Datasets:
Update the scenarios and intents.
Browse files- MASSIVE.py +2 -2
- test_MASSIVE.py +2 -0
MASSIVE.py
CHANGED
@@ -256,9 +256,9 @@ the SLURP dataset, composed of general Intelligent Voice Assistant single-shot i
|
|
256 |
|
257 |
_URL = "https://amazon-massive-nlu-dataset.s3.amazonaws.com/amazon-massive-dataset-1.0.tar.gz"
|
258 |
|
259 |
-
_SCENARIOS = ['
|
260 |
|
261 |
-
_INTENTS = ['
|
262 |
|
263 |
_TAGS = ['O', 'B-food_type', 'B-movie_type', 'B-person', 'B-change_amount', 'I-relation', 'I-game_name', 'B-date', 'B-movie_name', 'I-person', 'I-place_name', 'I-podcast_descriptor', 'I-audiobook_name', 'B-email_folder', 'B-coffee_type', 'B-app_name', 'I-time', 'I-coffee_type', 'B-transport_agency', 'B-podcast_descriptor', 'I-playlist_name', 'B-media_type', 'B-song_name', 'I-music_descriptor', 'I-song_name', 'B-event_name', 'I-timeofday', 'B-alarm_type', 'B-cooking_type', 'I-business_name', 'I-color_type', 'B-podcast_name', 'I-personal_info', 'B-weather_descriptor', 'I-list_name', 'B-transport_descriptor', 'I-game_type', 'I-date', 'B-place_name', 'B-color_type', 'B-game_name', 'I-artist_name', 'I-drink_type', 'B-business_name', 'B-timeofday', 'B-sport_type', 'I-player_setting', 'I-transport_agency', 'B-game_type', 'B-player_setting', 'I-music_album', 'I-event_name', 'I-general_frequency', 'I-podcast_name', 'I-cooking_type', 'I-radio_name', 'I-joke_type', 'I-meal_type', 'I-transport_type', 'B-joke_type', 'B-time', 'B-order_type', 'B-business_type', 'B-general_frequency', 'I-food_type', 'I-time_zone', 'B-currency_name', 'B-time_zone', 'B-ingredient', 'B-house_place', 'B-audiobook_name', 'I-ingredient', 'I-media_type', 'I-news_topic', 'B-music_genre', 'I-definition_word', 'B-list_name', 'B-playlist_name', 'B-email_address', 'I-currency_name', 'I-movie_name', 'I-device_type', 'I-weather_descriptor', 'B-audiobook_author', 'I-audiobook_author', 'I-app_name', 'I-order_type', 'I-transport_name', 'B-radio_name', 'I-business_type', 'B-definition_word', 'B-artist_name', 'I-movie_type', 'B-transport_name', 'I-email_folder', 'B-music_album', 'I-house_place', 'I-music_genre', 'B-drink_type', 'I-alarm_type', 'B-music_descriptor', 'B-news_topic', 'B-meal_type', 'I-transport_descriptor', 'I-email_address', 'I-change_amount', 'B-device_type', 'B-transport_type', 'B-relation', 'I-sport_type', 'B-personal_info']
|
264 |
|
|
|
256 |
|
257 |
_URL = "https://amazon-massive-nlu-dataset.s3.amazonaws.com/amazon-massive-dataset-1.0.tar.gz"
|
258 |
|
259 |
+
_SCENARIOS = ['calendar', 'recommendation', 'social', 'general', 'news', 'cooking', 'iot', 'email', 'weather', 'alarm', 'transport', 'lists', 'takeaway', 'play', 'audio', 'music', 'qa', 'datetime']
|
260 |
|
261 |
+
_INTENTS = ['audio_volume_other', 'play_music', 'iot_hue_lighton', 'general_greet', 'calendar_set', 'audio_volume_down', 'social_query', 'audio_volume_mute', 'iot_wemo_on', 'iot_hue_lightup', 'audio_volume_up', 'iot_coffee', 'takeaway_query', 'qa_maths', 'play_game', 'cooking_query', 'iot_hue_lightdim', 'iot_wemo_off', 'music_settings', 'weather_query', 'news_query', 'alarm_remove', 'social_post', 'recommendation_events', 'transport_taxi', 'takeaway_order', 'music_query', 'calendar_query', 'lists_query', 'qa_currency', 'recommendation_movies', 'general_joke', 'recommendation_locations', 'email_querycontact', 'lists_remove', 'play_audiobook', 'email_addcontact', 'lists_createoradd', 'play_radio', 'qa_stock', 'alarm_query', 'email_sendemail', 'general_quirky', 'music_likeness', 'cooking_recipe', 'email_query', 'datetime_query', 'transport_traffic', 'play_podcasts', 'iot_hue_lightchange', 'calendar_remove', 'transport_query', 'transport_ticket', 'qa_factoid', 'iot_cleaning', 'alarm_set', 'datetime_convert', 'iot_hue_lightoff', 'qa_definition', 'music_dislikeness']
|
262 |
|
263 |
_TAGS = ['O', 'B-food_type', 'B-movie_type', 'B-person', 'B-change_amount', 'I-relation', 'I-game_name', 'B-date', 'B-movie_name', 'I-person', 'I-place_name', 'I-podcast_descriptor', 'I-audiobook_name', 'B-email_folder', 'B-coffee_type', 'B-app_name', 'I-time', 'I-coffee_type', 'B-transport_agency', 'B-podcast_descriptor', 'I-playlist_name', 'B-media_type', 'B-song_name', 'I-music_descriptor', 'I-song_name', 'B-event_name', 'I-timeofday', 'B-alarm_type', 'B-cooking_type', 'I-business_name', 'I-color_type', 'B-podcast_name', 'I-personal_info', 'B-weather_descriptor', 'I-list_name', 'B-transport_descriptor', 'I-game_type', 'I-date', 'B-place_name', 'B-color_type', 'B-game_name', 'I-artist_name', 'I-drink_type', 'B-business_name', 'B-timeofday', 'B-sport_type', 'I-player_setting', 'I-transport_agency', 'B-game_type', 'B-player_setting', 'I-music_album', 'I-event_name', 'I-general_frequency', 'I-podcast_name', 'I-cooking_type', 'I-radio_name', 'I-joke_type', 'I-meal_type', 'I-transport_type', 'B-joke_type', 'B-time', 'B-order_type', 'B-business_type', 'B-general_frequency', 'I-food_type', 'I-time_zone', 'B-currency_name', 'B-time_zone', 'B-ingredient', 'B-house_place', 'B-audiobook_name', 'I-ingredient', 'I-media_type', 'I-news_topic', 'B-music_genre', 'I-definition_word', 'B-list_name', 'B-playlist_name', 'B-email_address', 'I-currency_name', 'I-movie_name', 'I-device_type', 'I-weather_descriptor', 'B-audiobook_author', 'I-audiobook_author', 'I-app_name', 'I-order_type', 'I-transport_name', 'B-radio_name', 'I-business_type', 'B-definition_word', 'B-artist_name', 'I-movie_type', 'B-transport_name', 'I-email_folder', 'B-music_album', 'I-house_place', 'I-music_genre', 'B-drink_type', 'I-alarm_type', 'B-music_descriptor', 'B-news_topic', 'B-meal_type', 'I-transport_descriptor', 'I-email_address', 'I-change_amount', 'B-device_type', 'B-transport_type', 'B-relation', 'I-sport_type', 'B-personal_info']
|
264 |
|
test_MASSIVE.py
CHANGED
@@ -6,6 +6,8 @@ source = "MASSIVE.py"
|
|
6 |
# source = "qanastek/MASSIVE"
|
7 |
|
8 |
dataset = load_dataset(source, "all")
|
|
|
|
|
9 |
# dataset = load_dataset(source, "zh-CN")
|
10 |
# dataset = load_dataset(source, "fr-FR")
|
11 |
# dataset = load_dataset(source, "fr-FR", download_mode="force_redownload")
|
|
|
6 |
# source = "qanastek/MASSIVE"
|
7 |
|
8 |
dataset = load_dataset(source, "all")
|
9 |
+
# dataset = load_dataset(source, "ja-JP")
|
10 |
+
# dataset = load_dataset(source, "ko-KR")
|
11 |
# dataset = load_dataset(source, "zh-CN")
|
12 |
# dataset = load_dataset(source, "fr-FR")
|
13 |
# dataset = load_dataset(source, "fr-FR", download_mode="force_redownload")
|