Datasets:
File size: 17,896 Bytes
5acac2f 40b4fd1 5acac2f 40b4fd1 5acac2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Visual Genome dataset."""
import json
import os
import re
from collections import defaultdict
from typing import Any, Callable, Dict, Optional
from urllib.parse import urlparse
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{krishnavisualgenome,
title={Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations},
author={Krishna, Ranjay and Zhu, Yuke and Groth, Oliver and Johnson, Justin and Hata, Kenji and Kravitz, Joshua and Chen, Stephanie and Kalantidis, Yannis and Li, Li-Jia and Shamma, David A and Bernstein, Michael and Fei-Fei, Li},
year = {2016},
url = {https://arxiv.org/abs/1602.07332},
}
"""
_DESCRIPTION = """\
Visual Genome enable to model objects and relationships between objects.
They collect dense annotations of objects, attributes, and relationships within each image.
Specifically, the dataset contains over 108K images where each image has an average of 35 objects, 26 attributes, and 21 pairwise relationships between objects.
"""
_HOMEPAGE = "https://visualgenome.org/"
_LICENSE = "Creative Commons Attribution 4.0 International License"
_BASE_IMAGE_URLS = {
"https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip": "VG_100K",
"https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip": "VG_100K_2",
}
_LATEST_VERSIONS = {
"region_descriptions": "1.2.0",
"objects": "1.4.0",
"attributes": "1.2.0",
"relationships": "1.4.0",
"question_answers": "1.2.0",
"image_metadata": "1.2.0",
}
# ---- Features ----
_BASE_IMAGE_METADATA_FEATURES = {
"image_id": datasets.Value("int32"),
"url": datasets.Value("string"),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"coco_id": datasets.Value("int64"),
"flickr_id": datasets.Value("int64"),
}
_BASE_SYNTET_FEATURES = {
"synset_name": datasets.Value("string"),
"entity_name": datasets.Value("string"),
"entity_idx_start": datasets.Value("int32"),
"entity_idx_end": datasets.Value("int32"),
}
_BASE_OBJECT_FEATURES = {
"object_id": datasets.Value("int32"),
"x": datasets.Value("int32"),
"y": datasets.Value("int32"),
"w": datasets.Value("int32"),
"h": datasets.Value("int32"),
"names": [datasets.Value("string")],
"synsets": [datasets.Value("string")],
}
_BASE_QA_OBJECT_FEATURES = {
"object_id": datasets.Value("int32"),
"x": datasets.Value("int32"),
"y": datasets.Value("int32"),
"w": datasets.Value("int32"),
"h": datasets.Value("int32"),
"names": [datasets.Value("string")],
"synsets": [datasets.Value("string")],
}
_BASE_QA_OBJECT = {
"qa_id": datasets.Value("int32"),
"image_id": datasets.Value("int32"),
"question": datasets.Value("string"),
"answer": datasets.Value("string"),
"a_objects": [_BASE_QA_OBJECT_FEATURES],
"q_objects": [_BASE_QA_OBJECT_FEATURES],
}
_BASE_REGION_FEATURES = {
"region_id": datasets.Value("int32"),
"image_id": datasets.Value("int32"),
"phrase": datasets.Value("string"),
"x": datasets.Value("int32"),
"y": datasets.Value("int32"),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
}
_BASE_RELATIONSHIP_FEATURES = {
"relationship_id": datasets.Value("int32"),
"predicate": datasets.Value("string"),
"synsets": datasets.Value("string"),
"subject": _BASE_OBJECT_FEATURES,
"object": _BASE_OBJECT_FEATURES,
}
_NAME_VERSION_TO_ANNOTATION_FEATURES = {
"region_descriptions": {
"1.2.0": {"regions": [_BASE_REGION_FEATURES]},
"1.0.0": {"regions": [_BASE_REGION_FEATURES]},
},
"objects": {
"1.4.0": {"objects": [{**_BASE_OBJECT_FEATURES, "merged_object_ids": [datasets.Value("int32")]}]},
"1.2.0": {"objects": [_BASE_OBJECT_FEATURES]},
"1.0.0": {"objects": [_BASE_OBJECT_FEATURES]},
},
"attributes": {
"1.2.0": {"attributes": [{**_BASE_OBJECT_FEATURES, "attributes": [datasets.Value("string")]}]},
"1.0.0": {"attributes": [{**_BASE_OBJECT_FEATURES, "attributes": [datasets.Value("string")]}]},
},
"relationships": {
"1.4.0": {
"relationships": [
{
**_BASE_RELATIONSHIP_FEATURES,
"subject": {**_BASE_OBJECT_FEATURES, "merged_object_ids": [datasets.Value("int32")]},
"object": {**_BASE_OBJECT_FEATURES, "merged_object_ids": [datasets.Value("int32")]},
}
]
},
"1.2.0": {"relationships": [_BASE_RELATIONSHIP_FEATURES]},
"1.0.0": {"relationships": [_BASE_RELATIONSHIP_FEATURES]},
},
"question_answers": {"1.2.0": {"qas": [_BASE_QA_OBJECT]}, "1.0.0": {"qas": [_BASE_QA_OBJECT]}},
}
# ----- Helpers -----
def _get_decompressed_filename_from_url(url: str) -> str:
parsed_url = urlparse(url)
compressed_filename = os.path.basename(parsed_url.path)
# Remove `.zip` suffix
assert compressed_filename.endswith(".zip")
uncompressed_filename = compressed_filename[:-4]
# Remove version.
unversioned_uncompressed_filename = re.sub(r"_v[0-9]+(?:_[0-9]+)?\.json$", ".json", uncompressed_filename)
return unversioned_uncompressed_filename
def _get_local_image_path(img_url: str, folder_local_paths: Dict[str, str]) -> str:
"""
Obtain image folder given an image url.
For example:
Given `https://cs.stanford.edu/people/rak248/VG_100K_2/1.jpg` as an image url, this method returns the local path for that image.
"""
matches = re.fullmatch(r"^https://cs.stanford.edu/people/rak248/(VG_100K(?:_2)?)/([0-9]+\.jpg)$", img_url)
assert matches is not None, f"Got img_url: {img_url}, matched: {matches}"
folder, filename = matches.group(1), matches.group(2)
return os.path.join(folder_local_paths[folder], filename)
# ----- Annotation normalizers ----
_BASE_ANNOTATION_URL = "https://visualgenome.org/static/data/dataset"
def _normalize_region_description_annotation_(annotation: Dict[str, Any]) -> Dict[str, Any]:
"""Normalizes region descriptions annotation in-place"""
# Some attributes annotations don't have an attribute field
for region in annotation["regions"]:
# `id` should be converted to `region_id`:
if "id" in region:
region["region_id"] = region["id"]
del region["id"]
# `image` should be converted to `image_id`
if "image" in region:
region["image_id"] = region["image"]
del region["image"]
return annotation
def _normalize_object_annotation_(annotation: Dict[str, Any]) -> Dict[str, Any]:
"""Normalizes object annotation in-place"""
# Some attributes annotations don't have an attribute field
for object_ in annotation["objects"]:
# `id` should be converted to `object_id`:
if "id" in object_:
object_["object_id"] = object_["id"]
del object_["id"]
# Some versions of `object` annotations don't have `synsets` field.
if "synsets" not in object_:
object_["synsets"] = None
return annotation
def _normalize_attribute_annotation_(annotation: Dict[str, Any]) -> Dict[str, Any]:
"""Normalizes attributes annotation in-place"""
# Some attributes annotations don't have an attribute field
for attribute in annotation["attributes"]:
# `id` should be converted to `object_id`:
if "id" in attribute:
attribute["object_id"] = attribute["id"]
del attribute["id"]
# `objects_names` should be convered to `names:
if "object_names" in attribute:
attribute["names"] = attribute["object_names"]
del attribute["object_names"]
# Some versions of `attribute` annotations don't have `synsets` field.
if "synsets" not in attribute:
attribute["synsets"] = None
# Some versions of `attribute` annotations don't have `attributes` field.
if "attributes" not in attribute:
attribute["attributes"] = None
return annotation
def _normalize_relationship_annotation_(annotation: Dict[str, Any]) -> Dict[str, Any]:
"""Normalizes relationship annotation in-place"""
# For some reason relationships objects have a single name instead of a list of names.
for relationship in annotation["relationships"]:
# `id` should be converted to `object_id`:
if "id" in relationship:
relationship["relationship_id"] = relationship["id"]
del relationship["id"]
if "synsets" not in relationship:
relationship["synsets"] = None
subject = relationship["subject"]
object_ = relationship["object"]
for obj in [subject, object_]:
# `id` should be converted to `object_id`:
if "id" in obj:
obj["object_id"] = obj["id"]
del obj["id"]
if "name" in obj:
obj["names"] = [obj["name"]]
del obj["name"]
if "synsets" not in obj:
obj["synsets"] = None
return annotation
def _normalize_image_metadata_(image_metadata: Dict[str, Any]) -> Dict[str, Any]:
"""Normalizes image metadata in-place"""
if "id" in image_metadata:
image_metadata["image_id"] = image_metadata["id"]
del image_metadata["id"]
return image_metadata
_ANNOTATION_NORMALIZER = defaultdict(lambda: lambda x: x)
_ANNOTATION_NORMALIZER.update(
{
"region_descriptions": _normalize_region_description_annotation_,
"objects": _normalize_object_annotation_,
"attributes": _normalize_attribute_annotation_,
"relationships": _normalize_relationship_annotation_,
}
)
# ---- Visual Genome loading script ----
class VisualGenomeConfig(datasets.BuilderConfig):
"""BuilderConfig for Visual Genome."""
def __init__(self, name: str, version: Optional[str] = None, with_image: bool = True, **kwargs):
_version = _LATEST_VERSIONS[name] if version is None else version
_name = f"{name}_v{_version}"
super(VisualGenomeConfig, self).__init__(version=datasets.Version(_version), name=_name, **kwargs)
self._name_without_version = name
self.annotations_features = _NAME_VERSION_TO_ANNOTATION_FEATURES[self._name_without_version][
self.version.version_str
]
self.with_image = with_image
@property
def annotations_url(self):
if self.version == _LATEST_VERSIONS[self._name_without_version]:
return f"{_BASE_ANNOTATION_URL}/{self._name_without_version}.json.zip"
major, minor = self.version.major, self.version.minor
if minor == 0:
return f"{_BASE_ANNOTATION_URL}/{self._name_without_version}_v{major}.json.zip"
else:
return f"{_BASE_ANNOTATION_URL}/{self._name_without_version}_v{major}_{minor}.json.zip"
@property
def image_metadata_url(self):
if not self.version == _LATEST_VERSIONS["image_metadata"]:
logger.warning(
f"Latest image metadata version is {_LATEST_VERSIONS['image_metadata']}. Trying to generate a dataset of version: {self.version}. Please double check that image data are unchanged between the two versions."
)
return f"{_BASE_ANNOTATION_URL}/image_data.json.zip"
@property
def features(self):
return datasets.Features(
{
**({"image": datasets.Image()} if self.with_image else {}),
**_BASE_IMAGE_METADATA_FEATURES,
**self.annotations_features,
}
)
class VisualGenome(datasets.GeneratorBasedBuilder):
"""Visual Genome dataset."""
BUILDER_CONFIG_CLASS = VisualGenomeConfig
BUILDER_CONFIGS = [
*[VisualGenomeConfig(name="region_descriptions", version=version) for version in ["1.0.0", "1.2.0"]],
*[VisualGenomeConfig(name="question_answers", version=version) for version in ["1.0.0", "1.2.0"]],
*[
VisualGenomeConfig(name="objects", version=version)
# TODO: add support for 1.4.0
for version in ["1.0.0", "1.2.0"]
],
*[VisualGenomeConfig(name="attributes", version=version) for version in ["1.0.0", "1.2.0"]],
*[
VisualGenomeConfig(name="relationships", version=version)
# TODO: add support for 1.4.0
for version in ["1.0.0", "1.2.0"]
],
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=self.config.features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
version=self.config.version,
)
def _split_generators(self, dl_manager):
# Download image meta datas.
image_metadatas_dir = dl_manager.download_and_extract(self.config.image_metadata_url)
image_metadatas_file = os.path.join(
image_metadatas_dir, _get_decompressed_filename_from_url(self.config.image_metadata_url)
)
# Download annotations
annotations_dir = dl_manager.download_and_extract(self.config.annotations_url)
annotations_file = os.path.join(
annotations_dir, _get_decompressed_filename_from_url(self.config.annotations_url)
)
# Optionally download images
if self.config.with_image:
image_folder_keys = list(_BASE_IMAGE_URLS.keys())
image_dirs = dl_manager.download_and_extract(image_folder_keys)
image_folder_local_paths = {
_BASE_IMAGE_URLS[key]: os.path.join(dir_, _BASE_IMAGE_URLS[key])
for key, dir_ in zip(image_folder_keys, image_dirs)
}
else:
image_folder_local_paths = None
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"image_folder_local_paths": image_folder_local_paths,
"image_metadatas_file": image_metadatas_file,
"annotations_file": annotations_file,
"annotation_normalizer_": _ANNOTATION_NORMALIZER[self.config._name_without_version],
},
),
]
def _generate_examples(
self,
image_folder_local_paths: Optional[Dict[str, str]],
image_metadatas_file: str,
annotations_file: str,
annotation_normalizer_: Callable[[Dict[str, Any]], Dict[str, Any]],
):
with open(annotations_file, "r", encoding="utf-8") as fi:
annotations = json.load(fi)
with open(image_metadatas_file, "r", encoding="utf-8") as fi:
image_metadatas = json.load(fi)
assert len(image_metadatas) == len(annotations)
for idx, (image_metadata, annotation) in enumerate(zip(image_metadatas, annotations)):
# in-place operation to normalize image_metadata
_normalize_image_metadata_(image_metadata)
# Normalize image_id across all annotations
if "id" in annotation:
# annotation["id"] corresponds to image_metadata["image_id"]
assert (
image_metadata["image_id"] == annotation["id"]
), f"Annotations doesn't match with image metadataset. Got image_metadata['image_id']: {image_metadata['image_id']} and annotations['id']: {annotation['id']}"
del annotation["id"]
else:
assert "image_id" in annotation
assert (
image_metadata["image_id"] == annotation["image_id"]
), f"Annotations doesn't match with image metadataset. Got image_metadata['image_id']: {image_metadata['image_id']} and annotations['image_id']: {annotation['image_id']}"
# Normalize image_id across all annotations
if "image_url" in annotation:
# annotation["image_url"] corresponds to image_metadata["url"]
assert (
image_metadata["url"] == annotation["image_url"]
), f"Annotations doesn't match with image metadataset. Got image_metadata['url']: {image_metadata['url']} and annotations['image_url']: {annotation['image_url']}"
del annotation["image_url"]
elif "url" in annotation:
# annotation["url"] corresponds to image_metadata["url"]
assert (
image_metadata["url"] == annotation["url"]
), f"Annotations doesn't match with image metadataset. Got image_metadata['url']: {image_metadata['url']} and annotations['url']: {annotation['url']}"
# in-place operation to normalize annotations
annotation_normalizer_(annotation)
# optionally add image to the annotation
if image_folder_local_paths is not None:
filepath = _get_local_image_path(image_metadata["url"], image_folder_local_paths)
image_dict = {"image": filepath}
else:
image_dict = {}
yield idx, {**image_dict, **image_metadata, **annotation}
|