File size: 22,376 Bytes
381dd05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
# -*- coding: utf-8 -*-
"""Monster_Music_Transformer.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1_fs1W2cuXxiMKznQIP3wtUxSIbxt71Nk

# Monster Music Transformer (ver. 1.0)

***

Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools

***

WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/

***

#### Project Los Angeles

#### Tegridy Code 2024

***

# (GPU CHECK)
"""

#@title NVIDIA GPU check
!nvidia-smi

"""# (SETUP ENVIRONMENT)"""

#@title Install dependencies
!git clone --depth 1 https://github.com/asigalov61/Monster-MIDI-Dataset
!pip install huggingface_hub
!pip install einops
!pip install torch-summary
!apt install fluidsynth #Pip does not work for some reason. Only apt works

# Commented out IPython magic to ensure Python compatibility.
#@title Import modules

print('=' * 70)
print('Loading core Monster Music Transformer modules...')

import os
import copy
import pickle
import secrets
import statistics
from time import time
import tqdm

print('=' * 70)
print('Loading main Monster Music Transformer modules...')
import torch

# %cd /content/Monster-MIDI-Dataset

import TMIDIX

from midi_to_colab_audio import midi_to_colab_audio

from x_transformer_1_27_16 import *

import random

# %cd /content/
print('=' * 70)
print('Loading aux Monster Music Transformer modules...')

import matplotlib.pyplot as plt

from torchsummary import summary
from sklearn import metrics

from IPython.display import Audio, display

from huggingface_hub import hf_hub_download

from google.colab import files

print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)

"""# (LOAD MODEL)"""

#@title Load Monster Music Transformer Pre-Trained Model

#@markdown Choose model

select_model_to_load = "651M-32L-Fast-Large" # @param ["651M-32L-Fast-Large"]

#@markdown Model precision option

model_precision = "bfloat16" # @param ["bfloat16", "float16"]

#@markdown bfloat16 == Half precision/faster speed (if supported, otherwise the model will default to float16)

#@markdown float16 == Full precision/fast speed

plot_tokens_embeddings = "None" # @param ["None", "Start Times", "Durations Velocities", "Piano Pitches", "Drums Pitches", "Aux"]

print('=' * 70)
print('Loading Monster Music Transformer', select_model_to_load,'Pre-Trained Model...')
print('Please wait...')
print('=' * 70)

full_path_to_models_dir = "/content/Monster-MIDI-Dataset/"

if select_model_to_load == '651M-32L-Fast-Large':

  model_checkpoint_file_name = 'Monster_Music_Transformer_Large_Trained_Model_22501_steps_0.3419_loss_0.9121_acc.pth'
  model_path = full_path_to_models_dir+'/'+model_checkpoint_file_name
  num_layers = 36
  if os.path.isfile(model_path):
    print('Model already exists...')

  else:
    hf_hub_download(repo_id='asigalov61/Monster-Music-Transformer',
                    filename=model_checkpoint_file_name,
                    local_dir='/content/Monster-MIDI-Dataset',
                    local_dir_use_symlinks=False)

print('=' * 70)
print('Instantiating model...')

device_type = 'cuda'

if model_precision == 'bfloat16' and torch.cuda.is_bf16_supported():
  dtype = 'bfloat16'
else:
  dtype = 'float16'

if model_precision == 'float16':
  dtype = 'float16'

ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)

SEQ_LEN = 8192

# instantiate the model

model = TransformerWrapper(
    num_tokens = 19080,
    max_seq_len = SEQ_LEN,
    attn_layers = Decoder(dim = 1024, depth = num_layers, heads = 32, attn_flash=True)
)

model = AutoregressiveWrapper(model, ignore_index=19079)

model.cuda()
print('=' * 70)

print('Loading model checkpoint...')

model.load_state_dict(torch.load(model_path))
print('=' * 70)

model.eval()

print('Done!')
print('=' * 70)

print('Model will use', dtype, 'precision...')
print('=' * 70)

# Model stats
print('Model summary...')
summary(model)

# Plot Token Embeddings
if plot_tokens_embeddings != 'None':
  tok_emb = model.net.token_emb.emb.weight.detach().cpu().tolist()

if plot_tokens_embeddings == 'Start Times':
  tok_range = [0, 256]

elif plot_tokens_embeddings == 'Durations Velocities':
  tok_range = [256, 2304]

elif plot_tokens_embeddings == 'Piano Pitches':
  tok_range = [2304, 2304+128]

elif plot_tokens_embeddings == 'Drums Pitches':
  tok_range = [18945-128, 18945]

elif plot_tokens_embeddings == 'Aux':
  tok_range = [18945, 19079]

if plot_tokens_embeddings != 'None':

  tok_emb1 = []

  for t in tok_emb[tok_range[0]:tok_range[1]]:
    tok_emb1.append(t)

  cos_sim = metrics.pairwise_distances(
    tok_emb1, metric='cosine'
  )
  plt.figure(figsize=(7, 7))
  plt.imshow(cos_sim, cmap="inferno", interpolation="nearest")
  im_ratio = cos_sim.shape[0] / cos_sim.shape[1]
  plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
  plt.xlabel("Position")
  plt.ylabel("Position")
  plt.tight_layout()
  plt.plot()
  plt.savefig("/content/Monster-Music-Transformer-Tokens-Embeddings-Plot.png", bbox_inches="tight")

"""# (GENERATE)

# (IMPROV)
"""

#@title Standard Improv Generator

#@markdown Improv type

improv_type = "Random Freestyle" # @param ["Random Freestyle", "Freestyle without Drums", "Freestyle with Drums", "Custom"]

#@markdown Custom Improv settings

first_note_MIDI_patch_number = 0 # @param {type:"slider", min:0, max:128, step:1}
add_drums = False #@param {type:"boolean"}

#@markdown Generation settings

number_of_tokens_tp_generate = 546 # @param {type:"slider", min:30, max:8190, step:3}
number_of_batches_to_generate = 4 #@param {type:"slider", min:1, max:16, step:1}
temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}

#@markdown Other settings

render_MIDI_to_audio = True # @param {type:"boolean"}

print('=' * 70)
print('Monster Music Transformer Standard Improv Model Generator')
print('=' * 70)

if improv_type == 'Random Freestyle':

  outy = [19077]

if improv_type == 'Freestyle without Drums':

  outy = [19077, 18946]

if improv_type == 'Freestyle with Drums':

  outy = [19077, 18947]

if improv_type == 'Custom':

  if add_drums:
    drumsp = 18947 # Yes
  else:
    drumsp = 18946 # No

  outy = [19077, drumsp, 18948+first_note_MIDI_patch_number]

print('Selected Improv sequence:')
print(outy)
print('=' * 70)

torch.cuda.empty_cache()

inp = [outy] * number_of_batches_to_generate

inp = torch.LongTensor(inp).cuda()

with ctx:
  out = model.generate(inp,
                        number_of_tokens_tp_generate,
                        temperature=temperature,
                        return_prime=True,
                        verbose=True)

out0 = out.tolist()

print('=' * 70)
print('Done!')
print('=' * 70)

torch.cuda.empty_cache()

#======================================================================

print('Rendering results...')

for i in range(number_of_batches_to_generate):

  print('=' * 70)
  print('Batch #', i)
  print('=' * 70)

  out1 = out0[i]

  print('Sample INTs', out1[:12])
  print('=' * 70)

  if len(out1) != 0:

      song = out1
      song_f = []

      time = 0
      dur = 0
      vel = 90
      pitch = 0
      channel = 0

      patches = [-1] * 16

      channels = [0] * 16
      channels[9] = 1

      for ss in song:

          if 0 <= ss < 256:

              time += ss * 16

          if 256 <= ss < 2304:

              dur = ((ss-256) // 8) * 16
              vel = (((ss-256) % 8)+1) * 15

          if 2304 <= ss < 18945:

              patch = (ss-2304) // 129

              if patch < 128:

                  if patch not in patches:
                    if 0 in channels:
                        cha = channels.index(0)
                        channels[cha] = 1
                    else:
                        cha = 15

                    patches[cha] = patch
                    channel = patches.index(patch)
                  else:
                    channel = patches.index(patch)

              if patch == 128:
                  channel = 9

              pitch = (ss-2304) % 129

              song_f.append(['note', time, dur, channel, pitch, vel, patch ])

      patches = [0 if x==-1 else x for x in patches]

      data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                      output_signature = 'Monster Music Transformer',
                                                      output_file_name = '/content/Monster-Music-Transformer-Music-Composition_'+str(i),
                                                      track_name='Project Los Angeles',
                                                      list_of_MIDI_patches=patches
                                                      )


      print('=' * 70)
      print('Displaying resulting composition...')
      print('=' * 70)

      fname = '/content/Monster-Music-Transformer-Music-Composition_'+str(i)

      if render_MIDI_to_audio:
        midi_audio = midi_to_colab_audio(fname + '.mid')
        display(Audio(midi_audio, rate=16000, normalize=False))

      TMIDIX.plot_ms_SONG(song_f, plot_title=fname)

"""# (CUSTOM MIDI)"""

#@title Load Seed MIDI

#@markdown Press play button to to upload your own seed MIDI or to load one of the provided sample seed MIDIs from the dropdown list below

select_seed_MIDI = "Upload your own custom MIDI" # @param ["Upload your own custom MIDI", "Monster-Music-Transformer-Piano-Seed-1", "Monster-Music-Transformer-Piano-Seed-2", "Monster-Music-Transformer-Piano-Seed-3", "Monster-Music-Transformer-Piano-Seed-4", "Monster-Music-Transformer-Piano-Seed-5", "Monster-Music-Transformer-Piano-Seed-6", "Monster-Music-Transformer-MI-Seed-1", "Monster-Music-Transformer-MI-Seed-2", "Monster-Music-Transformer-MI-Seed-3", "Monster-Music-Transformer-MI-Seed-4", "Monster-Music-Transformer-MI-Seed-5", "Monster-Music-Transformer-MI-Seed-6"]
render_MIDI_to_audio = False # @param {type:"boolean"}

print('=' * 70)
print('Monster Music Transformer Seed MIDI Loader')
print('=' * 70)

f = ''

if select_seed_MIDI != "Upload your own custom MIDI":
  print('Loading seed MIDI...')
  f = '/content/Monster-MIDI-Dataset/Seeds/'+select_seed_MIDI+'.mid'

else:
  print('Upload your own custom MIDI...')
  print('=' * 70)
  uploaded_MIDI = files.upload()
  if list(uploaded_MIDI.keys()):
    f = list(uploaded_MIDI.keys())[0]

if f != '':

  print('=' * 70)
  print('File:', f)
  print('=' * 70)

  #=======================================================
  # START PROCESSING

  # Convering MIDI to ms score with MIDI.py module
  score = TMIDIX.midi2single_track_ms_score(open(f, 'rb').read(), recalculate_channels=False)

  # INSTRUMENTS CONVERSION CYCLE
  events_matrix = []
  itrack = 1
  patches = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

  while itrack < len(score):
      for event in score[itrack]:
          if event[0] == 'note' or event[0] == 'patch_change':
              events_matrix.append(event)
      itrack += 1

  events_matrix.sort(key=lambda x: x[1])

  events_matrix1 = []

  for event in events_matrix:
          if event[0] == 'patch_change':
                patches[event[2]] = event[3]

          if event[0] == 'note':
                event.extend([patches[event[3]]])

                if events_matrix1:
                    if (event[1] == events_matrix1[-1][1]):
                        if ([event[3], event[4]] != events_matrix1[-1][3:5]):
                            events_matrix1.append(event)
                    else:
                        events_matrix1.append(event)

                else:
                    events_matrix1.append(event)

  if len(events_matrix1) > 0:
      if min([e[1] for e in events_matrix1]) >= 0 and min([e[2] for e in events_matrix1]) >= 0:

          #=======================================================
          # PRE-PROCESSING

          # checking number of instruments in a composition
          instruments_list_without_drums = list(set([y[3] for y in events_matrix1 if y[3] != 9]))
          instruments_list = list(set([y[3] for y in events_matrix1]))

          if len(events_matrix1) > 0 and len(instruments_list_without_drums) > 0:

              #======================================

              events_matrix2 = []

              # Recalculating timings
              for e in events_matrix1:

                  # Original timings
                  e[1] = int(e[1] / 16)
                  e[2] = int(e[2] / 16)

              #===================================
              # ORIGINAL COMPOSITION
              #===================================

              # Sorting by patch, pitch, then by start-time

              events_matrix1.sort(key=lambda x: x[6])
              events_matrix1.sort(key=lambda x: x[4], reverse=True)
              events_matrix1.sort(key=lambda x: x[1])

              #=======================================================
              # FINAL PROCESSING

              melody_chords = []
              melody_chords2 = []

              # Break between compositions / Intro seq

              if 9 in instruments_list:
                  drums_present = 18947 # Yes
              else:
                  drums_present = 18946 # No

              if events_matrix1[0][3] != 9:
                  pat = events_matrix1[0][6]
              else:
                  pat = 128

              melody_chords.extend([19077, drums_present, 18948+pat, 0]) # Intro seq

              #=======================================================
              # MAIN PROCESSING CYCLE
              #=======================================================

              abs_time = 0

              pbar_time = 0

              pe = events_matrix1[0]

              chords_counter = 1

              comp_chords_len = len(list(set([y[1] for y in events_matrix1])))

              for e in events_matrix1:

                  #=======================================================
                  # Timings...

                  # Cliping all values...
                  delta_time = max(0, min(255, e[1]-pe[1]))

                  # Durations and channels

                  dur = max(0, min(255, e[2]))
                  cha = max(0, min(15, e[3]))

                  # Patches
                  if cha == 9: # Drums patch will be == 128
                      pat = 128

                  else:
                      pat = e[6]

                  # Pitches

                  ptc = max(1, min(127, e[4]))

                  # Velocities

                  # Calculating octo-velocity
                  vel = max(8, min(127, e[5]))
                  velocity = round(vel / 15)-1

                  #=======================================================
                  # Outro seq

                  # if ((comp_chords_len - chords_counter) == 50) and (delta_time != 0):
                  #    out_t = 18946+delta_time
                  #    out_p = 19202+ptc
                  #    melody_chords.extend([18945, out_t, out_p]) # outro seq


                  # if delta_time != 0:
                  #    chords_counter += 1

                  #=======================================================
                  # FINAL NOTE SEQ

                  # Writing final note asynchronously

                  dur_vel = (8 * dur) + velocity
                  pat_ptc = (129 * pat) + ptc

                  if delta_time != 0:
                      melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])
                  else:
                      melody_chords.extend([dur_vel+256, pat_ptc+2304])
                  melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304])

                  pe = e

                  #=======================================================

              # melody_chords.extend([19462, 19462, 19462]) # EOS

              #=======================================================

              # TOTAL DICTIONARY SIZE 19462+1=19463
              #=======================================================

  #=======================================================

  song = melody_chords

  song_f = []

  time = 0
  dur = 0
  vel = 90
  pitch = 0
  channel = 0

  patches = [-1] * 16

  channels = [0] * 16
  channels[9] = 1

  for ss in song:

      if 0 <= ss < 256:

          time += ss * 16

      if 256 <= ss < 2304:

          dur = ((ss-256) // 8) * 16
          vel = (((ss-256) % 8)+1) * 15

      if 2304 <= ss < 18945:

          patch = (ss-2304) // 129

          if patch < 128:

              if patch not in patches:
                if 0 in channels:
                    cha = channels.index(0)
                    channels[cha] = 1
                else:
                    cha = 15

                patches[cha] = patch
                channel = patches.index(patch)
              else:
                channel = patches.index(patch)

          if patch == 128:
              channel = 9

          pitch = (ss-2304) % 129

          song_f.append(['note', time, dur, channel, pitch, vel, patch ])

  patches = [0 if x==-1 else x for x in patches]

  detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                            output_signature = 'Monster Music Transformer',
                                                            output_file_name = '/content/Monster-Music-Transformer-Seed-Composition',
                                                            track_name='Project Los Angeles',
                                                            list_of_MIDI_patches=patches
                                                            )

  #=======================================================

  print('=' * 70)
  print('Composition stats:')
  print('Composition has', len(melody_chords2), 'notes')
  print('Composition has', len(melody_chords), 'tokens')
  print('Composition MIDI patches:', sorted(list(set([((y-2304) // 129) for y in melody_chords if 2304 <= y < 18945]))))
  print('=' * 70)

  print('Displaying resulting composition...')
  print('=' * 70)

  fname = '/content/Monster-Music-Transformer-Seed-Composition'

  if render_MIDI_to_audio:
    midi_audio = midi_to_colab_audio(fname + '.mid')
    display(Audio(midi_audio, rate=16000, normalize=False))

  TMIDIX.plot_ms_SONG(song_f, plot_title=fname)

else:
  print('=' * 70)

"""# (CONTINUATION)"""

#@title Standard Continuation

#@markdown Generation settings

try_to_generate_outro = False #@param {type:"boolean"}
number_of_prime_tokens = 7191 # @param {type:"slider", min:3, max:8190, step:3}
number_of_tokens_to_generate = 504 # @param {type:"slider", min:30, max:8190, step:3}
number_of_batches_to_generate = 4 #@param {type:"slider", min:1, max:16, step:1}
temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}

#@markdown Other settings
include_prime_tokens_in_generated_output = False #@param {type:"boolean"}
allow_model_to_stop_generation_if_needed = False #@param {type:"boolean"}
render_MIDI_to_audio = True # @param {type:"boolean"}

print('=' * 70)
print('Monster Music Transformer Standard Continuation Model Generator')
print('=' * 70)

if allow_model_to_stop_generation_if_needed:
  min_stop_token = 19078
else:
  min_stop_token = None

outy = melody_chords[:number_of_prime_tokens]

if try_to_generate_outro:
  outy.extend([18945])

torch.cuda.empty_cache()

inp = [outy] * number_of_batches_to_generate

inp = torch.LongTensor(inp).cuda()

with ctx:
  out = model.generate(inp,
                        number_of_tokens_to_generate,
                        temperature=temperature,
                        return_prime=include_prime_tokens_in_generated_output,
                        eos_token=min_stop_token,
                        verbose=True)

out0 = out.tolist()

torch.cuda.empty_cache()

print('=' * 70)
print('Done!')
print('=' * 70)

#======================================================================
print('Rendering results...')

for i in range(number_of_batches_to_generate):

  print('=' * 70)
  print('Batch #', i)
  print('=' * 70)

  out1 = out0[i]

  print('Sample INTs', out1[:12])
  print('=' * 70)

  if len(out) != 0:

      song = out1
      song_f = []

      time = 0
      dur = 0
      vel = 90
      pitch = 0
      channel = 0

      patches = [-1] * 16

      channels = [0] * 16
      channels[9] = 1

      for ss in song:

          if 0 <= ss < 256:

              time += ss * 16

          if 256 <= ss < 2304:

              dur = ((ss-256) // 8) * 16
              vel = (((ss-256) % 8)+1) * 15

          if 2304 <= ss < 18945:

              patch = (ss-2304) // 129

              if patch < 128:

                  if patch not in patches:
                    if 0 in channels:
                        cha = channels.index(0)
                        channels[cha] = 1
                    else:
                        cha = 15

                    patches[cha] = patch
                    channel = patches.index(patch)
                  else:
                    channel = patches.index(patch)

              if patch == 128:
                  channel = 9

              pitch = (ss-2304) % 129

              song_f.append(['note', time, dur, channel, pitch, vel, patch ])

      patches = [0 if x==-1 else x for x in patches]

      detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                                output_signature = 'Monster Music Transformer',
                                                                output_file_name = '/content/Monster-Music-Transformer-Music-Composition_'+str(i),
                                                                track_name='Project Los Angeles',
                                                                list_of_MIDI_patches=patches
                                                                )
      print('=' * 70)
      print('Displaying resulting composition...')
      print('=' * 70)

      fname = '/content/Monster-Music-Transformer-Music-Composition_'+str(i)

      if render_MIDI_to_audio:
        midi_audio = midi_to_colab_audio(fname + '.mid')
        display(Audio(midi_audio, rate=16000, normalize=False))

      TMIDIX.plot_ms_SONG(song_f, plot_title=fname)

"""# Congrats! You did it! :)"""