Update README.md
Browse files
README.md
CHANGED
@@ -18,4 +18,115 @@ configs:
|
|
18 |
data_files:
|
19 |
- split: train
|
20 |
path: data/train-*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
data_files:
|
19 |
- split: train
|
20 |
path: data/train-*
|
21 |
+
license: mit
|
22 |
+
task_categories:
|
23 |
+
- feature-extraction
|
24 |
+
language:
|
25 |
+
- en
|
26 |
+
tags:
|
27 |
+
- semantic-search
|
28 |
+
- embeddings
|
29 |
+
- emoji
|
30 |
+
size_categories:
|
31 |
+
- 1K<n<10K
|
32 |
---
|
33 |
+
|
34 |
+
# local emoji semantic search
|
35 |
+
|
36 |
+
Emoji, their text descriptions and precomputed text embeddings with [Alibaba-NLP/gte-large-en-v1.5](https://hf.co/Alibaba-NLP/gte-large-en-v1.5) for use in emoji semantic search. This work is largely inspired by the original [emoji-semantic-search repo](https://archive.md/ikcze) and aims to provide the data for fully local use/alternative, as the [demo](https://www.emojisearch.app/) is [not working](https://github.com/lilianweng/emoji-semantic-search/issues/6#issue-2724936875) as of a few days ago.
|
37 |
+
|
38 |
+
- this repo contains only pre-computed embedding "database", equivalent to [server/emoji-embeddings.jsonl.gz](https://github.com/lilianweng/emoji-semantic-search/blob/6a6f351852b99e7b899437fa31309595a9008cd1/server/emoji-embeddings.jsonl.gz) in the original repo, to use as the database for semantic search and replacing OpenAI calls with local compute
|
39 |
+
- if working with the original repo, the [inference class](https://github.com/lilianweng/emoji-semantic-search/blob/6a6f351852b99e7b899437fa31309595a9008cd1/server/app.py#L18) also needs to be updated to use SentenceTransformers instead of OpenAI calls
|
40 |
+
- the provided basic code is near-instant even on CPU 🔥
|
41 |
+
|
42 |
+
## basic inference example
|
43 |
+
|
44 |
+
|
45 |
+
since the dataset is tiny, just load with pandas:
|
46 |
+
|
47 |
+
```py
|
48 |
+
import pandas as pd
|
49 |
+
|
50 |
+
df = pd.read_parquet("hf://datasets/pszemraj/local-emoji-search-gte/data/train-00000-of-00001.parquet")
|
51 |
+
print(df.info())
|
52 |
+
```
|
53 |
+
|
54 |
+
load the sentence-transformers model:
|
55 |
+
|
56 |
+
```py
|
57 |
+
# Requires sentence_transformers>=2.7.0
|
58 |
+
|
59 |
+
from sentence_transformers import SentenceTransformer
|
60 |
+
|
61 |
+
model = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True)
|
62 |
+
```
|
63 |
+
|
64 |
+
define a minimal semantic search inference function:
|
65 |
+
|
66 |
+
<details>
|
67 |
+
<summary>Click me to expand the inference function code</summary>
|
68 |
+
|
69 |
+
|
70 |
+
```py
|
71 |
+
import numpy as np
|
72 |
+
import pandas as pd
|
73 |
+
from sentence_transformers import SentenceTransformer
|
74 |
+
from sentence_transformers.util import semantic_search
|
75 |
+
|
76 |
+
|
77 |
+
def get_top_emojis(
|
78 |
+
query: str,
|
79 |
+
emoji_df: pd.DataFrame,
|
80 |
+
model,
|
81 |
+
top_k: int = 5,
|
82 |
+
num_digits: int = 4,
|
83 |
+
) -> list:
|
84 |
+
"""
|
85 |
+
Performs semantic search to find the most relevant emojis for a given query.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
query (str): The search query.
|
89 |
+
emoji_df (pd.DataFrame): DataFrame containing emoji metadata and embeddings.
|
90 |
+
model (SentenceTransformer): The sentence transformer model for encoding.
|
91 |
+
top_k (int): Number of top results to return.
|
92 |
+
num_digits (int): Number of digits to round scores to
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
list: A list of dicts, where each dict represents a top match. Each dict has keys 'emoji', 'message', and 'score'
|
96 |
+
"""
|
97 |
+
query_embed = model.encode(query)
|
98 |
+
embeddings_array = np.vstack(emoji_df.embed.values, dtype=np.float32)
|
99 |
+
|
100 |
+
hits = semantic_search(query_embed, embeddings_array, top_k=top_k)[0]
|
101 |
+
|
102 |
+
# Extract the top hits + metadata
|
103 |
+
results = [
|
104 |
+
{
|
105 |
+
"emoji": emoji_df.loc[hit["corpus_id"], "emoji"],
|
106 |
+
"message": emoji_df.loc[hit["corpus_id"], "message"],
|
107 |
+
"score": round(hit["score"], num_digits),
|
108 |
+
}
|
109 |
+
for hit in hits
|
110 |
+
]
|
111 |
+
return results
|
112 |
+
|
113 |
+
```
|
114 |
+
|
115 |
+
</details>
|
116 |
+
|
117 |
+
run inference!
|
118 |
+
|
119 |
+
```py
|
120 |
+
import pprint as pp
|
121 |
+
|
122 |
+
query_text = "that is flames"
|
123 |
+
top_emojis = get_top_emojis(query_text, df, model, top_k=5)
|
124 |
+
|
125 |
+
pp.pprint(top_emojis, indent=2)
|
126 |
+
|
127 |
+
# [ {'emoji': '❤\u200d🔥', 'message': 'heart on fire', 'score': 0.7043},
|
128 |
+
# {'emoji': '🥵', 'message': 'hot face', 'score': 0.694},
|
129 |
+
# {'emoji': '😳', 'message': 'flushed face', 'score': 0.6794},
|
130 |
+
# {'emoji': '🔥', 'message': 'fire', 'score': 0.6744},
|
131 |
+
# {'emoji': '🧨', 'message': 'firecracker', 'score': 0.663}]
|
132 |
+
```
|