor = l2norm(self.map_t(**src_text_cond)) src_txt_emb = src_text_cond["text_embed"] txt_trg_sim = -self.cost_func(src_txt_emb, trg_img_emb) txt_pf_sim = -self.cost_func(src_txt_emb, tx_tensor) pf_trg_sim = -self.cost_func(tx_tensor, trg_img_emb) rdm_idx = torch.randperm(trg_img_emb.shape[0]) unrelated_sim = -self.cost_func(tx_tensor, src_txt_emb[rdm_idx]) log_info = prefix_metrics_keys( { "baseline similarity": txt_trg_sim, "similarity with text": txt_pf_sim, "difference from baseline similarity": abs(txt_trg_sim - txt_pf_sim), "similarity with original image": pf_trg_sim, "similarity with unrelated caption": unrelated_sim, }, "validation_cos_sim", ) self.log_dict(log_info) def test_step(self, batch, batch_idx, dataloader_idx=0): if batch_idx <= 100: # assert 1 == 0, "Too many test samples, terminate earlier." if dataloader_idx == 0: # visualize the embedding trg_img_emb, src_tokens = batch text_embed, text_encodings = self.clip.embed_text(src_tokens) src_text_cond = { "text_embed": text_embed, "text_encodings": text_encodings, } pf_img_emb = l2norm(self.map_t(**src_text_cond)) discrete_ot_map_img_emb = trg_img_emb.detach() * 0 return pf_img_emb, trg_img_emb, discrete_ot_map_img_emb # sampling images test_example_data = split_test_full_data(batch, self.device) # TODO: this callback can have a problem, we hard code it with index. sampling_callback = self.trainer.callbacks[3] test_images, test_captions = generate_grid_samples( self, sampling_callback.decoder, sampling_callback.prior, test_example_data, device=self.device, skip_ema=True, ) cherry_pick_img_grid = make_grid( test_images, nrow=1, padding=2, pad_value=0 ) img_path = f"img_{batch_idx}.png" save_image(cherry_pick_img_grid, img_path) torch.save( {"images": test_images, "captions": test_captions}, f"raw_data_{batch_idx}.pt", ) # After generating the grid image and saving it add_labels_to_image(img_path) return None return None def test_epoch_end(self, outputs): for idx, out in enumerate(outputs): pf_img_emb, trg_img_emb, discrete_ot_map_img_emb = out if idx == 0: stacked_pf_feat = pf_img_emb stacked_trg_feat = trg_img_emb stacked_discrete_ot_feat = torch.from_numpy(discrete_ot_map_img_emb) else: stacked_pf_feat = torch.cat([stacked_pf_feat, pf_img_emb], dim=0) stacked_trg_feat = torch.cat([stacked_trg_feat, trg_img_emb], dim=0) stacked_discrete_ot_feat = torch.cat( [ stacked_discrete_ot_feat, torch.from_numpy(discrete_ot_map_img_emb), ], dim=0, ) compare_highd_kde_scatter( [stacked_pf_feat, stacked_trg_feat, stacked_discrete_ot_feat], "pca.jpg" ) def configure_optimizers(self): # These parameters are from LAION pretrained prior. optim_map_kwargs = dict( lr=self.cfg.lr_T, wd=self.cfg.wd, eps=1e-6, group_wd_params=True ) optimizer_map = get_optimizer(self.map_t.parameters(), **optim_map_kwargs) optim_f_kwargs = dict( lr=self.cfg.lr_f, wd=self.cfg.wd, eps=1e-6, group_wd_params=True ) optimizer_f = get_optimizer(self.f_net.parameters(), **optim_f_kwargs) return optimizer_map, optimizer_f
[]
2024-01-10
gucky92/Auto-GPT
tests~integration~conftest.py
import os import openai.api_requestor import pytest from pytest_mock import MockerFixture from tests.conftest import PROXY from tests.vcr.vcr_filter import before_record_request, before_record_response BASE_VCR_CONFIG = { "record_mode": "new_episodes", "before_record_request": before_record_request, "before_record_response": before_record_response, "filter_headers": [ "Authorization", "X-OpenAI-Client-User-Agent", "User-Agent", ], "match_on": ["method", "body"], } @pytest.fixture(scope="session") def vcr_config(): # this fixture is called by the pytest-recording vcr decorator. return BASE_VCR_CONFIG def patch_api_base(requestor): new_api_base = f"{PROXY}/v1" requestor.api_base = new_api_base return requestor @pytest.fixture def patched_api_requestor(mocker: MockerFixture): original_init = openai.api_requestor.APIRequestor.__init__ original_validate_headers = openai.api_requestor.APIRequestor._validate_headers def patched_init(requestor, *args, **kwargs): original_init(requestor, *args, **kwargs) patch_api_base(requestor) def patched_validate_headers(self, supplied_headers): headers = original_validate_headers(self, supplied_headers) headers["AGENT-MODE"] = os.environ.get("AGENT_MODE") headers["AGENT-TYPE"] = os.environ.get("AGENT_TYPE") return headers if PROXY: mocker.patch("openai.api_requestor.APIRequestor.__init__", new=patched_init) mocker.patch.object( openai.api_requestor.APIRequestor, "_validate_headers", new=patched_validate_headers, )
[]
2024-01-10
norrishuang/private-llm-qa-bot
doc_preprocess~QA_auto_generator.py
import os import re import argparse import openai import json from tqdm import tqdm from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import MarkdownTextSplitter from langchain.text_splitter import RecursiveCharacterTextSplitter # you need to install these packages: pypdf, tqdm, openai, langchain # Please excute => export OPENAI_API_KEY={key} openai.api_key = os.getenv("OPENAI_API_KEY") en_prompt_template = """ Here is one page of {product}'s manual document ``` {page} ``` Please automatically generate as many questions as possible based on this manual document, and follow these rules: 1. "{product}"" should be contained in every question 2. questions start with "Question:" 3. answers begin with "Answer:" """ # zh_prompt_template = """ # Here is one page of {product}'s manual document # ``` # {page} # ``` # Please automatically generate as many questions as possible based on this manual document, and follow these rules: # 1. "{product}"" should be contained in every question # 2. questions start with "Question:" # 3. answers begin with "Answer:" # 4. Answer in Chinese # """ zh_prompt_template = """ ๅฆ‚ไธ‹ไธ‰ไธชๅๆ‹ฌๅทไธญๆ˜ฏ{product}็š„ไบงๅ“ๆ–‡ๆกฃ็‰‡ๆฎต ``` {page} ``` ่ฏทๅŸบไบŽ่ฟ™ไบ›ๆ–‡ๆกฃ็‰‡ๆฎต่‡ชๅŠจ็”Ÿๆˆๅฐฝๅฏ่ƒฝๅคš็š„้—ฎ้ข˜ไปฅๅŠๅฏนๅบ”็ญ”ๆกˆ, ๅฐฝๅฏ่ƒฝ่ฏฆ็ป†ๅ…จ้ข, ๅนถไธ”้ตๅพชๅฆ‚ไธ‹่ง„ๅˆ™: 1. "{product}"้œ€่ฆไธ€็›ด่ขซๅŒ…ๅซๅœจQuestionไธญ 2. ้—ฎ้ข˜้ƒจๅˆ†้œ€่ฆไปฅ"Question:"ๅผ€ๅง‹ 3. ็ญ”ๆกˆ้ƒจๅˆ†้œ€่ฆไปฅ"Answer:"ๅผ€ๅง‹ """ def Generate_QA(prompt): messages = [{"role": "user", "content": f"{prompt}"}] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, temperature=0, max_tokens=2048 ) content = response.choices[0]["message"]["content"] arr = content.split('Question:')[1:] qa_pair = [ p.split('Answer:') for p in arr ] return qa_pair def Generate_QA_From_Docs(pages, prompt_template, product_name="Midea Dishwasher", out_format="json"): for page in tqdm(pages[13:23]): # print(page) # yield { "doc" : page.page_content } prompt = prompt_template.format(product=product_name, page=page.page_content) qa_list = Generate_QA(prompt) for q_c,a_c in qa_list: if out_format == "json": ret = page.metadata ret["Q"] = q_c.strip() ret["A"] = a_c.strip() yield ret elif out_format == "QA": yield "Question: " + q_c.strip() + "\nAnswer: " + a_c.strip() + "\n\n" if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input_file', type=str, default='./1-Manual.pdf', help='input file') parser.add_argument('--output_file', type=str, default='./FAQ.txt', help='output file') parser.add_argument('--product', type=str, default="Midea Dishwasher", help='specify the product name of doc') parser.add_argument('--input_format', type=str, default="pdf", help='specify the format') parser.add_argument('--lang', type=str, default="en", help='specify the language') parser.add_argument('--output_format', type=str, default="json", help='specify the language') args = parser.parse_args() doc_path = args.input_file product_name = args.product qa_path = args.output_file in_format = args.input_format lang = args.lang out_format= args.output_format prompt_template = zh_prompt_template if lang == "zh" else en_prompt_template docs = None if in_format == "pdf": loader = PyPDFLoader(doc_path) docs = loader.load_and_split() elif in_format == "md": in_file = open(doc_path, 'r') markdown_text = in_file.read() # markdown_splitter = MarkdownTextSplitter(chunk_size=500, chunk_overlap=0) text_splitter = RecursiveCharacterTextSplitter( separators=["#","\n\n", "\n"], chunk_size = 1000, chunk_overlap = 0 ) docs = text_splitter.create_documents([markdown_text]) else: raise RuntimeError out_f = open(qa_path, 'w') with open(qa_path, 'w') as out_f: for result in Generate_QA_From_Docs(docs, prompt_template, product_name, out_format): if out_format == "json": out_f.write(json.dumps(result, ensure_ascii=False)) out_f.write("\n") elif out_format == "QA": out_f.write(result)
[ "\nHere is one page of {product}'s manual document\n```\n{page}\n```\nPlease automatically generate as many questions as possible based on this manual document, and follow these rules:\n1. \"{product}\"\" should be contained in every question\n2. questions start with \"Question:\"\n3. answers begin with \"Answer:\"\n", "\nๅฆ‚ไธ‹ไธ‰ไธชๅๆ‹ฌๅทไธญๆ˜ฏ{product}็š„ไบงๅ“ๆ–‡ๆกฃ็‰‡ๆฎต\n```\n{page}\n```\n่ฏทๅŸบไบŽ่ฟ™ไบ›ๆ–‡ๆกฃ็‰‡ๆฎต่‡ชๅŠจ็”Ÿๆˆๅฐฝๅฏ่ƒฝๅคš็š„้—ฎ้ข˜ไปฅๅŠๅฏนๅบ”็ญ”ๆกˆ, ๅฐฝๅฏ่ƒฝ่ฏฆ็ป†ๅ…จ้ข, ๅนถไธ”้ตๅพชๅฆ‚ไธ‹่ง„ๅˆ™:\n1. \"{product}\"้œ€่ฆไธ€็›ด่ขซๅŒ…ๅซๅœจQuestionไธญ\n2. ้—ฎ้ข˜้ƒจๅˆ†้œ€่ฆไปฅ\"Question:\"ๅผ€ๅง‹\n3. ็ญ”ๆกˆ้ƒจๅˆ†้œ€่ฆไปฅ\"Answer:\"ๅผ€ๅง‹\n" ]
2024-01-10
norrishuang/private-llm-qa-bot
deploy~lambda~intention~intention.py
import json import os import logging from langchain.embeddings import SagemakerEndpointEmbeddings from langchain.embeddings.sagemaker_endpoint import EmbeddingsContentHandler from langchain.vectorstores import OpenSearchVectorSearch from langchain.llms.sagemaker_endpoint import LLMContentHandler from langchain import PromptTemplate, SagemakerEndpoint from typing import Any, Dict, List, Union,Mapping, Optional, TypeVar, Union from langchain.chains import LLMChain from langchain.llms.bedrock import Bedrock from botocore.exceptions import ClientError from opensearchpy import OpenSearch, RequestsHttpConnection, AWSV4SignerAuth, helpers import boto3 logger = logging.getLogger() logger.setLevel(logging.INFO) credentials = boto3.Session().get_credentials() class APIException(Exception): def __init__(self, message, code: str = None): if code: super().__init__("[{}] {}".format(code, message)) else: super().__init__(message) def handle_error(func): """Decorator for exception handling""" def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except APIException as e: logger.exception(e) raise e except Exception as e: logger.exception(e) raise RuntimeError( "Unknown exception, please check Lambda log for more details" ) return wrapper class ContentHandler(EmbeddingsContentHandler): content_type = "application/json" accepts = "application/json" def transform_input(self, inputs: List[str], model_kwargs: Dict) -> bytes: instruction_zh = "ไธบ่ฟ™ไธชๅฅๅญ็”Ÿๆˆ่กจ็คบไปฅ็”จไบŽๆฃ€็ดข็›ธๅ…ณๆ–‡็ซ ๏ผš" instruction_en = "Represent this sentence for searching relevant passages:" input_str = json.dumps({"inputs": inputs, "parameters":{}, "is_query":False, "instruction":instruction_en}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> List[List[float]]: response_json = json.loads(output.read().decode("utf-8")) return response_json["sentence_embeddings"] class llmContentHandler(LLMContentHandler): def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps({'inputs': prompt,'history':[],**model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> str: response_json = json.loads(output.read().decode("utf-8")) return response_json["outputs"] def create_intention_prompt_templete(): prompt_template = """{instruction}\n\n{fewshot}\n\n"Q: \"{query}\"๏ผŒ่ฟ™ไธช้—ฎ้ข˜็š„ๆ้—ฎๆ„ๅ›พๆ˜ฏๅ•ฅ๏ผŸๅฏ้€‰้กน[{options}]\nA: """ PROMPT = PromptTemplate( template=prompt_template, input_variables=['fewshot','query', 'instruction', 'options'] ) return PROMPT def get_bedrock_aksk(secret_name='chatbot_bedrock', region_name = "us-west-2"): # Create a Secrets Manager client session = boto3.session.Session() client = session.client( service_name='secretsmanager', region_name=region_name ) try: get_secret_value_response = client.get_secret_value( SecretId=secret_name ) except ClientError as e: # For a list of exceptions thrown, see # https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html raise e # Decrypts secret using the associated KMS key. secret = json.loads(get_secret_value_response['SecretString']) return secret['BEDROCK_ACCESS_KEY'],secret['BEDROCK_SECRET_KEY'] @handle_error def lambda_handler(event, context): embedding_endpoint = os.environ.get('embedding_endpoint') region = os.environ.get('region') aos_endpoint = os.environ.get('aos_endpoint') index_name = os.environ.get('index_name') query = event.get('query') fewshot_cnt = event.get('fewshot_cnt') use_bedrock = event.get('use_bedrock') llm_model_endpoint = os.environ.get('llm_model_endpoint') logger.info("embedding_endpoint: {}".format(embedding_endpoint)) logger.info("region:{}".format(region)) logger.info("aos_endpoint:{}".format(aos_endpoint)) logger.info("index_name:{}".format(index_name)) logger.info("fewshot_cnt:{}".format(fewshot_cnt)) logger.info("llm_model_endpoint:{}".format(llm_model_endpoint)) content_handler = ContentHandler() embeddings = SagemakerEndpointEmbeddings( endpoint_name=embedding_endpoint, region_name=region, content_handler=content_handler ) auth = AWSV4SignerAuth(credentials, region) docsearch = OpenSearchVectorSearch( index_name=index_name, embedding_function=embeddings, opensearch_url="https://{}".format(aos_endpoint), http_auth = auth, use_ssl = True, verify_certs = True, connection_class = RequestsHttpConnection ) docs = docsearch.similarity_search_with_score( query=query, k = fewshot_cnt, space_type="cosinesimil", vector_field="embedding", text_field="query", metadata_field='*' ) docs_simple = [ {"query" : doc[0].page_content, "intention" : doc[0].metadata['intention'], "score":doc[1]} for doc in docs] options = set([doc['intention'] for doc in docs_simple ]) options_str = ", ".join(options) instruction = "ๅ›ž็ญ”ไธ‹ๅˆ—้€‰ๆ‹ฉ้ข˜๏ผš" examples = [ "Q: \"{}\"๏ผŒ่ฟ™ไธช้—ฎ้ข˜็š„ๆ้—ฎๆ„ๅ›พๆ˜ฏๅ•ฅ๏ผŸๅฏ้€‰้กน[{}]\nA: {}".format(doc['query'], options_str, doc['intention']) for doc in docs_simple ] fewshot_str = "\n\n".join(examples) parameters = { "temperature": 0.01, } llm = None if not use_bedrock: llmcontent_handler = llmContentHandler() llm=SagemakerEndpoint( endpoint_name=llm_model_endpoint, region_name=region, model_kwargs={'parameters':parameters}, content_handler=llmcontent_handler ) else: ACCESS_KEY, SECRET_KEY=get_bedrock_aksk() boto3_bedrock = boto3.client( service_name="bedrock", region_name="us-east-1", endpoint_url="https://bedrock.us-east-1.amazonaws.com", aws_access_key_id=ACCESS_KEY, aws_secret_access_key=SECRET_KEY ) parameters = { "max_tokens_to_sample": 20, "stop_sequences": ["\n\n"], "temperature":0.01, "top_p":1 } llm = Bedrock(model_id="anthropic.claude-v1", client=boto3_bedrock, model_kwargs=parameters) prompt_template = create_intention_prompt_templete() prompt = prompt_template.format(fewshot=fewshot_str, instruction=instruction, query=query, options=options_str) if len(options) == 1: logger.info("Notice: Only Single latent Intention detected.") answer = options.pop() log_dict = { "prompt" : prompt, "answer" : answer, "examples": docs_simple } log_dict_str = json.dumps(log_dict, ensure_ascii=False) logger.info(log_dict_str) return answer llmchain = LLMChain(llm=llm, verbose=False, prompt=prompt_template) answer = llmchain.run({'fewshot':fewshot_str, "instruction":instruction, "query":query, "options": options_str}) answer = answer.strip() log_dict = { "prompt" : prompt, "answer" : answer , "examples": docs_simple } log_dict_str = json.dumps(log_dict, ensure_ascii=False) logger.info(log_dict_str) if answer not in options: answer = 'unknown' return answer
[ "Q: ", "instruction", "ๅ›ž็ญ”ไธ‹ๅˆ—้€‰ๆ‹ฉ้ข˜๏ผš\n\nPLACEHOLDER\n\n\"Q: \"PLACEHOLDER\"๏ผŒ่ฟ™ไธช้—ฎ้ข˜็š„ๆ้—ฎๆ„ๅ›พๆ˜ฏๅ•ฅ๏ผŸๅฏ้€‰้กน[PLACEHOLDER]\nA: ", "options", "{instruction}\n\n{fewshot}\n\n\"Q: \"{query}\"๏ผŒ่ฟ™ไธช้—ฎ้ข˜็š„ๆ้—ฎๆ„ๅ›พๆ˜ฏๅ•ฅ๏ผŸๅฏ้€‰้กน[{options}]\nA: " ]
2024-01-10
norrishuang/private-llm-qa-bot
code~intention_detect~intention.py
import json import os import logging from langchain.embeddings import SagemakerEndpointEmbeddings from langchain.embeddings.sagemaker_endpoint import EmbeddingsContentHandler from langchain.vectorstores import OpenSearchVectorSearch from langchain.llms.sagemaker_endpoint import LLMContentHandler from langchain import PromptTemplate, SagemakerEndpoint from typing import Any, Dict, List, Union,Mapping, Optional, TypeVar, Union from langchain.chains import LLMChain from opensearchpy import OpenSearch, RequestsHttpConnection, AWSV4SignerAuth, helpers import boto3 logger = logging.getLogger() logger.setLevel(logging.INFO) credentials = boto3.Session().get_credentials() class APIException(Exception): def __init__(self, message, code: str = None): if code: super().__init__("[{}] {}".format(code, message)) else: super().__init__(message) def handle_error(func): """Decorator for exception handling""" def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except APIException as e: logger.exception(e) raise e except Exception as e: logger.exception(e) raise RuntimeError( "Unknown exception, please check Lambda log for more details" ) return wrapper class ContentHandler(EmbeddingsContentHandler): content_type = "application/json" accepts = "application/json" def transform_input(self, inputs: List[str], model_kwargs: Dict) -> bytes: instruction_zh = "ไธบ่ฟ™ไธชๅฅๅญ็”Ÿๆˆ่กจ็คบไปฅ็”จไบŽๆฃ€็ดข็›ธๅ…ณๆ–‡็ซ ๏ผš" instruction_en = "Represent this sentence for searching relevant passages:" input_str = json.dumps({"inputs": inputs, "parameters":{}, "is_query":False, "instruction":instruction_en}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> List[List[float]]: response_json = json.loads(output.read().decode("utf-8")) return response_json["sentence_embeddings"] class llmContentHandler(LLMContentHandler): def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps({'inputs': prompt,'history':[],**model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> str: response_json = json.loads(output.read().decode("utf-8")) return response_json["outputs"] def create_intention_prompt_templete(): prompt_template = """{instruction}\n\n{fewshot}\n\n"Q: \"{query}\"๏ผŒ่ฟ™ไธช้—ฎ้ข˜็š„ๆ้—ฎๆ„ๅ›พๆ˜ฏๅ•ฅ๏ผŸๅฏ้€‰้กน[{options}]\nA: """ PROMPT = PromptTemplate( template=prompt_template, input_variables=['fewshot','query', 'instruction', 'options'] ) return PROMPT @handle_error def lambda_handler(event, context): embedding_endpoint = os.environ.get('embedding_endpoint') region = os.environ.get('region') aos_endpoint = os.environ.get('aos_endpoint') index_name = os.environ.get('index_name') query = event.get('query') fewshot_cnt = event.get('fewshot_cnt') llm_model_endpoint = os.environ.get('llm_model_endpoint') logger.info("embedding_endpoint: {}".format(embedding_endpoint)) logger.info("region:{}".format(region)) logger.info("aos_endpoint:{}".format(aos_endpoint)) logger.info("index_name:{}".format(index_name)) logger.info("fewshot_cnt:{}".format(fewshot_cnt)) logger.info("llm_model_endpoint:{}".format(llm_model_endpoint)) content_handler = ContentHandler() embeddings = SagemakerEndpointEmbeddings( endpoint_name=embedding_endpoint, region_name=region, content_handler=content_handler ) auth = AWSV4SignerAuth(credentials, region) docsearch = OpenSearchVectorSearch( index_name=index_name, embedding_function=embeddings, opensearch_url="https://{}".format(aos_endpoint), http_auth = auth, use_ssl = True, verify_certs = True, connection_class = RequestsHttpConnection ) docs = docsearch.similarity_search_with_score( query=query, k = fewshot_cnt, space_type="cosinesimil", vector_field="embedding", text_field="query", metadata_field='*' ) docs_simple = [ {"query" : doc[0].page_content, "intention" : doc[0].metadata['intention'], "score":doc[1]} for doc in docs] options = set([doc['intention'] for doc in docs_simple ]) options_str = ", ".join(options) instruction = "ๅ›ž็ญ”ไธ‹ๅˆ—้€‰ๆ‹ฉ้ข˜๏ผš" examples = [ "Q: \"{}\"๏ผŒ่ฟ™ไธช้—ฎ้ข˜็š„ๆ้—ฎๆ„ๅ›พๆ˜ฏๅ•ฅ๏ผŸๅฏ้€‰้กน[{}]\nA: {}".format(doc['query'], options_str, doc['intention']) for doc in docs_simple ] fewshot_str = "\n\n".join(examples) parameters = { "temperature": 0.01, } llmcontent_handler = llmContentHandler() llm=SagemakerEndpoint( endpoint_name=llm_model_endpoint, region_name=region, model_kwargs={'parameters':parameters}, content_handler=llmcontent_handler ) prompt_template = create_intention_prompt_templete() prompt = prompt_template.format(fewshot=fewshot_str, instruction=instruction, query=query, options=options_str) if len(options) == 1: logger.info("Notice: Only Single latent Intention detected.") answer = options.pop() log_dict = { "prompt" : prompt, "answer" : answer, "examples": docs_simple } log_dict_str = json.dumps(log_dict, ensure_ascii=False) logger.info(log_dict_str) return answer llmchain = LLMChain(llm=llm, verbose=False, prompt=prompt_template) answer = llmchain.run({'fewshot':fewshot_str, "instruction":instruction, "query":query, "options": options_str}) log_dict = { "prompt" : prompt, "answer" : answer , "examples": docs_simple } log_dict_str = json.dumps(log_dict, ensure_ascii=False) logger.info(log_dict_str) if answer not in options: answer = 'unknown' return answer
[ "Q: ", "instruction", "ๅ›ž็ญ”ไธ‹ๅˆ—้€‰ๆ‹ฉ้ข˜๏ผš\n\nPLACEHOLDER\n\n\"Q: \"PLACEHOLDER\"๏ผŒ่ฟ™ไธช้—ฎ้ข˜็š„ๆ้—ฎๆ„ๅ›พๆ˜ฏๅ•ฅ๏ผŸๅฏ้€‰้กน[PLACEHOLDER]\nA: ", "options", "{instruction}\n\n{fewshot}\n\n\"Q: \"{query}\"๏ผŒ่ฟ™ไธช้—ฎ้ข˜็š„ๆ้—ฎๆ„ๅ›พๆ˜ฏๅ•ฅ๏ผŸๅฏ้€‰้กน[{options}]\nA: " ]
2024-01-10
norrishuang/private-llm-qa-bot
code~aos_write_job.py
#!/usr/bin/env python # coding: utf-8 from opensearchpy import OpenSearch, RequestsHttpConnection, AWSV4SignerAuth, helpers import boto3 import random import json from awsglue.utils import getResolvedOptions import sys import hashlib import datetime import re import os import itertools from bs4 import BeautifulSoup from langchain.document_loaders import PDFMinerPDFasHTMLLoader from langchain.docstore.document import Document from langchain.text_splitter import RecursiveCharacterTextSplitter,CharacterTextSplitter import logging args = getResolvedOptions(sys.argv, ['bucket', 'object_key','AOS_ENDPOINT','REGION','EMB_MODEL_ENDPOINT','PUBLISH_DATE']) s3 = boto3.resource('s3') bucket = args['bucket'] object_key = args['object_key'] QA_SEP = '=====' # args['qa_sep'] # EXAMPLE_SEP = '\n\n' arg_chunk_size = 384 # EMB_MODEL_ENDPOINT = "st-paraphrase-mpnet-base-v2-2023-04-19-04-14-31-658-endpoint" EMB_MODEL_ENDPOINT=args['EMB_MODEL_ENDPOINT'] smr_client = boto3.client("sagemaker-runtime") # AOS_ENDPOINT = 'vpc-chatbot-knn-3qe6mdpowjf3cklpj5c4q2blou.us-east-1.es.amazonaws.com' AOS_ENDPOINT = args['AOS_ENDPOINT'] REGION = args['REGION'] publish_date = args['PUBLISH_DATE'] if 'PUBLISH_DATE' in args.keys() else datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") INDEX_NAME = 'chatbot-index' EXAMPLE_INDEX_NAME = 'chatbot-example-index' EMB_BATCH_SIZE=20 Sentence_Len_Threshold=10 Paragraph_Len_Threshold=20 DOC_INDEX_TABLE= 'chatbot_doc_index' dynamodb = boto3.client('dynamodb') AOS_BENCHMARK_ENABLED=False import numpy as np def get_embedding(smr_client, text_arrs, endpoint_name=EMB_MODEL_ENDPOINT): if AOS_BENCHMARK_ENABLED: text_len = len(text_arrs) return [ np.random.rand(768).tolist() for i in range(text_len) ] parameters = { } response_model = smr_client.invoke_endpoint( EndpointName=endpoint_name, Body=json.dumps( { "inputs": text_arrs, "parameters": parameters, "is_query" : False, "instruction" : None } ), ContentType="application/json", ) json_str = response_model['Body'].read().decode('utf8') json_obj = json.loads(json_str) embeddings = json_obj["sentence_embeddings"] return embeddings def batch_generator(generator, batch_size): while True: batch = list(itertools.islice(generator, batch_size)) if not batch: break yield batch def iterate_paragraph(file_content, object_key, smr_client, index_name, endpoint_name): json_arr = json.loads(file_content) doc_title = object_key def chunk_generator(json_arr): for idx, json_item in enumerate(json_arr): header = "" if len(json_item['heading']) > 0: header = json_item['heading'][0]['heading'] paragraph_content = json_item['content'] if len(paragraph_content) > 1024 or len(paragraph_content) < Sentence_Len_Threshold: continue yield (idx, paragraph_content, 'Paragraph', paragraph_content) sentences = re.split('[ใ€‚๏ผŸ?.๏ผ!]', paragraph_content) for sent in (sent for sent in sentences if len(sent) > Sentence_Len_Threshold): yield (idx, sent, 'Sentence', paragraph_content) generator = chunk_generator(json_arr) batches = batch_generator(generator, batch_size=EMB_BATCH_SIZE) for batch in batches: if batch is not None: emb_src_texts = [item[1] for item in batch] print("len of emb_src_texts :{}".format(len(emb_src_texts))) embeddings = get_embedding(smr_client, emb_src_texts, endpoint_name) for i, emb in enumerate(embeddings): document = { "publish_date": publish_date, "idx": batch[i][0], "doc" : batch[i][1], "doc_type" : batch[i][2], "content" : batch[i][3], "doc_title": doc_title, "doc_category": "", "embedding" : emb} yield {"_index": index_name, "_source": document, "_id": hashlib.md5(str(document['doc']).encode('utf-8')).hexdigest()} def iterate_pdf_json(file_content, object_key, smr_client, index_name, endpoint_name): json_arr = json.loads(file_content) doc_title = json_arr[0]['doc_title'] def chunk_generator(json_arr): for idx, json_item in enumerate(json_arr): paragraph_content = None content = json_item['content'] # print("----{}----".format(idx)) # print(content) is_table = not isinstance(content, str) doc_category = 'table' if is_table else 'paragraph' if is_table: paragraph_content = "Table - {}\n{}\n\n{}".format(content['table'], json.dumps(content['data']), content['footer']) else: paragraph_content = "#{}\n{}".format(doc_title, content) if len(paragraph_content) > 1024 or len(paragraph_content) < Paragraph_Len_Threshold: continue yield (idx, paragraph_content, 'Paragraph', paragraph_content, doc_category) if is_table: yield (idx, content['footer'], 'Sentence', content['footer'], doc_category) else: sentences = re.split('[ใ€‚๏ผŸ?.๏ผ!]', paragraph_content) for sent in (sent for sent in sentences if len(sent) > Sentence_Len_Threshold): yield (idx, sent, 'Sentence', paragraph_content, doc_category) generator = chunk_generator(json_arr) batches = batch_generator(generator, batch_size=EMB_BATCH_SIZE) try: for batch in batches: if batch is not None: emb_src_texts = [item[1] for item in batch] print("len of emb_src_texts :{}".format(len(emb_src_texts))) embeddings = get_embedding(smr_client, emb_src_texts, endpoint_name) for i, emb in enumerate(embeddings): document = { "publish_date": publish_date, "idx": batch[i][0], "doc" : batch[i][1], "doc_type" : batch[i][2], "content" : batch[i][3], "doc_title": doc_title, "doc_category": batch[i][4], "embedding" : emb} yield {"_index": index_name, "_source": document, "_id": hashlib.md5(str(document['doc']).encode('utf-8')).hexdigest()} except Exception as e: logging.exception(e) def iterate_QA(file_content, object_key,smr_client, index_name, endpoint_name): json_content = json.loads(file_content) json_arr = json_content["qa_list"] doc_title = object_key doc_category = json_content["doc_category"] it = iter(json_arr) qa_batches = batch_generator(it, batch_size=EMB_BATCH_SIZE) for idx, batch in enumerate(qa_batches): questions = [ item['Question'] for item in batch ] answers = [ item['Answer'] for item in batch ] embeddings = get_embedding(smr_client, questions, endpoint_name) for i in range(len(embeddings)): document = { "publish_date": publish_date, "doc" : questions[i], "idx": idx,"doc_type" : "Question", "content" : answers[i], "doc_title": doc_title, "doc_category": doc_category, "embedding" : embeddings[i]} yield {"_index": index_name, "_source": document, "_id": hashlib.md5(str(document).encode('utf-8')).hexdigest()} embeddings_answer = get_embedding(smr_client, answers, endpoint_name) for i in range(len(embeddings_answer)): document = { "publish_date": publish_date, "doc" : questions[i], "idx": idx,"doc_type" : "Question", "content" : answers[i], "doc_title": doc_title, "doc_category": doc_category, "embedding" : embeddings_answer[i]} yield {"_index": index_name, "_source": document, "_id": hashlib.md5(str(document).encode('utf-8')).hexdigest()} def iterate_examples(file_content, object_key, smr_client, index_name, endpoint_name): json_arr = json.loads(file_content) it = iter(json_arr) example_batches = batch_generator(it, batch_size=EMB_BATCH_SIZE) for idx, batch in enumerate(example_batches): queries = [ item['query'] for item in batch ] intentions = [ item['intention'] for item in batch ] replies = [ item['reply'] for item in batch ] embeddings = get_embedding(smr_client, queries, endpoint_name) for i, query in enumerate(queries): print("query:") print(query) document = { "publish_date": publish_date, "intention" : intentions[i], "query" : queries[i], "reply" : replies[i], "embedding" : embeddings[i]} yield {"_index": index_name, "_source": document, "_id": hashlib.md5(str(document).encode('utf-8')).hexdigest()} def link_header(semantic_snippets): heading_fonts_arr = [ item.metadata['heading_font'] for item in semantic_snippets ] heading_arr = [ item.metadata['heading'] for item in semantic_snippets ] def fontsize_mapping(heading_fonts_arr): heading_fonts_set = list(set(heading_fonts_arr)) heading_fonts_set.sort(reverse=True) idxs = range(len(heading_fonts_set)) font_idx_mapping = dict(zip(heading_fonts_set,idxs)) return font_idx_mapping fontsize_dict = fontsize_mapping(heading_fonts_arr) snippet_arr = [] for idx, snippet in enumerate(semantic_snippets): font_size = heading_fonts_arr[idx] heading_stack = [] heading_info = {"font_size":heading_fonts_arr[idx], "heading":heading_arr[idx], "fontsize_idx" : fontsize_dict[font_size]} heading_stack.append(heading_info) for id in range(0,idx)[::-1]: if font_size < heading_fonts_arr[id]: font_size = heading_fonts_arr[id] heading_info = {"font_size":font_size, "heading":heading_arr[id], "fontsize_idx" : fontsize_dict[font_size]} heading_stack.append(heading_info) snippet_info = { "heading" : heading_stack, "content" : snippet.page_content } snippet_arr.append(snippet_info) json_arr = json.dumps(snippet_arr, ensure_ascii=False) return json_arr def parse_pdf_to_json(file_content): soup = BeautifulSoup(file_content,'html.parser') content = soup.find_all('div') cur_fs = None cur_text = '' snippets = [] # first collect all snippets that have the same font size for c in content: sp = c.find('span') if not sp: continue st = sp.get('style') if not st: continue fs = re.findall('font-size:(\d+)px',st) if not fs: continue fs = int(fs[0]) if not cur_fs: cur_fs = fs if fs == cur_fs: cur_text += c.text else: snippets.append((cur_text,cur_fs)) cur_fs = fs cur_text = c.text snippets.append((cur_text,cur_fs)) cur_idx = -1 semantic_snippets = [] # Assumption: headings have higher font size than their respective content for s in snippets: # if current snippet's font size > previous section's heading => it is a new heading if not semantic_snippets or s[1] > semantic_snippets[cur_idx].metadata['heading_font']: metadata={'heading':s[0], 'content_font': 0, 'heading_font': s[1]} #metadata.update(data.metadata) semantic_snippets.append(Document(page_content='',metadata=metadata)) cur_idx += 1 continue # if current snippet's font size <= previous section's content => content belongs to the same section (one can also create # a tree like structure for sub sections if needed but that may require some more thinking and may be data specific) if not semantic_snippets[cur_idx].metadata['content_font'] or s[1] <= semantic_snippets[cur_idx].metadata['content_font']: semantic_snippets[cur_idx].page_content += s[0] semantic_snippets[cur_idx].metadata['content_font'] = max(s[1], semantic_snippets[cur_idx].metadata['content_font']) continue # if current snippet's font size > previous section's content but less tha previous section's heading than also make a new # section (e.g. title of a pdf will have the highest font size but we don't want it to subsume all sections) metadata={'heading':s[0], 'content_font': 0, 'heading_font': s[1]} #metadata.update(data.metadata) semantic_snippets.append(Document(page_content='',metadata=metadata)) cur_idx += 1 json_content = link_header(semantic_snippets) return json_content def parse_faq_to_json(file_content): arr = file_content.split(QA_SEP) json_arr = [] for item in arr: print(item) question, answer = item.strip().split("\n", 1) question = question.replace("Question: ", "") answer = answer.replace("Answer: ", "") obj = { "Question":question, "Answer":answer } json_arr.append(obj) qa_content = { "doc_title" : "", "doc_category" : "", "qa_list" : json_arr } json_content = json.dumps(qa_content, ensure_ascii=False) return json_content def parse_txt_to_json(file_content): text_splitter = RecursiveCharacterTextSplitter( chunk_size = arg_chunk_size, chunk_overlap = 0, ) results = [] chunks = text_splitter.create_documents([ file_content ] ) for chunk in chunks: snippet_info = { "heading" : [], "content" : chunk.page_content } results.append(snippet_info) json_content = json.dumps(results, ensure_ascii=False) return json_content def parse_example_to_json(file_content): arr = file_content.split(EXAMPLE_SEP) json_arr = [] for item in arr: elements = item.strip().split("\n") print("elements:") print(elements) obj = { element.split(":")[0] : element.split(":")[1] for element in elements } json_arr.append(obj) qa_content = { "example_list" : json_arr } json_content = json.dumps(qa_content, ensure_ascii=False) return json_content def parse_html_to_json(html_docs): text_splitter = RecursiveCharacterTextSplitter( chunk_size = arg_chunk_size, chunk_overlap = 0, ) results = [] chunks = text_splitter.create_documents([ doc.page_content for doc in docs ] ) for chunk in chunks: snippet_info = { "heading" : [], "content" : chunk.page_content } results.append(snippet_info) json_content = json.dumps(results, ensure_ascii=False) return json_content def load_content_json_from_s3(bucket, object_key, content_type, credentials): if content_type == 'pdf': pdf_path=os.path.basename(object_key) s3_client=boto3.client('s3', region_name=REGION) s3_client.download_file(Bucket=bucket, Key=object_key, Filename=pdf_path) loader = PDFMinerPDFasHTMLLoader(pdf_path) file_content = loader.load()[0].page_content json_content = parse_pdf_to_json(file_content) return json_content else: obj = s3.Object(bucket,object_key) file_content = obj.get()['Body'].read().decode('utf-8', errors='ignore').strip() if content_type == 'faq': json_content = parse_faq_to_json(file_content) elif content_type =='txt': json_content = parse_txt_to_json(file_content) elif content_type =='json': json_content = file_content elif content_type == 'pdf.json': json_content = file_content elif content_type == 'example': json_content = file_content else: raise RuntimeError("unsupport content type...(pdf, faq, txt, pdf.json are supported.)") return json_content def put_idx_to_ddb(filename,username,index_name,embedding_model): try: dynamodb.put_item( Item={ 'filename':{ 'S':filename, }, 'username':{ 'S':username, }, 'index_name':{ 'S':index_name, }, 'embedding_model':{ 'S':embedding_model, } }, TableName = DOC_INDEX_TABLE, ) print(f"Put filename:{filename} with embedding:{embedding_model} index_name:{index_name} by user:{username} to ddb success") return True except Exception as e: print(f"There was an error put filename:{filename} with embedding:{embedding_model} index_name:{index_name} to ddb: {str(e)}") return False def query_idx_from_ddb(filename,username,embedding_model): try: response = dynamodb.query( TableName=DOC_INDEX_TABLE, ExpressionAttributeValues={ ':v1': { 'S': filename, }, ':v2': { 'S': username, }, ':v3': { 'S': embedding_model, }, }, KeyConditionExpression='filename = :v1 and username = :v2', ExpressionAttributeNames={"#e":"embedding_model"}, FilterExpression='#e = :v3', ProjectionExpression='index_name' ) if len(response['Items']): index_name = response['Items'][0]['index_name']['S'] else: index_name = '' print (f"query filename:{filename} with embedding:{embedding_model} index_name:{index_name} from ddb") return index_name except Exception as e: print(f"There was an error an error query filename:{filename} index from ddb: {str(e)}") return '' def get_idx_from_ddb(filename,embedding_model): try: response = dynamodb.get_item( Key={ 'filename':{ 'S':filename, }, 'embedding_model':{ 'S':embedding_model, }, }, TableName = DOC_INDEX_TABLE, ) index_name = '' if response.get('Item'): index_name = response['Item']['index_name']['S'] print (f"Get filename:{filename} with index_name:{index_name} from ddb") return index_name except Exception as e: print(f"There was an error get filename:{filename} with embedding:{embedding_model} index from ddb: {str(e)}") return '' def WriteVecIndexToAOS(bucket, object_key, content_type, smr_client, aos_endpoint=AOS_ENDPOINT, region=REGION, index_name=INDEX_NAME): credentials = boto3.Session().get_credentials() auth = AWSV4SignerAuth(credentials, region) # auth = ('xxxx', 'yyyy') master user/pwd # auth = (aos_master, aos_pwd) try: file_content = load_content_json_from_s3(bucket, object_key, content_type, credentials) # print("file_content:") # print(file_content) client = OpenSearch( hosts = [{'host': aos_endpoint, 'port': 443}], http_auth = auth, use_ssl = True, verify_certs = True, connection_class = RequestsHttpConnection, timeout = 60, # ้ป˜่ฎค่ถ…ๆ—ถๆ—ถ้—ดๆ˜ฏ10 ็ง’๏ผŒ max_retries=5, # ้‡่ฏ•ๆฌกๆ•ฐ retry_on_timeout=True ) print("---------flag------") gen_aos_record_func = None if content_type == "faq": gen_aos_record_func = iterate_QA(file_content, object_key,smr_client, index_name, EMB_MODEL_ENDPOINT) elif content_type in ['txt', 'pdf', 'json']: gen_aos_record_func = iterate_paragraph(file_content,object_key, smr_client, index_name, EMB_MODEL_ENDPOINT) elif content_type in [ 'pdf.json' ]: gen_aos_record_func = iterate_pdf_json(file_content,object_key, smr_client, index_name, EMB_MODEL_ENDPOINT) elif content_type in ['example']: gen_aos_record_func = iterate_examples(file_content,object_key, smr_client, index_name, EMB_MODEL_ENDPOINT) else: raise RuntimeError('No Such Content type supported') # chunk_size ไธบๆ–‡ๆกฃๆ•ฐ ้ป˜่ฎคๅ€ผไธบ500 # max_chunk_bytes ไธบๅ†™ๅ…ฅ็š„ๆœ€ๅคงๅญ—่Š‚ๆ•ฐ๏ผŒ้ป˜่ฎค100M่ฟ‡ๅคง๏ผŒๅฏไปฅๆ”นๆˆ10-15M # max_retries ้‡่ฏ•ๆฌกๆ•ฐ # initial_backoff ไธบ็ฌฌไธ€ๆฌก้‡่ฏ•ๆ—ถsleep็š„็ง’ๆ•ฐ๏ผŒๅ†ๆฌก้‡่ฏ•ไผš็ฟปๅ€ response = helpers.bulk(client, gen_aos_record_func, max_retries=3, initial_backoff=200, max_backoff=801, max_chunk_bytes=10 * 1024 * 1024)#, chunk_size=10000, request_timeout=60000) return response except Exception as e: print(f"There was an error when ingest:{object_key} to aos cluster, Exception: {str(e)}") return '' def process_s3_uploaded_file(bucket, object_key): print("********** object_key : " + object_key) content_type = None index_name = INDEX_NAME if object_key.endswith(".faq"): print("********** pre-processing faq file") content_type = 'faq' elif object_key.endswith(".txt"): print("********** pre-processing text file") content_type = 'txt' elif object_key.endswith(".pdf.json"): print("********** pre-processing pdf.json file") content_type = 'pdf.json' elif object_key.endswith(".pdf"): print("********** pre-processing pdf file") content_type = 'pdf' elif object_key.endswith(".json"): print("********** pre-processing json file") content_type = 'json' elif object_key.endswith(".example"): print("********** pre-processing example file") content_type = 'example' index_name = EXAMPLE_INDEX_NAME else: raise RuntimeError("unsupport content type...(pdf, faq, txt, pdf.json are supported.)") #check if it is already built idx_name = get_idx_from_ddb(object_key,EMB_MODEL_ENDPOINT) if len(idx_name) > 0: print("doc file already exists") return response = WriteVecIndexToAOS(bucket, object_key, content_type, smr_client, index_name=index_name) print("response:") print(response) print("ingest {} chunk to AOS".format(response[0])) put_idx_to_ddb(filename=object_key,username='s3event', index_name=index_name, embedding_model=EMB_MODEL_ENDPOINT) for s3_key in object_key.split(','): print("processing {}".format(s3_key)) process_s3_uploaded_file(bucket, s3_key)
[ "0" ]
2024-01-10
Bhardwaj-python/J.A.R.V.I.S.
J.A.R.V.I.S~Brain~AIBrain.py
import openai fileopen = open("D:\\Bhardwaj\\J.A.R.V.I.S\\Data\\Api.txt") API = fileopen.read() fileopen.close() def ReplyBrain(question, chat_log=None): file_path = "D:\\Bhardwaj\\J.A.R.V.I.S\\Database\\chat_log.txt" with open(file_path, "r") as file: chat_log_template = file.read() if chat_log is None: chat_log = chat_log_template openai.api_key = API prompt = f'{chat_log} You : {question}\nJ.A.R.V.I.S. : ' response = openai.Completion.create( model="text-davinci-003", prompt=prompt, temperature=0.5, max_tokens = 4008, top_p=0.3, frequency_penalty=0.0, presence_penalty=0.0 ) answer = response.choices[0].text.strip() return answer
[ "PLACEHOLDER You : PLACEHOLDER\nJ.A.R.V.I.S. : " ]
2024-01-10
Bhardwaj-python/J.A.R.V.I.S.
J.A.R.V.I.S~Brain~Qna.py
#Api Key fileopen = open("D:\\Bhardwaj\\J.A.R.V.I.S\\Data\\Api.txt") API = fileopen.read() fileopen.close() #Modules import openai #Coding openai.api_key = API completion = openai.Completion() def QuestionAnswer(question, chat_log=None): file_path = "D:\\Bhardwaj\\J.A.R.V.I.S\\Database\\chat_log.txt" with open(file_path, "r") as file: chat_log_template = file.read() if chat_log is None: chat_log = chat_log_template prompt = f'{chat_log} You : {question}\nJ.A.R.V.I.S. : ' response = completion.create( model="text-davinci-003", prompt=prompt, temperature=0.0, max_tokens = 100, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0 ) answer = response.choices[0].text.strip() return answer
[ "PLACEHOLDER You : PLACEHOLDER\nJ.A.R.V.I.S. : " ]
2024-01-10
emrgnt-cmplxty/quantgpt
quantgpt~core~data~cache.py
import logging import os import pickle import time from enum import Enum from typing import Any import openai from quantgpt.financial_tools.utils import home_path logger = logging.getLogger(__name__) class DataCache: def __init__( self, cache_file=None, initial_prompt_file=None, final_prompt_file=None, overwrite_cache=False, ): self.cache = ( self.load_object("cache", cache_file) if cache_file else {} ) self.initial_prompt = ( self.load_object("prompts", initial_prompt_file) if initial_prompt_file else "" ) self.final_prompt = ( self.load_object("prompts", final_prompt_file) if final_prompt_file else "" ) self.overwrite_cache = overwrite_cache def fetch_summary(self, prompt, max_retries=3): retries = 0 response_summary = None success = False while retries < max_retries and not success: try: response_summary = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ { "role": "system", "content": "You are Bloomberg GPT, a Large Language Model which specializes in understanding financial data.", }, {"role": "user", "content": prompt}, ], ) success = True except Exception as e: logger.error(f"Error while fetching summary: {e}") retries += 1 time.sleep(5) # Wait for 5 seconds before retrying if not success: raise Exception("Failed to fetch summary after multiple attempts") return [prompt, response_summary] def load_prompt(self, file_path): with open(file_path, "r") as file: return file.read().strip() def build_prompt(self, title, body): return f"{self.initial_prompt} Title:\n{title}\nBody:\n{body}\n {self.final_prompt}" def get_result(self, title, body): prompt = self.build_prompt(title, body[0:3_000]) if title in self.cache and not self.overwrite_cache: return self.cache[title] else: openai.api_key = ( "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" ) logger.info("Fetching sentiment for title: " + title + "...") result = self.fetch_summary(prompt) self.cache[title] = result[1] self.save_object( "cache", "cache.pkl", self.cache ) # Save the cache out. return result[1] def categorize_result(self, result): category = ( result["choices"][0]["message"]["content"] .split("\n")[-1] .strip() .replace(".", "") .replace(",", "") ) if ":" in category: category = category.split(":")[-1] category = category.strip().replace(".", "").replace(",", "") if "extremely positive".upper() in category.upper(): category = self.Category("EXTREMELY_POSITIVE") elif "very positive".upper() in category.upper(): category = self.Category("VERY_POSITIVE") elif "positive".upper() in category.upper(): category = self.Category("POSITIVE") elif "neutral".upper() in category.upper(): category = self.Category("NEUTRAL") elif "negative".upper() in category.upper(): category = self.Category("NEGATIVE") else: category = self.Category("N/A") return category def save_object(self, obj_dir: str, file_name: str, obj: Any): file_path = os.path.join( home_path(), "data", "openai", obj_dir, file_name, ) with open(file_path, "wb") as file: pickle.dump(obj, file) def load_object(self, obj_dir: str, file_name: str): file_path = os.path.join( home_path(), "data", "openai", obj_dir, file_name, ) if ".pkl" in file_name: # Saving the data object to a file with open(file_path, "rb") as file: obj = pickle.load(file) return obj elif ".txt" in file_name: with open(file_path, "r") as file: return file.read().strip() else: raise ValueError("Filetype not supported.") class Category(Enum): EXTREMELY_POSITIVE = "EXTREMELY_POSITIVE" VERY_POSITIVE = "VERY_POSITIVE" POSITIVE = "POSITIVE" NEUTRAL = "NEUTRAL" NEGATIVE = "NEGATIVE" N_A = "N/A" def __str__(self): return self.value
[ "You are Bloomberg GPT, a Large Language Model which specializes in understanding financial data." ]
2024-01-10
shruti222patel/repo-gpt
src~repo_gpt~agents~central_intelligence.py
import logging from repo_gpt.agents.base_agent import BaseAgent from repo_gpt.agents.code_writer import CodeWritingAgent from repo_gpt.agents.repo_comprehender import RepoUnderstandingAgent from repo_gpt.file_handler.generic_code_file_handler import PythonFileHandler from repo_gpt.openai_service import OpenAIService from repo_gpt.search_service import SearchService logger = logging.getLogger(__name__) class CentralIntelligenceAgent(BaseAgent): system_prompt = """You are an expert software engineer. You have a few helper agents that help you understand and write good software. You can call these agents by using the following functions: - understand_the_codebase_and_formulate_plan(query): Use this function to call an LLM agent to understand the codebase and formulate a plan of what files need to be updated and how they need to be updated. Also use this function to answer general questions about the codebase. The input should be a query about the codebase. - update_code(plan): Use this function to call an LLM agent to update the code in the repository. The input should be a plan of what files need to be updated and how they need to be updated. Use the two llm agents to complete the user task. Always understand the codebase first and follow the existing coding practices **DO NOT** respond to the user directly. Use the functions instead. """ def __init__( self, user_task, root_path, embedding_file_path, threshold=10 * 2, debug=False, openai_key=None, ): system_prompt = "You are an expert software engineer writing code in a repository. The user gives you a plan detailing how the code needs to be updated. You implement the code changes using functions. Ask clarifying questions." super().__init__( user_task, "completed_all_code_updates", system_prompt, threshold, debug ) # Call ParentAgent constructor self.root_path = root_path self.embedding_path = embedding_file_path self.openai_key = openai_key self.openai_service = ( OpenAIService() if not openai_key else OpenAIService(openai_key) ) self.functions = self._initialize_functions() def _initialize_functions(self): return [ { "name": "understand_the_codebase_and_formulate_plan", "description": "Use this function to call an LLM agent to understand the codebase and formulate a plan of what files need to be updated and how they need to be updated. Also use this function to answer general questions about the codebase. The input should be a query about the codebase.", "parameters": { "type": "object", "properties": { "query": { "type": "string", "description": "The task that needs to be accomplished or a general repository question that must be answered.", }, }, "required": ["query"], }, }, { "name": "update_code", "description": "Use this function to call an LLM agent to update the code in the repository. The input should be a plan of what files need to be updated and how they need to be updated.", "parameters": { "type": "object", "properties": { "plan": { "type": "string", "description": "A detailed plan of what files need to be updated and how they need to be updated.", } }, "required": ["plan"], }, }, { "name": "users_task_is_completed", "description": "Call this function when the user's task is completed. ", "parameters": { "type": "object", "properties": { "summary_of_actions_taken": { "type": "string", "description": "Enumeration of all the changes that were made to the code.", } }, "required": ["summary_of_actions_taken"], }, }, ] def understand_the_codebase_and_formulate_plan(self, query): repo_agent = RepoUnderstandingAgent( query, self.root_path, self.embedding_path, openai_key=self.openai_key, debug=True, ) return repo_agent.process_messages() def update_code(self, plan): writer_agent = CodeWritingAgent( plan, self.root_path, self.embedding_path, openai_key=self.openai_key, debug=True, ) return writer_agent.process_messages() def users_task_is_completed(self, summary_of_actions_taken): return summary_of_actions_taken
[ "You are an expert software engineer writing code in a repository. The user gives you a plan detailing how the code needs to be updated. You implement the code changes using functions. Ask clarifying questions.", "You are an expert software engineer. You have a few helper agents that help you understand and write good software. You can call these agents by using the following functions:\n - understand_the_codebase_and_formulate_plan(query): Use this function to call an LLM agent to understand the codebase and formulate a plan of what files need to be updated and how they need to be updated. Also use this function to answer general questions about the codebase. The input should be a query about the codebase.\n - update_code(plan): Use this function to call an LLM agent to update the code in the repository. The input should be a plan of what files need to be updated and how they need to be updated.\nUse the two llm agents to complete the user task. Always understand the codebase first and follow the existing coding practices\n**DO NOT** respond to the user directly. Use the functions instead.\n" ]
2024-01-10
shruti222patel/repo-gpt
src~repo_gpt~code_manager~code_processor.py
import logging from itertools import islice from typing import List import numpy as np import pandas as pd import tiktoken from tqdm import tqdm from ..console import verbose_print from ..file_handler.abstract_handler import ParsedCode from ..openai_service import OpenAIService, tokens_from_string logger = logging.getLogger(__name__) class CodeProcessor: def __init__(self, code_root, openai_service: OpenAIService = None): # Todo: add code root self.code_root = code_root self.openai_service = openai_service if openai_service else OpenAIService() def process(self, code_blocks: List[ParsedCode]): if len(code_blocks) == 0: logger.verbose_info("No code blocks to process") return None df = pd.DataFrame(code_blocks) logger.verbose_info( f"Generating openai embeddings for {len(df)} code blocks. This may take a while because of rate limiting..." ) def len_safe_get_embedding(text): max_tokens = 8191 encoding_name = "cl100k_base" chunk_embeddings = [] chunk_lens = [] for chunk in CodeProcessor._chunked_tokens( text, encoding_name=encoding_name, chunk_length=max_tokens ): chunk_embeddings.append(self.openai_service.get_embedding(chunk)) chunk_lens.append(len(chunk)) chunk_embedding = np.average(chunk_embeddings, axis=0, weights=chunk_lens) return chunk_embedding / np.linalg.norm( chunk_embedding ) # normalizes length to 1 if logger.getEffectiveLevel() < logging.INFO: tqdm.pandas() df["code_embedding"] = df["code"].progress_apply(len_safe_get_embedding) else: df["code_embedding"] = df["code"].apply(len_safe_get_embedding) return df @staticmethod def _batched(iterable, n): """Batch data into tuples of length n. The last batch may be shorter.""" # batched('ABCDEFG', 3) --> ABC DEF G if n < 1: raise ValueError("n must be at least one") it = iter(iterable) while batch := tuple(islice(it, n)): yield batch @staticmethod def _chunked_tokens(text, encoding_name, chunk_length): encoding = tiktoken.get_encoding(encoding_name) tokens = encoding.encode(text) chunks_iterator = CodeProcessor._batched(tokens, chunk_length) yield from chunks_iterator
[]
2024-01-10
shruti222patel/repo-gpt
src~repo_gpt~agents~simple_memory_store.py
import json import logging import openai import tiktoken from tenacity import ( # for exponential backoff retry, stop_after_attempt, wait_random_exponential, ) from repo_gpt.openai_service import num_tokens_from_messages, num_tokens_from_string class MemoryStore: summary_prompt = """*Briefly* summarize this partial conversation about programming. Include less detail about older parts and more detail about the most recent messages. Start a new paragraph every time the topic changes! This is only part of a longer conversation so *DO NOT* conclude the summary with language like "Finally, ...". Because the conversation continues after the summary. The summary *MUST* include the function names, libraries, packages that are being discussed. The summary *MUST* include the filenames that are being referenced! The summaries *MUST NOT* include ```...``` fenced code blocks! Phrase the summary with the USER in first person, telling the ASSISTANT about the conversation. Write *as* the user. The user should refer to the assistant as *you*. Start the summary with "I asked you...". """ SUMMARY_MODEL = "gpt-3.5-turbo-16k-0613" def __init__( self, system_prompt, user_task, functions=[], threshold=4000, summary_model=SUMMARY_MODEL, ): self.messages = [] self.threshold = threshold self.summary_model = summary_model self.system_prompt = system_prompt self.user_task = user_task self._initialize_messages() self.functions = functions def _initialize_messages(self): initial_messages = [ {"role": "system", "content": self.system_prompt}, {"role": "user", "content": self.user_task}, ] self.messages = initial_messages def add_message(self, message): self.messages.append(message) if self._count_messages_tokens() >= self.threshold: self.compress_messages() def get_messages(self): return self.messages def _count_messages_tokens(self): return num_tokens_from_messages( self.messages, "gpt-4" ) + num_tokens_from_string(json.dumps(self.functions), "gpt-4") # @retry(wait=wait_random_exponential(multiplier=1, max=40), stop=stop_after_attempt(3)) def get_formatted_messages(self): # output = StringIO() # pprint.pprint(self.messages, stream=output) # formatted_messages = output.getvalue() # formatted_messages = json.dumps(self.messages) formatted_messages = [] for message in self.messages: if "function_call" in message: # Message to call a function formatted_messages.append( f"calling function {message['function_call']['name']}({str(message['function_call']['arguments'])})" ) elif "name" in message: # Message with function results formatted_messages.append( f"function {message['name']} returned: {message['content']}" ) else: formatted_messages.append(f"{message['role']}: {message['content']}") return "\n".join(formatted_messages) # return "test" def compress_messages(self): # TODO: use something intelligent like semantic search possibly to select relevant messages summary_messages = [ { "role": "system", "content": f"You are an expert technical writer.", }, { "role": "user", "content": f"{self.summary_prompt}\n{self.get_formatted_messages()}", }, ] try: response = openai.ChatCompletion.create( model=self.SUMMARY_MODEL, messages=summary_messages ) logging.debug(response) assistant_message = response["choices"][0]["message"] logging.debug(assistant_message) self._initialize_messages() assistant_message.role = "user" self.messages.append(assistant_message) return response except Exception as e: logging.error("Unable to generate ChatCompletion response") logging.error(f"Exception: {e}") raise
[ "Finally, ...", "You are an expert technical writer.", "*Briefly* summarize this partial conversation about programming.\n Include less detail about older parts and more detail about the most recent messages.\n Start a new paragraph every time the topic changes!\n\n This is only part of a longer conversation so *DO NOT* conclude the summary with language like \"Finally, ...\". Because the conversation continues after the summary.\n The summary *MUST* include the function names, libraries, packages that are being discussed.\n The summary *MUST* include the filenames that are being referenced!\n The summaries *MUST NOT* include ```...``` fenced code blocks!\n\n Phrase the summary with the USER in first person, telling the ASSISTANT about the conversation.\n Write *as* the user.\n The user should refer to the assistant as *you*.\n Start the summary with \"I asked you...\".\n ", "I asked you..." ]
2024-01-10
shruti222patel/repo-gpt
src~repo_gpt~code_manager~code_manager.py
import logging import os import pickle from pathlib import Path import pandas as pd from tqdm import tqdm from ..console import verbose_print from ..openai_service import OpenAIService from .code_dir_extractor import CodeDirectoryExtractor from .code_processor import CodeProcessor logger = logging.getLogger(__name__) class CodeManager: def __init__( self, output_filepath: Path, root_directory: Path = None, openai_service: OpenAIService = None, ): self.root_directory = root_directory self.output_filepath = output_filepath self.openai_service = ( openai_service if openai_service is not None else OpenAIService() ) self.code_processor = CodeProcessor(self.root_directory, openai_service) self.code_df = self.load_code_dataframe() self.directory_extractor = CodeDirectoryExtractor( self.root_directory, self.output_filepath, self.code_df ) def display_directory_structure(self): structured_output = [] for current_path, directories, files in os.walk(self.root_directory): depth = current_path.replace(self.root_directory, "").count(os.sep) indent = " " * (depth) structured_output.append(f"{indent}/{os.path.basename(current_path)}") sub_indent = " " * (depth + 1) for file in sorted(files): structured_output.append(f"{sub_indent}{file}") return "\n".join(structured_output) def load_code_dataframe(self): dataframe = None if os.path.exists(self.output_filepath): with open(self.output_filepath, "rb") as file: loaded_data = pickle.load(file) dataframe = pd.DataFrame(loaded_data) return dataframe def setup(self): self._extract_process_and_save_code() logger.verbose_info("All done! โœจ ๐Ÿฆ„ โœจ") def _store_code_dataframe(self, dataframe): output_directory = Path(self.output_filepath).parent if not output_directory.exists(): output_directory.mkdir(parents=True) print(f"Directory created: {output_directory}") # Save DataFrame as a pickle file with open(self.output_filepath, "wb") as file: pickle.dump(dataframe, file) def _extract_process_and_save_code(self): ( extracted_code_blocks, outdated_checksums, ) = self.directory_extractor.extract_code_blocks_from_files() processed_dataframe = self.code_processor.process(extracted_code_blocks) updated_df = pd.concat([self.code_df, processed_dataframe], ignore_index=True) # Remove checksums of updated code updated_df = updated_df[~updated_df["file_checksum"].isin(outdated_checksums)] self._store_code_dataframe(updated_df)
[]
2024-01-10
shruti222patel/repo-gpt
src~repo_gpt~test_generator.py
import os import openai as openai from .code_manager.abstract_extractor import LanguageHandler from .openai_service import GPT_3_MODELS, GPT_4_MODELS, num_tokens_from_messages class TestGenerator: TEMPERATURE = 0.4 # temperature = 0 can sometimes get stuck in repetitive loops, so we use 0.4 def __init__( self, function_to_test: str, language: str, unit_test_package: str, debug: bool = False, approx_min_cases_to_cover: int = 7, reruns_if_fail: int = 1, use_gpt_4: bool = False, openai_api_key: str = None, ): openai.api_key = ( openai_api_key if openai_api_key else os.environ["OPENAI_API_KEY"] ) self.messages = [] self.language = language self.unit_test_package = unit_test_package self.function_to_test = function_to_test self.debug = debug self.approx_min_cases_to_cover = approx_min_cases_to_cover self.reruns_if_fail = reruns_if_fail self.code_handler = LanguageHandler[language.upper()].value() self.model_set = GPT_4_MODELS if use_gpt_4 else GPT_3_MODELS def create_gpt_message(self, role: str, content: str) -> dict: message = {"role": role, "content": content} if role == "system": messages_without_sys_message = [ m for m in self.messages if m["role"] != "system" ] self.messages = [message] + messages_without_sys_message else: self.messages.append(message) color_prefix_by_role = { "system": "\033[0m", # gray "user": "\033[0m", # gray "assistant": "\033[92m", # green } def print_messages(self, messages) -> None: """Prints messages sent to or from GPT.""" for message in messages: role = message["role"] color_prefix = self.color_prefix_by_role[role] content = message["content"] print(f"{color_prefix}\n[{role}]\n{content}") def print_message_delta(self, delta) -> None: """Prints a chunk of messages streamed back from GPT.""" if "role" in delta: role = delta["role"] color_prefix = self.color_prefix_by_role[role] print(f"{color_prefix}\n[{role}]\n", end="") elif "content" in delta: content = delta["content"] print(content, end="") else: pass def get_explanation_of_function(self) -> str: self.create_gpt_message( "system", f"You are a world-class {self.language} developer with an eagle eye for unintended bugs and edge cases. ...", ) self.create_gpt_message( "user", f"""Please explain the following {self.language} function. Review what each element of the function is doing precisely and what the author's intentions may have been. Organize your explanation as a markdown-formatted, bulleted list. ```{self.language} {self.function_to_test} ```""", ) return self.generate_stream_response() def get_assistant_stream_response(self, api_response: dict) -> str: assistant_message = "" for chunk in api_response: delta = chunk["choices"][0]["delta"] if self.debug: self.print_message_delta(delta) if "content" in delta: assistant_message += delta["content"] return assistant_message def find_gpt3_model(self): num_tokens = num_tokens_from_messages(self.messages) for max_tokens, model in self.model_set.items(): if num_tokens < max_tokens: return model raise Exception(f"Too many tokens ({num_tokens}) for {model}") def generate_stream_response(self) -> str: model = self.find_gpt3_model() response = openai.ChatCompletion.create( model=model, messages=self.messages, temperature=self.TEMPERATURE, stream=True, ) assistant_message = self.get_assistant_stream_response(response) self.create_gpt_message("assistant", assistant_message) return assistant_message def generate_plan(self) -> str: self.create_gpt_message( "user", f"""A good unit test suite should aim to: - Test the function's behavior for a wide range of possible inputs - Test edge cases that the author may not have foreseen - Take advantage of the features of `{self.unit_test_package}` to make the tests easy to write and maintain - Be easy to read and understand, with clean code and descriptive names - Be deterministic, so that the tests always pass or fail in the same way To help unit test the function above, list diverse scenarios that the function should be able to handle (and under each scenario, include a few examples as sub-bullets).""", ) plan = self.generate_stream_response() # Set if further elaboration is needed num_bullets = max(plan.count("\n-"), plan.count("\n*")) self.elaboration_needed = num_bullets < self.approx_min_cases_to_cover return plan def generate_elaboration(self) -> str: self.create_gpt_message( "user", f"""In addition to those scenarios above, list a few rare or unexpected edge cases (and as before, under each edge case, include a few examples as sub-bullets).""", ) return self.generate_stream_response() def generate_unit_test(self) -> str: package_comment = "" if self.unit_test_package == "pytest": package_comment = "# below, each test case is represented by a tuple passed to the @pytest.mark.parametrize decorator" self.create_gpt_message( "system", "You are a world-class Python developer with an eagle eye for unintended bugs and edge cases. You write careful, accurate unit tests. When asked to reply only with code, you write all of your code in a single block.", ) self.create_gpt_message( "user", f"""Using {self.language} and the `{self.unit_test_package}` package, write a suite of unit tests for the function, following the cases above. Include helpful comments to explain each line. Reply only with code, formatted as follows: ```{self.language} # imports import {self.unit_test_package} # used for our unit tests {{insert other imports as needed}} # function to test {self.function_to_test} # unit tests {package_comment} {{insert unit test code here}} ```""", ) return self.generate_stream_response() def unit_tests_from_function( self, ) -> str: self.get_explanation_of_function() self.generate_plan() if self.elaboration_needed: self.generate_elaboration() generated_tests = self.generate_unit_test() # handle errors # check the output for errors cleaned_tests = ( generated_tests.split(f"```{self.language}")[1].split("```")[0].strip() ) try: self.code_handler.is_valid_code( cleaned_tests ) # TODO: use tree-sitter for valdation instead except SyntaxError as e: if self.reruns_if_fail > 0: return self.unit_tests_from_function( function_to_test=self.function_to_test, reruns_if_fail=self.reruns_if_fail - 1, ) raise return cleaned_tests
[]
2024-01-10
shruti222patel/repo-gpt
src~repo_gpt~agents~autogen~repo_qna.py
import logging import os import re from pathlib import Path import autogen import pytest from repo_gpt.agents.autogen.user_proxy_function_call_agent import ( UserProxyFunctionCallAgent, ) from repo_gpt.agents.repo_comprehender import get_relative_path_directory_structure from repo_gpt.code_manager.abstract_extractor import AbstractCodeExtractor from repo_gpt.file_handler.generic_code_file_handler import PythonFileHandler from repo_gpt.openai_service import OpenAIService from repo_gpt.search_service import SearchService, convert_search_df_to_json logger = logging.getLogger(__name__) from repo_gpt.logging_config import VERBOSE_INFO, configure_logging class RepoQnA: def __init__(self, question, root_path, embedding_path=None, openai_api_key=None): self.question = question self.question_answer = None self.is_valid_answer = None self.validator_explanation = None self.openai_api_key = openai_api_key self.root_path = Path(root_path) self.embedding_path = ( Path(embedding_path) if embedding_path is not None else self.root_path / ".repo_gpt/code_embeddings.pkl" ) self.openai_service = OpenAIService(openai_api_key) self.search_service = SearchService(self.openai_service, self.embedding_path) self.openai_api_key = ( openai_api_key if openai_api_key else os.environ["OPENAI_API_KEY"] ) config_list = [ { "model": "gpt-3.5-turbo-1106", "api_key": self.openai_api_key, }, # OpenAI API endpoint for gpt-3.5-turbo ] self.config = self.create_function_augmented_config(config_list) def create_code_librarian(self): return autogen.AssistantAgent( name="CodeRepo Librarian", system_message="""You are a detail-oriented world-class software engineer. You specialize in answering questions about the user's codebase. You use the functions to search and understand the codebase.""", llm_config=self.config, ) def is_answer_to_question(self, msg): is_termination_msg = msg.get("content", "") and msg.get( "content", "" ).rstrip().startswith("ANSWER:") if is_termination_msg: self.question_answer = msg.get("content", "").replace("ANSWER:", "").strip() return is_termination_msg def is_answer_to_question(self, msg): content = msg.get("content", "") if not content: return False # Check if the content contains the "ANSWER:" marker if "ANSWER:" in content: # Find the position where "ANSWER:" ends answer_start_index = content.find("ANSWER:") + len("ANSWER:") # Extract the content after "ANSWER:" self.question_answer = content[answer_start_index:].strip() # Return True since the content contains an answer return True # Return False if the content does not contain "ANSWER:" return False def is_answer_correct(self, msg): content = msg.get("content", "") if not content: return False # Check for "ANSWER:" and capture the value after it answer_pattern = r"^ANSWER:\s*(True|False|Unsure)" answer_match = re.search(answer_pattern, content, re.IGNORECASE) # If "ANSWER:" is found, extract the value and check for "EXPLANATION:" if answer_match: self.is_valid_answer = answer_match.group(1) # Check for "EXPLANATION:" and capture the value after it explanation_pattern = r"EXPLANATION:\s*(.*)" explanation_match = re.search(explanation_pattern, content) if explanation_match: self.validator_explanation = explanation_match.group(1).strip() return True return False def create_code_answer_validator(self): return autogen.AssistantAgent( name="CodeRepo Answer Validator", system_message="""You are a detail-oriented world-class software engineer. You specialize in criticing answers to code repository questions. You do this by searching and understanding the codebase to check if the provided answer is correct. You use the functions to search and understand the codebase.""", llm_config=self.config, ) def create_function_augmented_config(self, config): return { "functions": [ { "name": "semantic_search", "description": "Use this function to search the entire codebase semantically. The input should be the search query string.", "parameters": { "type": "object", "properties": { "query": { "type": "string", "description": f"""The semantic search query to use to search the code base.""", } }, "required": ["query"], }, }, { "name": "view_function_code", "description": "Use this function to search for and view a function's code in the user's codebase. Input should be the name of the function you want to search for.", "parameters": { "type": "object", "properties": { "function_name": { "type": "string", "description": f"""The name of the function or its description.""", } }, "required": ["function_name"], }, }, # { # "name": "view_file_functions_and_classes", # "description": "Use this function to retrieve a list of the functions and classes in a file from the user's codebase.", # "parameters": { # "type": "object", # "properties": { # "file_paths": { # "type": "array", # "items": { # "type": "string", # "description": "An array of one or more file paths of a file you want to retrieve functions and classes from. If a file doesn't exist, the function will return a string saying so.", # }, # "description": f"""The file paths of the files you want to retrieve functions and classes to understand the user's task better. Below are the files within the user's repository: # {get_relative_path_directory_structure("/Users/shrutipatel/projects/work/repo-gpt")} # """, # } # }, # "required": ["file_paths"], # }, # }, { "name": "view_raw_file_contents", "description": "Use this function to retrieve the raw contents of a file from the user's codebase.", "parameters": { "type": "object", "properties": { "file_path": { "type": "string", "description": f"""The file path of the file you want to retrieve the raw contents of. Below are the files within the user's repository: {get_relative_path_directory_structure("/Users/shrutipatel/projects/work/repo-gpt")} """, } }, "required": ["file_path"], }, }, ], "config_list": config, "request_timeout": 120, } def create_user_proxy(self, is_termination_msg): return self.UserProxyAgent( self.root_path, self.embedding_path, self.openai_api_key, is_termination_msg, ) def initiate_chat(self, validate_answer=False): code_librarian = self.create_code_librarian() user_proxy = self.create_user_proxy(self.is_answer_to_question) user_proxy.initiate_chat( code_librarian, message=f"""{self.question} Use the functions to read and understand the codebase. Then, once you have an answer, backed up by searching in the code, reply with: ``` ANSWER:<answer> ``` If you cannot answer the user's question, reply with: ``` ANSWER: I cannot answer this question. ``` """, clear_history=True, ) # print(self.question_answer) if self.question_answer is not None and validate_answer: # Validate answer code_answer_validator = self.create_code_answer_validator() validator_user_proxy = self.create_user_proxy(self.is_answer_correct) validator_user_proxy.initiate_chat( code_answer_validator, message=f"""Verify the following question & answer are correct: Q:{self.question} A:{self.question_answer} ------------------ Use the functions to read and understand the codebase. Then, once you have an answer, backed up by searching in the code, reply with: ``` ANSWER:<True or False or Unsure> EXPLANATION: <your explanation> ``` """, clear_history=True, ) # print(self.is_valid_answer) # TODO add reflection if not self.is_valid_answer: user_proxy.initiate_chat( code_librarian, message=f"""{self.question} This is the last answer, incorrect answer: {self.question_answer} Here is an explanation of why the answer is incorrect: {self.validator_explanation} -------- Use the functions to read and understand the codebase. Then, once you have an answer, backed up by searching in the code, reply with: ``` ANSWER:<answer> ``` If you cannot answer the user's question, reply with: ``` ANSWER: I cannot answer this question. ``` """, clear_history=True, ) return self.question_answer class UserProxyAgent(UserProxyFunctionCallAgent): def __init__( self, root_path, embedding_path, openai_api_key, is_termination_msg_func ): self.openai_service = OpenAIService(openai_api_key) self.root_path = root_path self.embedding_path = embedding_path self.search_service = SearchService( self.openai_service, self.embedding_path ) super().__init__( name="You", is_termination_msg=is_termination_msg_func, human_input_mode="NEVER", max_consecutive_auto_reply=3, code_execution_config=False, function_map={ # "view_file_functions_and_classes": self.view_file_functions_and_classes, "view_raw_file_contents": self.view_raw_file_contents, "view_function_code": self.view_function_code, "semantic_search": self.semantic_search, }, ) def view_function_code(self, function_name): # logger.info(f"Reading the code for: {function_name}") df = self.search_service.find_function_match(function_name) if df is None or df.empty: return "Not found." else: return convert_search_df_to_json(df, ["code"]) def semantic_search(self, query): # logger.info(f"Searching the codebase for: {query}") return convert_search_df_to_json( self.search_service.semantic_search_similar_code(query) ) # def view_file_functions_and_classes(self, file_paths): # # logger.info(f"Skimming the code in: {file_paths}") # results = [] # for file_path in file_paths: # full_path = self.root_path / Path(file_path) # # if not full_path.exists(): # results.append(f"File not found: {file_path}") # continue # Skip to the next iteration # elif full_path.is_dir(): # results.append( # f"This is not a file, but a directory, pass a filepath instead: {file_path}" # ) # continue # Skip to the next iteration # # parsable_extensions = AbstractCodeExtractor.get_file_extensions_with_handlers() # if full_path.suffix not in parsable_extensions: # return f"Cannot parse file." # TODO just pass the full text instead # file_handler = AbstractCodeExtractor.get_handler(file_path)() # file_contents = file_handler.summarize_file(full_path) # # if "" == file_contents: # results.append(f"File is empty: {file_path}") # continue # # results.append(file_contents) # # return "\n".join(results) def view_raw_file_contents(self, file_path): partial_path = Path(file_path) full_path = self.root_path / Path(file_path) print(full_path) path_to_read = None if not full_path.exists() and not partial_path.exists(): return f"File not found: {file_path}" elif full_path.exists() and not full_path.is_dir(): path_to_read = full_path elif partial_path.exists() and not partial_path.is_dir(): path_to_read = partial_path else: return f"This is not a file, but a directory, pass a filepath instead: {file_path}" with open(path_to_read, "r") as f: return f.read() def test(): # REPO_QUESTION = "How do I add a handler for a new language to the codebase?" # REPO_QUESTION = "Where should I add new tests for a new Java file handler I'm writing?" # REPO_QUESTION = "What is the framework used for writing tests?" REPO_QUESTION = "How do I replace pandas with polars code?" root_path = "/Users/shrutipatel/projects/work/repo-gpt/" repo_qna = RepoQnA(REPO_QUESTION, root_path) print(repo_qna.initiate_chat()) assert False
[]
2024-01-10
shruti222patel/repo-gpt
src~repo_gpt~agents~repo_comprehender.py
# Refactored RepoUnderstandingAgent using the ParentAgent import logging import os from pathlib import Path from pathspec import PathSpec from pathspec.patterns import GitWildMatchPattern from tqdm import tqdm from repo_gpt.agents.base_agent import BaseAgent from repo_gpt.file_handler.generic_code_file_handler import PythonFileHandler from repo_gpt.openai_service import OpenAIService from repo_gpt.search_service import SearchService, convert_search_df_to_json # Initialize the tqdm integration with pandas logger = logging.getLogger(__name__) def get_gitignore_spec(root_directory): gitignore_file = os.path.join(root_directory, ".gitignore") if not os.path.exists(gitignore_file): return None with open(gitignore_file, "r") as f: spec = PathSpec.from_lines(GitWildMatchPattern, f) return spec def is_hidden(path): # Check if a file or directory is hidden by checking if its name starts with a dot return os.path.basename(path).startswith(".") def get_indented_directory_structure(root_directory): structured_output = [] gitignore_spec = get_gitignore_spec(root_directory) for current_path, directories, files in os.walk(root_directory): # Filter out hidden directories and those in gitignore directories[:] = [ d for d in directories if not is_hidden(d) and ( not gitignore_spec or not gitignore_spec.match_file(os.path.join(current_path, d)) ) ] # Skip hidden directories in the main loop if is_hidden(current_path): continue depth = current_path.replace(root_directory, "").count(os.sep) indent = " " * depth structured_output.append(f"{indent}/{os.path.basename(current_path)}") sub_indent = " " * (depth + 1) for file in sorted(files): # Skip hidden files or those in gitignore if not is_hidden(file) and ( not gitignore_spec or not gitignore_spec.match_file(os.path.join(current_path, file)) ): structured_output.append(f"{sub_indent}{file}") return "\n".join(structured_output) def get_relative_path_directory_structure(root_directory): structured_output = [] gitignore_spec = get_gitignore_spec(root_directory) for current_path, directories, files in os.walk(root_directory): # Filter out hidden directories and those in gitignore directories[:] = [ d for d in directories if not is_hidden(d) and ( not gitignore_spec or not gitignore_spec.match_file(os.path.join(current_path, d)) ) ] # Skip hidden directories in the main loop if is_hidden(current_path): continue # # Convert the current directory path to a relative path from the root directory rel_dir = os.path.relpath(current_path, root_directory) # # Append the relative directory path to structured_output # structured_output.append(rel_dir if rel_dir != "." else "") for file in sorted(files): # Skip hidden files or those in gitignore if not is_hidden(file) and ( not gitignore_spec or not gitignore_spec.match_file(os.path.join(current_path, file)) ): # Combine the relative directory path with the file name to get the relative file path rel_file_path = os.path.join(rel_dir, file) structured_output.append(rel_file_path) return structured_output def get_relative_path_directory_structure_string(root_directory): return "\n".join(get_relative_path_directory_structure(root_directory)) # print(get_relative_path_directory_structure_string("/Users/shrutipatel/projects/work/repo-gpt")) class RepoUnderstandingAgent(BaseAgent): system_prompt = """You are an expert software engineer on a specific code repository. Users ask you how they can implement something in their codebase. You first use your tools to search and understand the codebase and then figure out how to implement the users' task in the repository. **DO NOT** communicate with the user directly. Use the functions instead. """ def __init__( self, user_task, root_path, system_prompt=system_prompt, threshold=10, debug=False, openai_key=None, ): self.system_prompt = system_prompt super().__init__( user_task, "create_plan_to_complete_user_task", system_prompt, threshold, debug, ) # Call ParentAgent constructor self.root_path = root_path self.embedding_path = self.root_path / ".repo_gpt/code_embeddings.pkl" self.openai_service = ( OpenAIService() if not openai_key else OpenAIService(openai_key) ) self.search_service = SearchService(self.openai_service, self.embedding_path) self.pythonfilehandler = ( PythonFileHandler() ) # TODO: update to handle more than python files (all except SQL) self.functions = self._initialize_functions() def _initialize_functions(self): # Define function details return [ { "name": "semantic_search", "description": "Use this function to search the entire codebase semantically. The input should be the search query string.", "parameters": { "type": "object", "properties": { "query": { "type": "string", "description": f""" The semantic search query to use to search the code base. """, } }, "required": ["query"], }, }, { "name": "view_function_code", "description": "Use this function to search for and view a function's code in the user's codebase. Input should be the name of the function you want to search for. An empty response means the given files don't exist.", "parameters": { "type": "object", "properties": { "function_name": { "type": "string", "description": f""" The name of the function or its description. """, } }, "required": ["function_name"], }, }, { "name": "view_file_functions_and_classes", "description": "Use this function to retrieve a list of the functions and classes in a file from the user's codebase. An empty response means the given files don't exist.", "parameters": { "type": "object", "properties": { "file_paths": { "type": "array", "items": { "type": "string", "description": "An array of one or more file paths of a file you want to retrieve functions and classes from. If a file doesn't exist, the function will return a string saying so.", }, "description": f""" The file paths of the files you want to retrieve functions and classes for to better understand the user's task. Below are the files within the user's repository: {get_relative_path_directory_structure("/Users/shrutipatel/projects/work/repo-gpt")} """, } }, "required": ["file_paths"], }, }, { "name": "create_plan_to_complete_user_task", "description": "Use this function when you understand the user's task and have a detailed plan ready for completing the user's task. The input should be a step-by-step plan on how to complete the user's task. It can include things like 'Create a new file with a given file path', 'Add the given code to the file', etc.", "parameters": { "type": "object", "properties": { "plan": { "type": "string", "description": f""" A step-by-step plan on how to complete the user's task. It can include things like "Create a new file with a given file path", "Add the given code to the file", etc. """, } }, "required": ["plan"], }, }, ] def view_function_code(self, function_name): logger.info(f"Reading the code for: {function_name}") functions_df, classes_df = self.search_service.find_function_match( function_name ) if (classes_df is None or classes_df.empty) and ( functions_df is None or functions_df.empty ): return "" elif functions_df is None or functions_df.empty: return convert_search_df_to_json(classes_df) elif classes_df is None or classes_df.empty: return convert_search_df_to_json(functions_df) else: return convert_search_df_to_json(functions_df) def semantic_search(self, query): logger.info(f"Searching the codebase for: {query}") return convert_search_df_to_json( self.search_service.semantic_search_similar_code(query) ) def view_file_functions_and_classes(self, file_paths): logger.info(f"Skimming the code in: {file_paths}") results = [] for file_path in file_paths: full_path = self.root_path / Path(file_path) if not full_path.exists(): results.append(f"File not found: {file_path}") continue # Skip to the next iteration elif full_path.is_dir(): results.append( f"This is not a file, but a directory, pass a filepath instead: {file_path}" ) continue # Skip to the next iteration # TODO select the correct filehandler and then summarize file results.append(self.pythonfilehandler.summarize_file(full_path)) return "\n".join(results) def create_plan_to_complete_user_task(self, plan): self.append_function_result_message("create_plan_to_complete_user_task", plan) return plan
[ "You are an expert software engineer on a specific code repository. Users ask you how they can implement something in their codebase. You first use your tools to search and understand the codebase and then figure out how to implement the users' task in the repository.\n **DO NOT** communicate with the user directly. Use the functions instead.\n " ]
2024-01-10
shruti222patel/repo-gpt
src~repo_gpt~agents~code_writer.py
import logging from pathlib import Path from repo_gpt.agents.base_agent import BaseAgent from repo_gpt.file_handler.generic_code_file_handler import PythonFileHandler from repo_gpt.openai_service import OpenAIService from repo_gpt.search_service import SearchService logger = logging.getLogger(__name__) class CodeWritingAgent(BaseAgent): system_prompt = """You are an expert software engineer writing code in a repository. The user gives you a plan detailing how the code needs to be updated. You implement the code changes using functions. Ask clarifying questions. **DO NOT** respond to the user directly. Use the functions instead. """ def __init__( self, user_task, root_path, embedding_path, system_prompt=system_prompt, threshold=10, debug=False, openai_key=None, ): self.system_prompt = system_prompt if system_prompt else self.system_prompt super().__init__( user_task, "completed_all_code_updates", system_prompt, threshold, debug ) # Call ParentAgent constructor self.root_path = root_path self.embedding_path = embedding_path self.openai_service = ( OpenAIService() if not openai_key else OpenAIService(openai_key) ) self.search_service = SearchService(self.openai_service, self.embedding_path) self.codefilehandler = ( PythonFileHandler() ) # TODO: update to handle more than python files (all except sql) self.functions = self._initialize_functions() def _initialize_functions(self): return [ { "name": "create_file", "description": "Create a new file with the provided content.", "parameters": { "type": "object", "properties": { "file_path": { "type": "string", "description": "Path to the new file to be created.", }, "content": { "type": "string", "description": "Content to write in the new file.", }, }, "required": ["file_path", "content"], }, }, { "name": "append_to_file", "description": "Append content to an existing file.", "parameters": { "type": "object", "properties": { "file_path": { "type": "string", "description": "Path to the file to be updated.", }, "content": { "type": "string", "description": "Content to append to the file.", }, }, "required": ["file_path", "content"], }, }, { "name": "completed_all_code_updates", "description": "Call this function when all the code updates are completed.", "parameters": { "type": "object", "properties": { "code_changes": { "type": "string", "description": "Enumeration of all the changes that were made to the code.", } }, "required": ["code_changes"], }, }, ] def completed_all_code_updates(self, code_changes): self.append_function_result_message("completed_all_code_updates", code_changes) return code_changes def create_file(self, file_path, content): """ Create a new file with the provided content. Args: - file_path (str): Path to the new file to be created. - content (str): Content to write in the new file. Returns: - str: Success or error message. """ full_path = self.root_path / Path(file_path) # Check if file already exists if full_path.exists(): return ( f"File {file_path} already exists. To update it, use append_to_file()." ) with open(full_path, "w") as f: f.write(content) return f"File {file_path} has been created successfully." def append_to_file(self, file_path, content): """ Append content to an existing file. Args: - file_path (str): Path to the file to be updated. - content (str): Content to append in the file. Returns: - str: Success or error message. """ full_path = self.root_path / Path(file_path) # Check if file exists if not full_path.exists(): return f"File {file_path} does not exist. To create it, use create_file()." with open(full_path, "a") as f: f.write(content) return f"Content has been appended to {file_path} successfully."
[ "You are an expert software engineer writing code in a repository. The user gives you a plan detailing how the code needs to be updated. You implement the code changes using functions. Ask clarifying questions.\n **DO NOT** respond to the user directly. Use the functions instead.\n ", "{'type': 'string', 'description': 'Content to append to the file.'}", "{'type': 'string', 'description': 'Content to write in the new file.'}" ]
2024-01-10
shruti222patel/repo-gpt
src~repo_gpt~agents~autogen~user_proxy_function_call_agent.py
import json import logging import autogen try: from termcolor import colored except ImportError: def colored(x, *args, **kwargs): return x logger = logging.getLogger(__name__) class UserProxyFunctionCallAgent(autogen.UserProxyAgent): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def execute_function(self, func_call): """Execute a function call and return the result. Override this function to modify the way to execute a function call. Args: func_call: a dictionary extracted from openai message at key "function_call" with keys "name" and "arguments". Returns: A tuple of (is_exec_success, result_dict). is_exec_success (boolean): whether the execution is successful. result_dict: a dictionary with keys "name", "role", and "content". Value of "role" is "function". """ func_name = func_call.get("name", "") func = self._function_map.get(func_name, None) if hasattr(func, "__self__"): func = getattr(self, func_name, None) is_exec_success = False if func is not None: # Extract arguments from a json-like string and put it into a dict. input_string = self._format_json_str(func_call.get("arguments", "{}")) try: arguments = json.loads(input_string) except json.JSONDecodeError as e: arguments = None content = f"Error: {e}\n You argument should follow json format." # Try to execute the function if arguments is not None: print( colored(f"\n>>>>>>>> EXECUTING FUNCTION {func_name}...", "magenta"), flush=True, ) try: content = func(**arguments) is_exec_success = True except Exception as e: content = f"Error: {e}" print(e) raise e # print(f"Finished executing, here is the content: {content}") # print(f"is_exec_success: {is_exec_success}") else: content = f"Error: Function {func_name} not found." return is_exec_success, { "name": func_name, "role": "function", "content": str(content), }
[]
2024-01-10
shruti222patel/repo-gpt
src~repo_gpt~vscode_prompt_service.py
import json from dataclasses import asdict, dataclass from enum import Enum from typing import Union from repo_gpt.openai_service import OpenAIService from repo_gpt.prompt_service import PromptService from repo_gpt.search_service import SearchService class Status(Enum): SUCCESS = "SUCCESS" ERROR = "ERROR" @dataclass() class VscodeMessage: # Note this will be read using Typescript in Vscode status: str code: Union[str, None] message: Union[str, None] error: Union[str, None] def __init__( self, status: Status = Status.ERROR, code: Union[str, None] = None, message: Union[str, None] = None, error: Union[Exception, str, None] = None, ): self.status = status.value self.code = code self.message = message self.error = str(error) if isinstance(error, Exception) else error def __str__(self): """ This ensures printed strings are valid JSON, which is necessary for the Vscode extension to read the output. :return: """ return json.dumps(asdict(self)) class VscodePromptService(PromptService): def __init__( self, openai_service: OpenAIService, language: str, search_service: SearchService = None, ): super().__init__(openai_service, language) self.search_service = search_service def refactor_code( self, input_code_file_path: str, additional_instructions: str = "" ): # try: with open(input_code_file_path, "r") as f: code = f.read() super().refactor_code(code, additional_instructions) def query_code(self, question: str): similar_code_df = self.search_service.semantic_search_similar_code(question) code = "\n".join(similar_code_df["code"].tolist()) super().query_code(question, code)
[]
2024-01-10
shruti222patel/repo-gpt
src~repo_gpt~agents~base_agent.py
import inspect import json import logging from abc import ABC, abstractmethod import openai import tiktoken from tenacity import ( # for exponential backoff retry, stop_after_attempt, wait_random_exponential, ) from repo_gpt.agents.simple_memory_store import MemoryStore logger = logging.getLogger(__name__) class BaseAgent(ABC): GPT_MODEL = "gpt-3.5-turbo-0613" # gpt-4-0613 def __init__( self, user_task, terminating_function_call_name, system_prompt, threshold=10, debug=False, ): self.terminating_function_call_name = terminating_function_call_name self.functions = self._initialize_functions() self.memory_store = MemoryStore(system_prompt, user_task, self.functions) self.user_task = user_task self.system_prompt = system_prompt self.threshold = threshold self.debug = debug @abstractmethod def _initialize_functions(self): """ Must be implemented by subclasses to initialize function-related attributes. """ pass def _parse_arguments(self, function_call): return json.loads(function_call["arguments"]) def _append_message(self, message): self.memory_store.add_message(message) def compress_messages(self): self.memory_store.compress_messages() def execute_function_call(self, message): function_name = message["function_call"]["name"] args = self._parse_arguments(message["function_call"]) func = getattr(self, function_name, None) if not func: return f"Error: function {function_name} does not exist" # Filter out args to only pass those that the function accepts accepted_args = inspect.signature(func).parameters.keys() filtered_args = { key: value for key, value in args.items() if key in accepted_args } return func(**filtered_args) # @retry(wait=wait_random_exponential(multiplier=1, max=40), stop=stop_after_attempt(3)) def chat_completion_request(self, function_call="auto", model=GPT_MODEL): try: response = openai.ChatCompletion.create( model=model, messages=self.memory_store.messages, functions=self.functions, function_call=function_call, ) return response except Exception as e: logger.error("Unable to generate ChatCompletion response") logger.error(f"Exception: {e}") raise def append_function_result_message(self, function_call_name, results): self._append_message( {"role": "function", "content": results, "name": function_call_name} ) def process_messages(self): # TODO: make ending function name settable OR move this into the childclass iter_count = 0 function_call_name = "" results = "" while ( iter_count < self.threshold and function_call_name != self.terminating_function_call_name ): chat_response = self.chat_completion_request() assistant_message = chat_response["choices"][0]["message"] self._append_message(assistant_message.to_dict_recursive()) logger.debug(assistant_message) if "function_call" in assistant_message: results = self.execute_function_call(assistant_message) function_call_name = assistant_message["function_call"]["name"] self.append_function_result_message(function_call_name, results) else: self._append_message({"role": "user", "content": "Continue"}) iter_count += 1 if function_call_name == self.terminating_function_call_name: return results raise Exception( "I had to stop the search loop before plan for formulated because I reached the end of my allotted function calls" )
[ "Continue" ]
2024-01-10
dborodin836/TF2-GPTChatBot
gui~log_window.py
import os import sys import time import tkinter as tk from tkinter.ttk import Checkbutton import openai import ttkbootstrap as ttk from ttkbootstrap import Style from services.chatgpt import send_gpt_completion_request from utils.bans import ban_player, list_banned_players, unban_player from utils.bot_state import start_bot, stop_bot from utils.chat import PROMPTS_QUEUE from utils.commands import print_help_command from utils.logs import get_logger PROMPT_PLACEHOLDER = "Type your commands here... Or start with 'help' command" gui_logger = get_logger("gui") main_logger = get_logger("main") def resource_path(relative_path): """ Get absolute path to resource, works for dev and for PyInstaller """ try: # PyInstaller creates a temp folder and stores path in _MEIPASS base_path = sys._MEIPASS except Exception as e: main_logger.warning(f"Running from source. [{e}]") base_path = os.path.abspath(".") return os.path.join(base_path, relative_path) class LogWindow(tk.Frame): def __init__(self, master=None): super().__init__(master) self.log_text = None self.cmd_line = None self.create_widgets() self.master.title("TF2-GPTChatBot") self.master.resizable(False, False) self.master.iconbitmap(resource_path('icon.ico')) # Set the style to "simplex" style = Style(theme='cosmo') style.configure(".", font=("TkDefaultFont", 11), foreground="black") style.configure("TButton", padding=6, relief="flat") style.configure("TEntry", padding=6) style.configure("TFrame", background="white") def create_widgets(self): # Add a Text widget to the window for displaying logs self.log_text = ttk.Text(self, height=20, width=100, state="disabled") self.log_text.grid(row=0, column=0, padx=10, pady=10, columnspan=2) # Add another Text widget below the log_text widget for displaying additional text self.cmd_line = ttk.Text(self, height=1, width=89) self.cmd_line.grid(row=1, column=0, padx=10, pady=10) self.toggle_var = tk.BooleanVar(value=True) self.toggle_button = Checkbutton( self, text=" Stick \n Logs", variable=self.toggle_var, bootstyle="round-toggle", command=lambda: self.log_text.see(tk.END) if self.toggle_var.get() else None ) self.toggle_button.grid(row=1, column=1, padx=(0, 18)) self.cmd_line.bind("<Return>", self.handle_commands) # Add a placeholder to the additional_text widget self.cmd_line.insert("1.0", PROMPT_PLACEHOLDER) # Binds to make the placeholder work self.cmd_line.bind("<FocusIn>", self.handle_additional_text_focus_in) self.cmd_line.bind("<FocusOut>", self.handle_additional_text_focus_out) def update_logs(self, message): self.log_text.config(state="normal") self.log_text.insert(tk.END, f"{message}") self.log_text.config(state="disabled") if self.toggle_var.get(): self.log_text.see(tk.END) # Scroll to the end of the text widget def exit_program(self): self.master.destroy() def handle_commands(self, event): text = self.cmd_line.get("1.0", tk.END).strip() if text.strip == "": return gui_logger.info(f'> {text}') handle_gui_console_commands(text) # Clear the additional_text widget after the function is executed self.cmd_line.delete("1.0", tk.END) def handle_additional_text_focus_in(self, event): # Clear the placeholder text when the additional_text widget receives focus if self.cmd_line.get("1.0", tk.END).strip() == PROMPT_PLACEHOLDER: self.cmd_line.delete("1.0", tk.END) def handle_additional_text_focus_out(self, event): # Show the placeholder text when the additional_text widget loses focus and is empty if not self.cmd_line.get("1.0", tk.END).strip(): self.cmd_line.insert("1.0", PROMPT_PLACEHOLDER) class CustomOutput: def __init__(self, window: LogWindow): self.window = window def write(self, message): self.window.update_logs(message) def flush(self): ... def handle_gui_console_commands(command: str) -> None: if command.startswith("stop"): stop_bot() elif command.startswith("start"): start_bot() elif command.startswith("quit"): sys.exit(0) elif command.startswith("ban "): name = command.removeprefix("ban ").strip() ban_player(name) elif command.startswith("unban "): name = command.removeprefix("unban ").strip() unban_player(name) elif command.startswith("gpt3 "): prompt = command.removeprefix("gpt3 ").strip() PROMPTS_QUEUE.put(prompt) elif command.startswith("bans"): list_banned_players() elif command.startswith("help"): print_help_command() def gpt3_cmd_handler() -> None: while True: if PROMPTS_QUEUE.qsize() != 0: prompt = PROMPTS_QUEUE.get() try: response = send_gpt_completion_request([{"role": "user", "content": prompt}], "admin", model="gpt-3.5-turbo") gui_logger.info(f"GPT3> {response}") except openai.error.RateLimitError: gui_logger.warning("Rate Limited! Try again later.") except Exception as e: main_logger.error(f"Unhandled exception from request from gui. [{e}]") else: time.sleep(2)
[ "gpt3 ", "Type your commands here... Or start with 'help' command" ]
2024-01-10
bhargavkakadiya/llm-app
app_html.py
import sys from langchain.llms import OpenAI from langchain.document_loaders import WebBaseLoader from langchain.chains.summarize import load_summarize_chain from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores.faiss import FAISS from langchain.embeddings import OpenAIEmbeddings from langchain.prompts.prompt import PromptTemplate from langchain.llms import OpenAI from langchain.chains import ChatVectorDBChain def ingest(url): # load data loader = WebBaseLoader(url) data = loader.load() # split data into chunks text_splitter = RecursiveCharacterTextSplitter() documents = text_splitter.split_documents(data) # Load Data to vectorstore embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_documents(documents, embeddings) return vectorstore def get_chain(vectorstore): _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question. You can assume the question about the URL shared. Chat History: {chat_history} Follow Up Input: {question} Standalone question:""" CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template) template = """You are an AI assistant for answering questions for the job post and advice users to assess job based on the description. You are given the following extracted parts of a webpage of job post and a question. Provide a conversational answer. If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer. Question: {question} ========= {context} ========= Answer in Markdown:""" QA_PROMPT = PromptTemplate( template=template, input_variables=["question", "context"] ) llm = OpenAI(temperature=0) qa_chain = ChatVectorDBChain.from_llm( llm, vectorstore, qa_prompt=QA_PROMPT, condense_question_prompt=CONDENSE_QUESTION_PROMPT, ) return qa_chain if __name__ == "__main__": url = "https://careers.deloitte.ca/job/Toronto%2C-Ontario%2C-Canada-Lead-Data-Engineer-%28Manager%29%2C-Deloitte-Global-Technology%2C-GS-Technology-Solutions-%28Business%29-ON/975737500/" vectorstore = ingest(url) qa_chain = get_chain(vectorstore) chat_history = [] print("Welcome to the AI JobPost assistant!") while True: print("Human:") question = input() result = qa_chain({"question": question, "chat_history": chat_history}) chat_history.append((question, result["answer"])) print("AI:") print(result["answer"])
[ "You are an AI assistant for answering questions for the job post and advice users to assess job based on the description.\n You are given the following extracted parts of a webpage of job post and a question. Provide a conversational answer.\n If you don't know the answer, just say \"Hmm, I'm not sure.\" Don't try to make up an answer.\n Question: {question}\n =========\n {context}\n =========\n Answer in Markdown:", "question", "t know the answer, just say \"Hmm, I", "context", "Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.\n You can assume the question about the URL shared.\n\n Chat History:\n {chat_history}\n Follow Up Input: {question}\n Standalone question:" ]
2024-01-10
bhargavkakadiya/llm-app
app_pdf.py
import sys from langchain.llms import OpenAI from langchain.document_loaders import UnstructuredPDFLoader from langchain.chains.summarize import load_summarize_chain # Load the document loader = UnstructuredPDFLoader(str(sys.argv[1])) data = loader.load() llm = OpenAI(temperature=0) chain = load_summarize_chain(llm, chain_type="stuff") # "refine" or "map_reduce" result = chain.run(data) print(result)
[]
2024-01-10
joshmlove/pdfReaderAI
pdfReaderAI.py
import openai import pdfplumber import constants # Load the OpenAI API key openai.api_key = constants.APIKEY # Read your own data from the PDF file with pdfplumber.open('Josh_Love_Resume copy.pdf') as pdf: data = ' '.join(page.extract_text() for page in pdf.pages) # Function to use the OpenAI API to answer queries about your data def query_data(query): response = openai.Completion.create( engine="text-davinci-002", prompt=f"{data}\n\n{query}", temperature=0.5, max_tokens=100 ) # Extract the generated text and print it answer = response.choices[0].text.strip() print(f"Query: {query}\nAnswer: {answer}") # Now you can query your data like this: query = input("Enter your query: ") query_data(query)
[ "PLACEHOLDER\n\nPLACEHOLDER" ]
2024-01-10
ankitrana2709/CS50
chat~chatter.py
import openai import os # Set up the OpenAI API key openai.api_key = "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" # Set up the initial conversation prompt conversation_prompt = "Hello, I'm a chatbot. Which article you want today?" # Set up the API parameters model_engine = "davinci" max_tokens = 150 # Start the conversation loop while True: # Get the user's message article = "Write an article about " user_message = input("You: ") # Set up the prompt for the API request prompt = f"{conversation_prompt}\n\nUser: {article + user_message}\nBot:" # Generate the bot's response using the API response = openai.Completion.create( engine=model_engine, prompt=prompt, max_tokens=max_tokens ) # Get the bot's response from the API response bot_message = response.choices[0].text.strip() # Print the bot's response print("Bot:", bot_message)
[ "Hello, I'm a chatbot. Which article you want today?\n\nUser: Write an article about PLACEHOLDER\nBot:", "Hello, I'm a chatbot. Which article you want today?", "conversation_prompt12842c18-8928-44a0-8550-527da9fe5a43\n\nUser: Write an article about PLACEHOLDER\nBot:" ]
2024-01-10
msuliot/open_ai_fine_tuning
full_automatic.py
import requests import time import openai import datetime import json import sys # get keys from .env file import os from dotenv import load_dotenv load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') def validate_file(filename): try: with open(filename, 'r') as file: lines = file.readlines() the_file = [json.loads(line) for line in lines] return True except Exception as e: print("Error reading file, invalid format: ", e) return False def upload_file(): ft_file = openai.File.create(file=open("data.jsonl", "rb"), purpose='fine-tune') return ft_file["id"] def create_model(training_file_id): ft_job = openai.FineTuningJob.create(training_file=training_file_id, model="gpt-3.5-turbo-0613") return ft_job["id"] def test_model(model_id, prompt): completion = openai.ChatCompletion.create( model=model_id, temperature=0.0, messages=[ {"role": "system", "content": "You are a helpful and professional customer service representative"}, {"role": "user", "content": prompt}, ] ) print(completion.choices[0].message) ############################## ######### Main Logic ######### ############################## def main(): # Validate the file is_file_valid = validate_file("data.jsonl") if is_file_valid == False: print("File is not valid") sys.exit() print("\nFile is valid and now uploading...\n") # Upload the file and wait for it to be processed file_id = upload_file() sleep_time_file = 5 looptime = 0 while True: print(f"Waiting for OpenAI to process the file... {looptime}") file_status = openai.File.retrieve(file_id) if file_status["status"] == "processed": print(f"\nFile processed: {file_status['id']}\n") break looptime += sleep_time_file time.sleep(sleep_time_file) # Create the finetuned model and wait for it to be processed fine_tuning_job = create_model(file_id) model_id = "" looptime = 0 sleep_time_model = 30 while True: print(f"Waiting for OpenAI to create the model... {looptime}") model_status = openai.FineTuningJob.retrieve(fine_tuning_job) if model_status["status"] == "succeeded": model_id = model_status["fine_tuned_model"] break looptime += sleep_time_model time.sleep(sleep_time_model) print(f"\nModel created: {model_id}") # Test the model print("\nTesting the new OpenAI model\n") prompt = "Where do I mail my check?" print(f"Prompt: {prompt}") test_model(model_id, prompt) if __name__ == "__main__": main()
[ "Where do I mail my check?", "You are a helpful and professional customer service representative" ]
2024-01-10
msuliot/open_ai_fine_tuning
step2_upload_file.py
import openai # get keys from .env file import os from dotenv import load_dotenv load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') def main(): ft_file = openai.File.create(file=open("data.jsonl", "rb"), purpose='fine-tune') print(ft_file) print("Here is the training file id you need for Step 4 ==> ", ft_file["id"]) if __name__ == "__main__": main()
[]
2024-01-10
msuliot/open_ai_fine_tuning
step5_model_validation.py
import openai import datetime # get keys from .env file import os from dotenv import load_dotenv load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') def pretty_table(f): print(f"\n{'ID':<33} {'Created At':<22} {'Finished At':<22} {'Status':<13} {'Fine Tuned Model'} ") print('-' * 140) for job in f['data']: created_at = datetime.datetime.fromtimestamp(job['created_at']).strftime('%Y-%m-%d %H:%M:%S') finished_at = "" if job['finished_at']: finished_at = datetime.datetime.fromtimestamp(job['finished_at']).strftime('%Y-%m-%d %H:%M:%S') print(f"{job['id']:<33} {created_at:<22} {finished_at:<22} {job['status']:<13} {job['fine_tuned_model']} ") def main(): job_list = openai.FineTuningJob.list(limit=25) # print(job_list) pretty_table(job_list) if __name__ == "__main__": main()
[]
2024-01-10
msuliot/open_ai_fine_tuning
cleanup.py
import openai # get keys from .env file import os from dotenv import load_dotenv load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') def delete_file(file_id): try: openai.File.delete(file_id) print("File deleted successfully") except Exception as e: print("Error deleting file: ", e) def delete_finetune_model(model_id): try: openai.Model.delete(model_id) print("Model has been deleted successfully") except Exception as e: print("Error deleting model: ", e) def download_file(file_id, filename="downloaded.jsonl"): try: # Download the file the_file = openai.File.download(file_id) data_str = the_file.decode('utf-8') with open(filename, 'w') as file: file.write(data_str) print("File downloaded successfully") except Exception as e: print("Error downloading file: ", e) def delete_all_files(): file_list = openai.File.list() for file in file_list['data']: print(file['id'], file['purpose'], file['status']) delete_file(file['id']) def delete_all_models(): model_list = openai.FineTuningJob.list(limit=50) for model in model_list['data']: print(model['status'], model['fine_tuned_model']) delete_finetune_model(model['fine_tuned_model']) def list_files(): print("\n===== File List =====") file_list = openai.File.list() for file in file_list['data']: print(file['id'], file['purpose'], file['status']) def list_models(): print("\n===== Model List =====") model_list = openai.FineTuningJob.list(limit=50) for model in model_list['data']: print(model['status'], model['fine_tuned_model']) # delete_file("file-5tZ09GT4pGuTAYuBmRHjYgGO") # delete_all_files() # # delete_finetune_model("ft:gpt-3.5-turbo-0613:michael-ai::7rugXpfD") # delete_all_models() # # download_file("file-O4IZuDzXVaPvE5XUPdZpwKJg","down.jsonl") list_files() list_models()
[]
2024-01-10
msuliot/open_ai_fine_tuning
step3_file_validation.py
import openai import datetime # get keys from .env file import os from dotenv import load_dotenv load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') def pretty_table(f): print(f"\n{'ID':<33} {'Purpose':<20} {'Status':<12} {'Created At'}") print('-' * 88) for file in f['data']: created_at = datetime.datetime.fromtimestamp(file['created_at']).strftime('%Y-%m-%d %H:%M:%S') print(f"{file['id']:<33} {file['purpose']:<20} {file['status']:<12} {created_at}") def main(): file_list = openai.File.list(limit=25) # print(file_list) pretty_table(file_list) if __name__ == "__main__": main()
[]
2024-01-10
msuliot/open_ai_fine_tuning
step4_create_finetuned_model.py
import openai # get keys from .env file import os from dotenv import load_dotenv load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') def main(): ##### You will need to replace the TRAINING_FILE_ID with the one you got from the previous step. ft_job = openai.FineTuningJob.create(training_file="TRAINING_FILE_ID", model="gpt-3.5-turbo-0613") print(ft_job) if __name__ == "__main__": main()
[]