|
"""TODO(squad_v2): Add a description here.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@article{2016arXiv160605250R, |
|
author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev}, |
|
Konstantin and {Liang}, Percy}, |
|
title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}", |
|
journal = {arXiv e-prints}, |
|
year = 2016, |
|
eid = {arXiv:1606.05250}, |
|
pages = {arXiv:1606.05250}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1606.05250}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers |
|
to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but |
|
also determine when no answer is supported by the paragraph and abstain from answering. |
|
""" |
|
|
|
_URL = "https://rajpurkar.github.io/SQuAD-explorer/dataset/" |
|
_DEV_FILE = "dev-v2.0.json" |
|
_TRAINING_FILE = "train-v2.0.json" |
|
|
|
|
|
class SquadV2Config(datasets.BuilderConfig): |
|
"""BuilderConfig for SQUAD.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for SQUADV2. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(SquadV2Config, self).__init__(**kwargs) |
|
|
|
|
|
class SquadV2(datasets.GeneratorBasedBuilder): |
|
"""TODO(squad_v2): Short description of my dataset.""" |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
SquadV2Config(name="squad_v2", version=datasets.Version("2.0.0"), description="SQuAD plaint text version 2"), |
|
] |
|
|
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
|
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="https://rajpurkar.github.io/SQuAD-explorer/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
urls_to_download = {"train": os.path.join(_URL, _TRAINING_FILE), "dev": os.path.join(_URL, _DEV_FILE)} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
squad = json.load(f) |
|
for example in squad["data"]: |
|
title = example.get("title", "").strip() |
|
for paragraph in example["paragraphs"]: |
|
context = paragraph["context"].strip() |
|
for qa in paragraph["qas"]: |
|
question = qa["question"].strip() |
|
id_ = qa["id"] |
|
|
|
answer_starts = [answer["answer_start"] for answer in qa["answers"]] |
|
answers = [answer["text"].strip() for answer in qa["answers"]] |
|
|
|
|
|
|
|
yield id_, { |
|
"title": title, |
|
"context": context, |
|
"question": question, |
|
"id": id_, |
|
"answers": { |
|
"answer_start": answer_starts, |
|
"text": answers, |
|
}, |
|
} |
|
|