|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ArSenTD-Lev : Arabic Sentiment Twitter Dataset for LEVantine dialect""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@article{ArSenTDLev2018, |
|
title={ArSentD-LEV: A Multi-Topic Corpus for Target-based Sentiment Analysis in Arabic Levantine Tweets}, |
|
author={Baly, Ramy, and Khaddaj, Alaa and Hajj, Hazem and El-Hajj, Wassim and Bashir Shaban, Khaled}, |
|
journal={OSACT3}, |
|
pages={}, |
|
year={2018}} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
The Arabic Sentiment Twitter Dataset for Levantine dialect (ArSenTD-LEV) contains 4,000 tweets written in Arabic and equally retrieved from Jordan, Lebanon, Palestine and Syria. |
|
""" |
|
|
|
_URL = "http://oma-project.com/ArSenL/ArSenTD-LEV.zip" |
|
_FEATURES = ["Tweet", "Country", "Topic", "Sentiment", "Sentiment_Expression", "Sentiment_Target"] |
|
|
|
|
|
class ArsentdLev(datasets.GeneratorBasedBuilder): |
|
""" "ArSenTD-Lev Dataset""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"Tweet": datasets.Value("string"), |
|
"Country": datasets.ClassLabel(names=["jordan", "lebanon", "syria", "palestine"]), |
|
"Topic": datasets.Value("string"), |
|
"Sentiment": datasets.ClassLabel( |
|
names=["negative", "neutral", "positive", "very_negative", "very_positive"] |
|
), |
|
"Sentiment_Expression": datasets.ClassLabel(names=["explicit", "implicit", "none"]), |
|
"Sentiment_Target": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="http://oma-project.com/ArSenL/ArSenTD_Lev_Intro", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
path = dl_manager.download_and_extract(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"path": os.path.join(path, "ArSenTD-LEV.tsv")}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, path=None): |
|
"""Yields examples.""" |
|
with open(path, encoding="utf-8") as f: |
|
f.readline() |
|
for idx, line in enumerate(f): |
|
yield idx, {el[0]: el[1].strip() for el in zip(_FEATURES, line.split("\t"))} |
|
|