Datasets:
File size: 7,977 Bytes
198ed1e 977f7a6 493089b 977f7a6 493089b 198ed1e 977f7a6 8e598fe 977f7a6 493089b 977f7a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
---
annotations_creators:
- machine-generated
- expert-generated
language_creators:
- found
languages:
- en
licenses:
- cc-by-4-0
multilinguality:
- bg
- cs
- da
- de
- el
- en
- es
- et
- fi
- fr
- hu
- it
- lt
- lv
- mt
- nl
- pl
- pt
- ro
- sk
- sl
- sv
pretty_name: WMT-16-PubMed
size_categories:
- 100K<n<1M
source_datasets:
- extended
task_categories:
- translation
- machine-translation
task_ids:
- translation
- machine-translation
---
# WMT-16-PubMed : European parallel translation corpus from the European Medicines Agency
## Table of Contents
- [Dataset Card for [Needs More Information]](#dataset-card-for-needs-more-information)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://www.statmt.org/wmt16/biomedical-translation-task.html
- **Repository:** https://github.com/biomedical-translation-corpora/corpora
- **Paper:** https://aclanthology.org/W16-2301/
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Yanis Labrak](mailto:yanis.labrak@univ-avignon.fr)
### Dataset Summary
`WMT-16-PubMed` is a parallel corpus for neural machine translation collected and aligned for ACL 2016 during the [WMT'16 Shared Task: Biomedical Translation Task](https://www.statmt.org/wmt16/biomedical-translation-task.html).
### Supported Tasks and Leaderboards
`translation`: The dataset can be used to train a model for translation.
### Languages
The corpora consists of a pair of source and target sentences for all 4 different languages :
**List of languages :** `English (en)`,`Spanish (es)`,`French (fr)`,`Portuguese (pt)`.
## Load the dataset with HuggingFace
```python
from datasets import load_dataset
dataset = load_dataset("qanastek/WMT-16-PubMed", split='train', download_mode='force_redownload')
print(dataset)
print(dataset[0])
```
## Dataset Structure
### Data Instances
```plain
lang doc_id workshop publisher source_text target_text
0 en-fr 26839447 WMT'16 Biomedical Translation Task - PubMed pubmed Global Health: Where Do Physiotherapy and Reha... La place des cheveux et des poils dans les rit...
1 en-fr 26837117 WMT'16 Biomedical Translation Task - PubMed pubmed Carabin Les Carabins
2 en-fr 26837116 WMT'16 Biomedical Translation Task - PubMed pubmed In Process Citation Le laboratoire d'Anatomie, Biomécanique et Org...
3 en-fr 26837115 WMT'16 Biomedical Translation Task - PubMed pubmed Comment on the misappropriation of bibliograph... Du détournement des références bibliographique...
4 en-fr 26837114 WMT'16 Biomedical Translation Task - PubMed pubmed Anti-aging medicine, a science-based, essentia... La médecine anti-âge, une médecine scientifiqu...
... ... ... ... ... ... ...
973972 en-pt 20274330 WMT'16 Biomedical Translation Task - PubMed pubmed Myocardial infarction, diagnosis and treatment Infarto do miocárdio; diagnóstico e tratamento
973973 en-pt 20274329 WMT'16 Biomedical Translation Task - PubMed pubmed The health areas politics A política dos campos de saúde
973974 en-pt 20274328 WMT'16 Biomedical Translation Task - PubMed pubmed The role in tissue edema and liquid exchanges ... O papel dos tecidos nos edemas e nas trocas lí...
973975 en-pt 20274327 WMT'16 Biomedical Translation Task - PubMed pubmed About suppuration of the wound after thoracopl... Sôbre as supurações da ferida operatória após ...
973976 en-pt 20274326 WMT'16 Biomedical Translation Task - PubMed pubmed Experimental study of liver lesions in the tre... Estudo experimental das lesões hepáticas no tr...
```
### Data Fields
**lang** : The pair of source and target language of type `String`.
**source_text** : The source text of type `String`.
**target_text** : The target text of type `String`.
### Data Splits
`en-es` : 285,584
`en-fr` : 614,093
`en-pt` : 74,300
## Dataset Creation
### Curation Rationale
For details, check the corresponding [pages](https://www.statmt.org/wmt16/biomedical-translation-task.html).
### Source Data
<!-- #### Initial Data Collection and Normalization
ddd -->
#### Who are the source language producers?
The shared task as been organized by :
* Antonio Jimeno Yepes (IBM Research Australia)
* Aurélie Névéol (LIMSI, CNRS, France)
* Mariana Neves (Hasso-Plattner Institute, Germany)
* Karin Verspoor (University of Melbourne, Australia)
### Personal and Sensitive Information
The corpora is free of personal or sensitive information.
## Considerations for Using the Data
### Other Known Limitations
The nature of the task introduce a variability in the quality of the target translations.
## Additional Information
### Dataset Curators
__Hugging Face WMT-16-PubMed__: Labrak Yanis, Dufour Richard (Not affiliated with the original corpus)
__WMT'16 Shared Task: Biomedical Translation Task__:
* Antonio Jimeno Yepes (IBM Research Australia)
* Aurélie Névéol (LIMSI, CNRS, France)
* Mariana Neves (Hasso-Plattner Institute, Germany)
* Karin Verspoor (University of Melbourne, Australia)
<!-- ### Licensing Information
ddd -->
### Citation Information
Please cite the following paper when using this dataset.
```latex
@inproceedings{bojar-etal-2016-findings,
title = Findings of the 2016 Conference on Machine Translation,
author = {
Bojar, Ondrej and
Chatterjee, Rajen and
Federmann, Christian and
Graham, Yvette and
Haddow, Barry and
Huck, Matthias and
Jimeno Yepes, Antonio and
Koehn, Philipp and
Logacheva, Varvara and
Monz, Christof and
Negri, Matteo and
Neveol, Aurelie and
Neves, Mariana and
Popel, Martin and
Post, Matt and
Rubino, Raphael and
Scarton, Carolina and
Specia, Lucia and
Turchi, Marco and
Verspoor, Karin and
Zampieri, Marcos,
},
booktitle = Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers,
month = aug,
year = 2016,
address = Berlin, Germany,
publisher = Association for Computational Linguistics,
url = https://aclanthology.org/W16-2301,
doi = 10.18653/v1/W16-2301,
pages = 131--198,
}
```
|