Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Polish
Size:
10K - 100K
License:
Update files from the datasets library (from 1.8.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.8.0
- cdt.py +2 -0
- dataset_infos.json +1 -1
cdt.py
CHANGED
@@ -19,6 +19,7 @@ import csv
|
|
19 |
import os
|
20 |
|
21 |
import datasets
|
|
|
22 |
|
23 |
|
24 |
_CITATION = """\
|
@@ -61,6 +62,7 @@ class Cdt(datasets.GeneratorBasedBuilder):
|
|
61 |
homepage=_HOMEPAGE,
|
62 |
license=_LICENSE,
|
63 |
citation=_CITATION,
|
|
|
64 |
)
|
65 |
|
66 |
def _split_generators(self, dl_manager):
|
|
|
19 |
import os
|
20 |
|
21 |
import datasets
|
22 |
+
from datasets.tasks import TextClassification
|
23 |
|
24 |
|
25 |
_CITATION = """\
|
|
|
62 |
homepage=_HOMEPAGE,
|
63 |
license=_LICENSE,
|
64 |
citation=_CITATION,
|
65 |
+
task_templates=[TextClassification(text_column="sentence", label_column="target")],
|
66 |
)
|
67 |
|
68 |
def _split_generators(self, dl_manager):
|
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"default": {"description": "The Cyberbullying Detection task was part of 2019 edition of PolEval competition. The goal is to predict if a given Twitter message contains a cyberbullying (harmful) content.\n", "citation": "@article{ptaszynski2019results,\ntitle={Results of the PolEval 2019 Shared Task 6: First Dataset and Open Shared Task for Automatic Cyberbullying Detection in Polish Twitter},\nauthor={Ptaszynski, Michal and Pieciukiewicz, Agata and Dybala, Pawel},\njournal={Proceedings of the PolEval 2019 Workshop},\npublisher={Institute of Computer Science, Polish Academy of Sciences},\npages={89},\nyear={2019}\n}\n", "homepage": "https://github.com/ptaszynski/cyberbullying-Polish", "license": "BSD 3-Clause", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "target": {"num_classes": 2, "names": ["0", "1"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "cdt", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1104322, "num_examples": 10041, "dataset_name": "cdt"}, "test": {"name": "test", "num_bytes": 109681, "num_examples": 1000, "dataset_name": "cdt"}}, "download_checksums": {"https://klejbenchmark.com/static/data/klej_cbd.zip": {"num_bytes": 375476, "checksum": "aee5213938374b25e239a853cd56d579b037f75bef52ec5e79d8a36f7cf76602"}}, "download_size": 375476, "post_processing_size": null, "dataset_size": 1214003, "size_in_bytes": 1589479}}
|
|
|
1 |
+
{"default": {"description": "The Cyberbullying Detection task was part of 2019 edition of PolEval competition. The goal is to predict if a given Twitter message contains a cyberbullying (harmful) content.\n", "citation": "@article{ptaszynski2019results,\ntitle={Results of the PolEval 2019 Shared Task 6: First Dataset and Open Shared Task for Automatic Cyberbullying Detection in Polish Twitter},\nauthor={Ptaszynski, Michal and Pieciukiewicz, Agata and Dybala, Pawel},\njournal={Proceedings of the PolEval 2019 Workshop},\npublisher={Institute of Computer Science, Polish Academy of Sciences},\npages={89},\nyear={2019}\n}\n", "homepage": "https://github.com/ptaszynski/cyberbullying-Polish", "license": "BSD 3-Clause", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "target": {"num_classes": 2, "names": ["0", "1"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "text-classification", "text_column": "sentence", "label_column": "target", "labels": ["0", "1"]}], "builder_name": "cdt", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1104322, "num_examples": 10041, "dataset_name": "cdt"}, "test": {"name": "test", "num_bytes": 109681, "num_examples": 1000, "dataset_name": "cdt"}}, "download_checksums": {"https://klejbenchmark.com/static/data/klej_cbd.zip": {"num_bytes": 375476, "checksum": "aee5213938374b25e239a853cd56d579b037f75bef52ec5e79d8a36f7cf76602"}}, "download_size": 375476, "post_processing_size": null, "dataset_size": 1214003, "size_in_bytes": 1589479}}
|