File size: 22,376 Bytes
381dd05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 |
# -*- coding: utf-8 -*-
"""Monster_Music_Transformer.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1_fs1W2cuXxiMKznQIP3wtUxSIbxt71Nk
# Monster Music Transformer (ver. 1.0)
***
Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
***
WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/
***
#### Project Los Angeles
#### Tegridy Code 2024
***
# (GPU CHECK)
"""
#@title NVIDIA GPU check
!nvidia-smi
"""# (SETUP ENVIRONMENT)"""
#@title Install dependencies
!git clone --depth 1 https://github.com/asigalov61/Monster-MIDI-Dataset
!pip install huggingface_hub
!pip install einops
!pip install torch-summary
!apt install fluidsynth #Pip does not work for some reason. Only apt works
# Commented out IPython magic to ensure Python compatibility.
#@title Import modules
print('=' * 70)
print('Loading core Monster Music Transformer modules...')
import os
import copy
import pickle
import secrets
import statistics
from time import time
import tqdm
print('=' * 70)
print('Loading main Monster Music Transformer modules...')
import torch
# %cd /content/Monster-MIDI-Dataset
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_1_27_16 import *
import random
# %cd /content/
print('=' * 70)
print('Loading aux Monster Music Transformer modules...')
import matplotlib.pyplot as plt
from torchsummary import summary
from sklearn import metrics
from IPython.display import Audio, display
from huggingface_hub import hf_hub_download
from google.colab import files
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
"""# (LOAD MODEL)"""
#@title Load Monster Music Transformer Pre-Trained Model
#@markdown Choose model
select_model_to_load = "651M-32L-Fast-Large" # @param ["651M-32L-Fast-Large"]
#@markdown Model precision option
model_precision = "bfloat16" # @param ["bfloat16", "float16"]
#@markdown bfloat16 == Half precision/faster speed (if supported, otherwise the model will default to float16)
#@markdown float16 == Full precision/fast speed
plot_tokens_embeddings = "None" # @param ["None", "Start Times", "Durations Velocities", "Piano Pitches", "Drums Pitches", "Aux"]
print('=' * 70)
print('Loading Monster Music Transformer', select_model_to_load,'Pre-Trained Model...')
print('Please wait...')
print('=' * 70)
full_path_to_models_dir = "/content/Monster-MIDI-Dataset/"
if select_model_to_load == '651M-32L-Fast-Large':
model_checkpoint_file_name = 'Monster_Music_Transformer_Large_Trained_Model_22501_steps_0.3419_loss_0.9121_acc.pth'
model_path = full_path_to_models_dir+'/'+model_checkpoint_file_name
num_layers = 36
if os.path.isfile(model_path):
print('Model already exists...')
else:
hf_hub_download(repo_id='asigalov61/Monster-Music-Transformer',
filename=model_checkpoint_file_name,
local_dir='/content/Monster-MIDI-Dataset',
local_dir_use_symlinks=False)
print('=' * 70)
print('Instantiating model...')
device_type = 'cuda'
if model_precision == 'bfloat16' and torch.cuda.is_bf16_supported():
dtype = 'bfloat16'
else:
dtype = 'float16'
if model_precision == 'float16':
dtype = 'float16'
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 8192
# instantiate the model
model = TransformerWrapper(
num_tokens = 19080,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = num_layers, heads = 32, attn_flash=True)
)
model = AutoregressiveWrapper(model, ignore_index=19079)
model.cuda()
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(torch.load(model_path))
print('=' * 70)
model.eval()
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
# Model stats
print('Model summary...')
summary(model)
# Plot Token Embeddings
if plot_tokens_embeddings != 'None':
tok_emb = model.net.token_emb.emb.weight.detach().cpu().tolist()
if plot_tokens_embeddings == 'Start Times':
tok_range = [0, 256]
elif plot_tokens_embeddings == 'Durations Velocities':
tok_range = [256, 2304]
elif plot_tokens_embeddings == 'Piano Pitches':
tok_range = [2304, 2304+128]
elif plot_tokens_embeddings == 'Drums Pitches':
tok_range = [18945-128, 18945]
elif plot_tokens_embeddings == 'Aux':
tok_range = [18945, 19079]
if plot_tokens_embeddings != 'None':
tok_emb1 = []
for t in tok_emb[tok_range[0]:tok_range[1]]:
tok_emb1.append(t)
cos_sim = metrics.pairwise_distances(
tok_emb1, metric='cosine'
)
plt.figure(figsize=(7, 7))
plt.imshow(cos_sim, cmap="inferno", interpolation="nearest")
im_ratio = cos_sim.shape[0] / cos_sim.shape[1]
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()
plt.savefig("/content/Monster-Music-Transformer-Tokens-Embeddings-Plot.png", bbox_inches="tight")
"""# (GENERATE)
# (IMPROV)
"""
#@title Standard Improv Generator
#@markdown Improv type
improv_type = "Random Freestyle" # @param ["Random Freestyle", "Freestyle without Drums", "Freestyle with Drums", "Custom"]
#@markdown Custom Improv settings
first_note_MIDI_patch_number = 0 # @param {type:"slider", min:0, max:128, step:1}
add_drums = False #@param {type:"boolean"}
#@markdown Generation settings
number_of_tokens_tp_generate = 546 # @param {type:"slider", min:30, max:8190, step:3}
number_of_batches_to_generate = 4 #@param {type:"slider", min:1, max:16, step:1}
temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}
#@markdown Other settings
render_MIDI_to_audio = True # @param {type:"boolean"}
print('=' * 70)
print('Monster Music Transformer Standard Improv Model Generator')
print('=' * 70)
if improv_type == 'Random Freestyle':
outy = [19077]
if improv_type == 'Freestyle without Drums':
outy = [19077, 18946]
if improv_type == 'Freestyle with Drums':
outy = [19077, 18947]
if improv_type == 'Custom':
if add_drums:
drumsp = 18947 # Yes
else:
drumsp = 18946 # No
outy = [19077, drumsp, 18948+first_note_MIDI_patch_number]
print('Selected Improv sequence:')
print(outy)
print('=' * 70)
torch.cuda.empty_cache()
inp = [outy] * number_of_batches_to_generate
inp = torch.LongTensor(inp).cuda()
with ctx:
out = model.generate(inp,
number_of_tokens_tp_generate,
temperature=temperature,
return_prime=True,
verbose=True)
out0 = out.tolist()
print('=' * 70)
print('Done!')
print('=' * 70)
torch.cuda.empty_cache()
#======================================================================
print('Rendering results...')
for i in range(number_of_batches_to_generate):
print('=' * 70)
print('Batch #', i)
print('=' * 70)
out1 = out0[i]
print('Sample INTs', out1[:12])
print('=' * 70)
if len(out1) != 0:
song = out1
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patches = [-1] * 16
channels = [0] * 16
channels[9] = 1
for ss in song:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 2304:
dur = ((ss-256) // 8) * 16
vel = (((ss-256) % 8)+1) * 15
if 2304 <= ss < 18945:
patch = (ss-2304) // 129
if patch < 128:
if patch not in patches:
if 0 in channels:
cha = channels.index(0)
channels[cha] = 1
else:
cha = 15
patches[cha] = patch
channel = patches.index(patch)
else:
channel = patches.index(patch)
if patch == 128:
channel = 9
pitch = (ss-2304) % 129
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
patches = [0 if x==-1 else x for x in patches]
data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Monster Music Transformer',
output_file_name = '/content/Monster-Music-Transformer-Music-Composition_'+str(i),
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
print('=' * 70)
print('Displaying resulting composition...')
print('=' * 70)
fname = '/content/Monster-Music-Transformer-Music-Composition_'+str(i)
if render_MIDI_to_audio:
midi_audio = midi_to_colab_audio(fname + '.mid')
display(Audio(midi_audio, rate=16000, normalize=False))
TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
"""# (CUSTOM MIDI)"""
#@title Load Seed MIDI
#@markdown Press play button to to upload your own seed MIDI or to load one of the provided sample seed MIDIs from the dropdown list below
select_seed_MIDI = "Upload your own custom MIDI" # @param ["Upload your own custom MIDI", "Monster-Music-Transformer-Piano-Seed-1", "Monster-Music-Transformer-Piano-Seed-2", "Monster-Music-Transformer-Piano-Seed-3", "Monster-Music-Transformer-Piano-Seed-4", "Monster-Music-Transformer-Piano-Seed-5", "Monster-Music-Transformer-Piano-Seed-6", "Monster-Music-Transformer-MI-Seed-1", "Monster-Music-Transformer-MI-Seed-2", "Monster-Music-Transformer-MI-Seed-3", "Monster-Music-Transformer-MI-Seed-4", "Monster-Music-Transformer-MI-Seed-5", "Monster-Music-Transformer-MI-Seed-6"]
render_MIDI_to_audio = False # @param {type:"boolean"}
print('=' * 70)
print('Monster Music Transformer Seed MIDI Loader')
print('=' * 70)
f = ''
if select_seed_MIDI != "Upload your own custom MIDI":
print('Loading seed MIDI...')
f = '/content/Monster-MIDI-Dataset/Seeds/'+select_seed_MIDI+'.mid'
else:
print('Upload your own custom MIDI...')
print('=' * 70)
uploaded_MIDI = files.upload()
if list(uploaded_MIDI.keys()):
f = list(uploaded_MIDI.keys())[0]
if f != '':
print('=' * 70)
print('File:', f)
print('=' * 70)
#=======================================================
# START PROCESSING
# Convering MIDI to ms score with MIDI.py module
score = TMIDIX.midi2single_track_ms_score(open(f, 'rb').read(), recalculate_channels=False)
# INSTRUMENTS CONVERSION CYCLE
events_matrix = []
itrack = 1
patches = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
while itrack < len(score):
for event in score[itrack]:
if event[0] == 'note' or event[0] == 'patch_change':
events_matrix.append(event)
itrack += 1
events_matrix.sort(key=lambda x: x[1])
events_matrix1 = []
for event in events_matrix:
if event[0] == 'patch_change':
patches[event[2]] = event[3]
if event[0] == 'note':
event.extend([patches[event[3]]])
if events_matrix1:
if (event[1] == events_matrix1[-1][1]):
if ([event[3], event[4]] != events_matrix1[-1][3:5]):
events_matrix1.append(event)
else:
events_matrix1.append(event)
else:
events_matrix1.append(event)
if len(events_matrix1) > 0:
if min([e[1] for e in events_matrix1]) >= 0 and min([e[2] for e in events_matrix1]) >= 0:
#=======================================================
# PRE-PROCESSING
# checking number of instruments in a composition
instruments_list_without_drums = list(set([y[3] for y in events_matrix1 if y[3] != 9]))
instruments_list = list(set([y[3] for y in events_matrix1]))
if len(events_matrix1) > 0 and len(instruments_list_without_drums) > 0:
#======================================
events_matrix2 = []
# Recalculating timings
for e in events_matrix1:
# Original timings
e[1] = int(e[1] / 16)
e[2] = int(e[2] / 16)
#===================================
# ORIGINAL COMPOSITION
#===================================
# Sorting by patch, pitch, then by start-time
events_matrix1.sort(key=lambda x: x[6])
events_matrix1.sort(key=lambda x: x[4], reverse=True)
events_matrix1.sort(key=lambda x: x[1])
#=======================================================
# FINAL PROCESSING
melody_chords = []
melody_chords2 = []
# Break between compositions / Intro seq
if 9 in instruments_list:
drums_present = 18947 # Yes
else:
drums_present = 18946 # No
if events_matrix1[0][3] != 9:
pat = events_matrix1[0][6]
else:
pat = 128
melody_chords.extend([19077, drums_present, 18948+pat, 0]) # Intro seq
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
abs_time = 0
pbar_time = 0
pe = events_matrix1[0]
chords_counter = 1
comp_chords_len = len(list(set([y[1] for y in events_matrix1])))
for e in events_matrix1:
#=======================================================
# Timings...
# Cliping all values...
delta_time = max(0, min(255, e[1]-pe[1]))
# Durations and channels
dur = max(0, min(255, e[2]))
cha = max(0, min(15, e[3]))
# Patches
if cha == 9: # Drums patch will be == 128
pat = 128
else:
pat = e[6]
# Pitches
ptc = max(1, min(127, e[4]))
# Velocities
# Calculating octo-velocity
vel = max(8, min(127, e[5]))
velocity = round(vel / 15)-1
#=======================================================
# Outro seq
# if ((comp_chords_len - chords_counter) == 50) and (delta_time != 0):
# out_t = 18946+delta_time
# out_p = 19202+ptc
# melody_chords.extend([18945, out_t, out_p]) # outro seq
# if delta_time != 0:
# chords_counter += 1
#=======================================================
# FINAL NOTE SEQ
# Writing final note asynchronously
dur_vel = (8 * dur) + velocity
pat_ptc = (129 * pat) + ptc
if delta_time != 0:
melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])
else:
melody_chords.extend([dur_vel+256, pat_ptc+2304])
melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304])
pe = e
#=======================================================
# melody_chords.extend([19462, 19462, 19462]) # EOS
#=======================================================
# TOTAL DICTIONARY SIZE 19462+1=19463
#=======================================================
#=======================================================
song = melody_chords
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patches = [-1] * 16
channels = [0] * 16
channels[9] = 1
for ss in song:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 2304:
dur = ((ss-256) // 8) * 16
vel = (((ss-256) % 8)+1) * 15
if 2304 <= ss < 18945:
patch = (ss-2304) // 129
if patch < 128:
if patch not in patches:
if 0 in channels:
cha = channels.index(0)
channels[cha] = 1
else:
cha = 15
patches[cha] = patch
channel = patches.index(patch)
else:
channel = patches.index(patch)
if patch == 128:
channel = 9
pitch = (ss-2304) % 129
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
patches = [0 if x==-1 else x for x in patches]
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Monster Music Transformer',
output_file_name = '/content/Monster-Music-Transformer-Seed-Composition',
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
#=======================================================
print('=' * 70)
print('Composition stats:')
print('Composition has', len(melody_chords2), 'notes')
print('Composition has', len(melody_chords), 'tokens')
print('Composition MIDI patches:', sorted(list(set([((y-2304) // 129) for y in melody_chords if 2304 <= y < 18945]))))
print('=' * 70)
print('Displaying resulting composition...')
print('=' * 70)
fname = '/content/Monster-Music-Transformer-Seed-Composition'
if render_MIDI_to_audio:
midi_audio = midi_to_colab_audio(fname + '.mid')
display(Audio(midi_audio, rate=16000, normalize=False))
TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
else:
print('=' * 70)
"""# (CONTINUATION)"""
#@title Standard Continuation
#@markdown Generation settings
try_to_generate_outro = False #@param {type:"boolean"}
number_of_prime_tokens = 7191 # @param {type:"slider", min:3, max:8190, step:3}
number_of_tokens_to_generate = 504 # @param {type:"slider", min:30, max:8190, step:3}
number_of_batches_to_generate = 4 #@param {type:"slider", min:1, max:16, step:1}
temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}
#@markdown Other settings
include_prime_tokens_in_generated_output = False #@param {type:"boolean"}
allow_model_to_stop_generation_if_needed = False #@param {type:"boolean"}
render_MIDI_to_audio = True # @param {type:"boolean"}
print('=' * 70)
print('Monster Music Transformer Standard Continuation Model Generator')
print('=' * 70)
if allow_model_to_stop_generation_if_needed:
min_stop_token = 19078
else:
min_stop_token = None
outy = melody_chords[:number_of_prime_tokens]
if try_to_generate_outro:
outy.extend([18945])
torch.cuda.empty_cache()
inp = [outy] * number_of_batches_to_generate
inp = torch.LongTensor(inp).cuda()
with ctx:
out = model.generate(inp,
number_of_tokens_to_generate,
temperature=temperature,
return_prime=include_prime_tokens_in_generated_output,
eos_token=min_stop_token,
verbose=True)
out0 = out.tolist()
torch.cuda.empty_cache()
print('=' * 70)
print('Done!')
print('=' * 70)
#======================================================================
print('Rendering results...')
for i in range(number_of_batches_to_generate):
print('=' * 70)
print('Batch #', i)
print('=' * 70)
out1 = out0[i]
print('Sample INTs', out1[:12])
print('=' * 70)
if len(out) != 0:
song = out1
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patches = [-1] * 16
channels = [0] * 16
channels[9] = 1
for ss in song:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 2304:
dur = ((ss-256) // 8) * 16
vel = (((ss-256) % 8)+1) * 15
if 2304 <= ss < 18945:
patch = (ss-2304) // 129
if patch < 128:
if patch not in patches:
if 0 in channels:
cha = channels.index(0)
channels[cha] = 1
else:
cha = 15
patches[cha] = patch
channel = patches.index(patch)
else:
channel = patches.index(patch)
if patch == 128:
channel = 9
pitch = (ss-2304) % 129
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
patches = [0 if x==-1 else x for x in patches]
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Monster Music Transformer',
output_file_name = '/content/Monster-Music-Transformer-Music-Composition_'+str(i),
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
print('=' * 70)
print('Displaying resulting composition...')
print('=' * 70)
fname = '/content/Monster-Music-Transformer-Music-Composition_'+str(i)
if render_MIDI_to_audio:
midi_audio = midi_to_colab_audio(fname + '.mid')
display(Audio(midi_audio, rate=16000, normalize=False))
TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
"""# Congrats! You did it! :)""" |