raeidsaqur commited on
Commit
8812ade
β€’
1 Parent(s): 27b9dce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +136 -136
README.md CHANGED
@@ -1,136 +1,136 @@
1
- ---
2
- license: mit
3
- tags:
4
- - nifty
5
- - stock-movement
6
- - news-and-events
7
- - RLMF
8
- task_categories:
9
- - multiple-choice
10
- - time-series-forecasting
11
- - document-question-answering
12
- task_ids:
13
- - topic-classification
14
- - semantic-similarity-classification
15
- - multiple-choice-qa
16
- - univariate-time-series-forecasting
17
- - document-question-answering
18
- language:
19
- - en
20
- pretty_name: nifty-rl
21
- size_categories:
22
- - 1K<n<100k
23
- configs:
24
- - config_name: nifty-rl
25
- data_files:
26
- - split: train
27
- path: "train.jsonl"
28
- - split: test
29
- path: "test.jsonl"
30
- - split: valid
31
- path: "valid.jsonl"
32
- default: true
33
-
34
- ---
35
-
36
- <h1>
37
- <img alt="RH" src="./nifty-icon.png" style="display:inline-block; vertical-align:middle; width:120px; height:120px; object-fit:contain" />
38
- The News-Informed Financial Trend Yield (NIFTY) Dataset.
39
- </h1>
40
-
41
- The News-Informed Financial Trend Yield (NIFTY) Dataset.
42
-
43
- ## πŸ“‹ Table of Contents
44
-
45
- - [🧩 NIFTY Dataset](#nifty-dataset)
46
- - [πŸ“‹ Table of Contents](#table-of-contents)
47
- - [πŸ“– Usage](#usage)
48
- - [Downloading the dataset](#downloading-the-dataset)
49
- - [Dataset structure](#dataset-structure)
50
- - [Large Language Models](#large-language-models)
51
- - [✍️ Contributing](#contributing)
52
- - [πŸ“ Citing](#citing)
53
- - [πŸ™ Acknowledgements](#acknowledgements)
54
-
55
- ## πŸ“– [Usage](#usage)
56
-
57
- Downloading and using this dataset should be straight-forward following the Huggingface datasets framework.
58
-
59
- ### [Downloading the dataset](#downloading-the-dataset)
60
-
61
- The NIFTY dataset is available on huggingface [here](https://huggingface.co/datasets/raeidsaqur/NIFTY) and can be downloaded with the following python snipped:
62
-
63
- ```python
64
-
65
- from datasets import load_dataset
66
-
67
- # If the dataset is gated/private, make sure you have run huggingface-cli login
68
- dataset = load_dataset("raeidsaqur/nifty-rl")
69
-
70
- ```
71
-
72
- ### [Dataset structure](#dataset-structure)
73
-
74
- The dataset is split into 3 partition, train, valid and test and each partition is a jsonl file where a single row has the following keys.
75
-
76
- ```python
77
- ['prompt', 'chosen', 'rejected', 'chosen_label', 'chosen_value']
78
- ```
79
-
80
- Currently, the dataset has 2111 examples in total, the dates randing from 2010-01-06 to 2020-09-21.
81
- <!-- The number of examples for each split is given below.
82
- | Split | Num Examples | Date range |
83
- |-------|--------------|------------|
84
- |Train |1477 |2010-01-06 - 2017-06-27 |
85
- |Valid|317 | 2017-06-28- 2019-02-12|
86
- |Test |317|2019-02-13 - 2020-09-21|
87
- -->
88
- <!--
89
- <img alt="St" src="./imgs/visualize_nifty_1794_2019-02-13.png"
90
- style="display:inline-block; vertical-align:middle; width:640px;
91
- height:640px; object-fit:contain" />
92
-
93
- -->
94
-
95
-
96
-
97
- ## ✍️ [Contributing](#contributing)
98
-
99
- We welcome contributions to this repository (noticed a typo? a bug?). To propose a change:
100
-
101
- ```
102
- git clone https://huggingface.co/datasets/raeidsaqur/nifty-rl
103
- cd nifty-rl
104
- git checkout -b my-branch
105
- pip install -r requirements.txt
106
- pip install -e .
107
- ```
108
-
109
- Once your changes are made, make sure to lint and format the code (addressing any warnings or errors):
110
-
111
- ```
112
- isort .
113
- black .
114
- flake8 .
115
- ```
116
-
117
- Then, submit your change as a pull request.
118
-
119
- ## πŸ“ [Citing](#citing)
120
-
121
- If you use the NIFTY Financial dataset in your work, please consider citing our paper:
122
-
123
- ```
124
- @article{raeidsaqur2024Nifty,
125
- title = {NIFTY Financial News Headlines Dataset},
126
- author = {Raeid Saqur},
127
- year = 2024,
128
- journal = {ArXiv},
129
- url = {https://arxiv.org/abs/2024.5599314}
130
- }
131
- ```
132
-
133
- ## πŸ™ [Acknowledgements](#acknowledgements)
134
-
135
- The authors acknowledge and thank the generous computing provided by the Vector Institute, Toronto.
136
-
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - nifty
5
+ - stock-movement
6
+ - news-and-events
7
+ - RLMF
8
+ task_categories:
9
+ - multiple-choice
10
+ - time-series-forecasting
11
+ - document-question-answering
12
+ task_ids:
13
+ - topic-classification
14
+ - semantic-similarity-classification
15
+ - multiple-choice-qa
16
+ - univariate-time-series-forecasting
17
+ - document-question-answering
18
+ language:
19
+ - en
20
+ pretty_name: nifty-rl
21
+ size_categories:
22
+ - 1K<n<100k
23
+ configs:
24
+ - config_name: nifty-rl
25
+ data_files:
26
+ - split: train
27
+ path: "train.jsonl"
28
+ - split: test
29
+ path: "test.jsonl"
30
+ - split: valid
31
+ path: "valid.jsonl"
32
+ default: true
33
+
34
+ ---
35
+
36
+ <h1>
37
+ <img alt="RH" src="./nifty-icon.png" style="display:inline-block; vertical-align:middle; width:120px; height:120px; object-fit:contain" />
38
+ The News-Informed Financial Trend Yield (NIFTY) Dataset.
39
+ </h1>
40
+
41
+ The News-Informed Financial Trend Yield (NIFTY) Dataset.
42
+
43
+ ## πŸ“‹ Table of Contents
44
+
45
+ - [🧩 NIFTY Dataset](#nifty-dataset)
46
+ - [πŸ“‹ Table of Contents](#table-of-contents)
47
+ - [πŸ“– Usage](#usage)
48
+ - [Downloading the dataset](#downloading-the-dataset)
49
+ - [Dataset structure](#dataset-structure)
50
+ - [Large Language Models](#large-language-models)
51
+ - [✍️ Contributing](#contributing)
52
+ - [πŸ“ Citing](#citing)
53
+ - [πŸ™ Acknowledgements](#acknowledgements)
54
+
55
+ ## πŸ“– [Usage](#usage)
56
+
57
+ Downloading and using this dataset should be straight-forward following the Huggingface datasets framework.
58
+
59
+ ### [Downloading the dataset](#downloading-the-dataset)
60
+
61
+ The NIFTY dataset is available on huggingface [here](https://huggingface.co/datasets/raeidsaqur/NIFTY) and can be downloaded with the following python snipped:
62
+
63
+ ```python
64
+
65
+ from datasets import load_dataset
66
+
67
+ # If the dataset is gated/private, make sure you have run huggingface-cli login
68
+ dataset = load_dataset("raeidsaqur/nifty-rl")
69
+
70
+ ```
71
+
72
+ ### [Dataset structure](#dataset-structure)
73
+
74
+ The dataset is split into 3 partition, train, valid and test and each partition is a jsonl file where a single row has the following keys.
75
+
76
+ ```python
77
+ ['prompt', 'chosen', 'rejected', 'chosen_label', 'chosen_value']
78
+ ```
79
+
80
+ Currently, the dataset has 2111 examples in total, the dates randing from 2010-01-06 to 2020-09-21.
81
+ <!-- The number of examples for each split is given below.
82
+ | Split | Num Examples | Date range |
83
+ |-------|--------------|------------|
84
+ |Train |1477 |2010-01-06 - 2017-06-27 |
85
+ |Valid|317 | 2017-06-28- 2019-02-12|
86
+ |Test |317|2019-02-13 - 2020-09-21|
87
+ -->
88
+ <!--
89
+ <img alt="St" src="./imgs/visualize_nifty_1794_2019-02-13.png"
90
+ style="display:inline-block; vertical-align:middle; width:640px;
91
+ height:640px; object-fit:contain" />
92
+
93
+ -->
94
+
95
+
96
+
97
+ ## ✍️ [Contributing](#contributing)
98
+
99
+ We welcome contributions to this repository (noticed a typo? a bug?). To propose a change:
100
+
101
+ ```
102
+ git clone https://huggingface.co/datasets/raeidsaqur/nifty-rl
103
+ cd nifty-rl
104
+ git checkout -b my-branch
105
+ pip install -r requirements.txt
106
+ pip install -e .
107
+ ```
108
+
109
+ Once your changes are made, make sure to lint and format the code (addressing any warnings or errors):
110
+
111
+ ```
112
+ isort .
113
+ black .
114
+ flake8 .
115
+ ```
116
+
117
+ Then, submit your change as a pull request.
118
+
119
+ ## πŸ“ [Citing](#citing)
120
+
121
+ If you use the NIFTY Financial dataset in your work, please consider citing our paper:
122
+
123
+ ```
124
+ @article{raeidsaqur2024NiftyRL,
125
+ title = {NIFTY-RL: Financial News Headlines Dataset for LLM Alignment using Reinforcement Learning.},
126
+ author = {Raeid Saqur},
127
+ year = 2024,
128
+ journal = {ArXiv},
129
+ url = {https://arxiv.org/abs/2024.5599314}
130
+ }
131
+ ```
132
+
133
+ ## πŸ™ [Acknowledgements](#acknowledgements)
134
+
135
+ The authors acknowledge and thank the generous computing provided by the Vector Institute, Toronto.
136
+