File size: 17,896 Bytes
5acac2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40b4fd1
5acac2f
 
 
 
 
 
 
 
 
 
40b4fd1
5acac2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Visual Genome dataset."""

import json
import os
import re
from collections import defaultdict
from typing import Any, Callable, Dict, Optional
from urllib.parse import urlparse

import datasets


logger = datasets.logging.get_logger(__name__)

_CITATION = """\
@inproceedings{krishnavisualgenome,
  title={Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations},
  author={Krishna, Ranjay and Zhu, Yuke and Groth, Oliver and Johnson, Justin and Hata, Kenji and Kravitz, Joshua and Chen, Stephanie and Kalantidis, Yannis and Li, Li-Jia and Shamma, David A and Bernstein, Michael and Fei-Fei, Li},
  year = {2016},
  url = {https://arxiv.org/abs/1602.07332},
}
"""

_DESCRIPTION = """\
Visual Genome enable to model objects and relationships between objects.
They collect dense annotations of objects, attributes, and relationships within each image.
Specifically, the dataset contains over 108K images where each image has an average of 35 objects, 26 attributes, and 21 pairwise relationships between objects.
"""

_HOMEPAGE = "https://visualgenome.org/"

_LICENSE = "Creative Commons Attribution 4.0 International License"

_BASE_IMAGE_URLS = {
    "https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip": "VG_100K",
    "https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip": "VG_100K_2",
}

_LATEST_VERSIONS = {
    "region_descriptions": "1.2.0",
    "objects": "1.4.0",
    "attributes": "1.2.0",
    "relationships": "1.4.0",
    "question_answers": "1.2.0",
    "image_metadata": "1.2.0",
}

# ---- Features ----

_BASE_IMAGE_METADATA_FEATURES = {
    "image_id": datasets.Value("int32"),
    "url": datasets.Value("string"),
    "width": datasets.Value("int32"),
    "height": datasets.Value("int32"),
    "coco_id": datasets.Value("int64"),
    "flickr_id": datasets.Value("int64"),
}

_BASE_SYNTET_FEATURES = {
    "synset_name": datasets.Value("string"),
    "entity_name": datasets.Value("string"),
    "entity_idx_start": datasets.Value("int32"),
    "entity_idx_end": datasets.Value("int32"),
}

_BASE_OBJECT_FEATURES = {
    "object_id": datasets.Value("int32"),
    "x": datasets.Value("int32"),
    "y": datasets.Value("int32"),
    "w": datasets.Value("int32"),
    "h": datasets.Value("int32"),
    "names": [datasets.Value("string")],
    "synsets": [datasets.Value("string")],
}

_BASE_QA_OBJECT_FEATURES = {
    "object_id": datasets.Value("int32"),
    "x": datasets.Value("int32"),
    "y": datasets.Value("int32"),
    "w": datasets.Value("int32"),
    "h": datasets.Value("int32"),
    "names": [datasets.Value("string")],
    "synsets": [datasets.Value("string")],
}

_BASE_QA_OBJECT = {
    "qa_id": datasets.Value("int32"),
    "image_id": datasets.Value("int32"),
    "question": datasets.Value("string"),
    "answer": datasets.Value("string"),
    "a_objects": [_BASE_QA_OBJECT_FEATURES],
    "q_objects": [_BASE_QA_OBJECT_FEATURES],
}

_BASE_REGION_FEATURES = {
    "region_id": datasets.Value("int32"),
    "image_id": datasets.Value("int32"),
    "phrase": datasets.Value("string"),
    "x": datasets.Value("int32"),
    "y": datasets.Value("int32"),
    "width": datasets.Value("int32"),
    "height": datasets.Value("int32"),
}

_BASE_RELATIONSHIP_FEATURES = {
    "relationship_id": datasets.Value("int32"),
    "predicate": datasets.Value("string"),
    "synsets": datasets.Value("string"),
    "subject": _BASE_OBJECT_FEATURES,
    "object": _BASE_OBJECT_FEATURES,
}

_NAME_VERSION_TO_ANNOTATION_FEATURES = {
    "region_descriptions": {
        "1.2.0": {"regions": [_BASE_REGION_FEATURES]},
        "1.0.0": {"regions": [_BASE_REGION_FEATURES]},
    },
    "objects": {
        "1.4.0": {"objects": [{**_BASE_OBJECT_FEATURES, "merged_object_ids": [datasets.Value("int32")]}]},
        "1.2.0": {"objects": [_BASE_OBJECT_FEATURES]},
        "1.0.0": {"objects": [_BASE_OBJECT_FEATURES]},
    },
    "attributes": {
        "1.2.0": {"attributes": [{**_BASE_OBJECT_FEATURES, "attributes": [datasets.Value("string")]}]},
        "1.0.0": {"attributes": [{**_BASE_OBJECT_FEATURES, "attributes": [datasets.Value("string")]}]},
    },
    "relationships": {
        "1.4.0": {
            "relationships": [
                {
                    **_BASE_RELATIONSHIP_FEATURES,
                    "subject": {**_BASE_OBJECT_FEATURES, "merged_object_ids": [datasets.Value("int32")]},
                    "object": {**_BASE_OBJECT_FEATURES, "merged_object_ids": [datasets.Value("int32")]},
                }
            ]
        },
        "1.2.0": {"relationships": [_BASE_RELATIONSHIP_FEATURES]},
        "1.0.0": {"relationships": [_BASE_RELATIONSHIP_FEATURES]},
    },
    "question_answers": {"1.2.0": {"qas": [_BASE_QA_OBJECT]}, "1.0.0": {"qas": [_BASE_QA_OBJECT]}},
}

# ----- Helpers -----


def _get_decompressed_filename_from_url(url: str) -> str:
    parsed_url = urlparse(url)
    compressed_filename = os.path.basename(parsed_url.path)

    # Remove `.zip` suffix
    assert compressed_filename.endswith(".zip")
    uncompressed_filename = compressed_filename[:-4]

    # Remove version.
    unversioned_uncompressed_filename = re.sub(r"_v[0-9]+(?:_[0-9]+)?\.json$", ".json", uncompressed_filename)

    return unversioned_uncompressed_filename


def _get_local_image_path(img_url: str, folder_local_paths: Dict[str, str]) -> str:
    """
    Obtain image folder given an image url.

    For example:
      Given `https://cs.stanford.edu/people/rak248/VG_100K_2/1.jpg` as an image url, this method returns the local path for that image.
    """
    matches = re.fullmatch(r"^https://cs.stanford.edu/people/rak248/(VG_100K(?:_2)?)/([0-9]+\.jpg)$", img_url)
    assert matches is not None, f"Got img_url: {img_url}, matched: {matches}"
    folder, filename = matches.group(1), matches.group(2)
    return os.path.join(folder_local_paths[folder], filename)


# ----- Annotation normalizers ----

_BASE_ANNOTATION_URL = "https://visualgenome.org/static/data/dataset"


def _normalize_region_description_annotation_(annotation: Dict[str, Any]) -> Dict[str, Any]:
    """Normalizes region descriptions annotation in-place"""
    # Some attributes annotations don't have an attribute field
    for region in annotation["regions"]:
        # `id` should be converted to `region_id`:
        if "id" in region:
            region["region_id"] = region["id"]
            del region["id"]

        # `image` should be converted to `image_id`
        if "image" in region:
            region["image_id"] = region["image"]
            del region["image"]

    return annotation


def _normalize_object_annotation_(annotation: Dict[str, Any]) -> Dict[str, Any]:
    """Normalizes object annotation in-place"""
    # Some attributes annotations don't have an attribute field
    for object_ in annotation["objects"]:
        # `id` should be converted to `object_id`:
        if "id" in object_:
            object_["object_id"] = object_["id"]
            del object_["id"]

        # Some versions of `object` annotations don't have `synsets` field.
        if "synsets" not in object_:
            object_["synsets"] = None

    return annotation


def _normalize_attribute_annotation_(annotation: Dict[str, Any]) -> Dict[str, Any]:
    """Normalizes attributes annotation in-place"""
    # Some attributes annotations don't have an attribute field
    for attribute in annotation["attributes"]:
        # `id` should be converted to `object_id`:
        if "id" in attribute:
            attribute["object_id"] = attribute["id"]
            del attribute["id"]

        # `objects_names` should be convered to `names:
        if "object_names" in attribute:
            attribute["names"] = attribute["object_names"]
            del attribute["object_names"]

        # Some versions of `attribute` annotations don't have `synsets` field.
        if "synsets" not in attribute:
            attribute["synsets"] = None

        # Some versions of `attribute` annotations don't have `attributes` field.
        if "attributes" not in attribute:
            attribute["attributes"] = None

    return annotation


def _normalize_relationship_annotation_(annotation: Dict[str, Any]) -> Dict[str, Any]:
    """Normalizes relationship annotation in-place"""
    # For some reason relationships objects have a single name instead of a list of names.
    for relationship in annotation["relationships"]:
        # `id` should be converted to `object_id`:
        if "id" in relationship:
            relationship["relationship_id"] = relationship["id"]
            del relationship["id"]

        if "synsets" not in relationship:
            relationship["synsets"] = None

        subject = relationship["subject"]
        object_ = relationship["object"]

        for obj in [subject, object_]:
            # `id` should be converted to `object_id`:
            if "id" in obj:
                obj["object_id"] = obj["id"]
                del obj["id"]

            if "name" in obj:
                obj["names"] = [obj["name"]]
                del obj["name"]

            if "synsets" not in obj:
                obj["synsets"] = None

    return annotation


def _normalize_image_metadata_(image_metadata: Dict[str, Any]) -> Dict[str, Any]:
    """Normalizes image metadata in-place"""
    if "id" in image_metadata:
        image_metadata["image_id"] = image_metadata["id"]
        del image_metadata["id"]
    return image_metadata


_ANNOTATION_NORMALIZER = defaultdict(lambda: lambda x: x)
_ANNOTATION_NORMALIZER.update(
    {
        "region_descriptions": _normalize_region_description_annotation_,
        "objects": _normalize_object_annotation_,
        "attributes": _normalize_attribute_annotation_,
        "relationships": _normalize_relationship_annotation_,
    }
)

# ---- Visual Genome loading script ----


class VisualGenomeConfig(datasets.BuilderConfig):
    """BuilderConfig for Visual Genome."""

    def __init__(self, name: str, version: Optional[str] = None, with_image: bool = True, **kwargs):
        _version = _LATEST_VERSIONS[name] if version is None else version
        _name = f"{name}_v{_version}"
        super(VisualGenomeConfig, self).__init__(version=datasets.Version(_version), name=_name, **kwargs)
        self._name_without_version = name
        self.annotations_features = _NAME_VERSION_TO_ANNOTATION_FEATURES[self._name_without_version][
            self.version.version_str
        ]
        self.with_image = with_image

    @property
    def annotations_url(self):
        if self.version == _LATEST_VERSIONS[self._name_without_version]:
            return f"{_BASE_ANNOTATION_URL}/{self._name_without_version}.json.zip"

        major, minor = self.version.major, self.version.minor
        if minor == 0:
            return f"{_BASE_ANNOTATION_URL}/{self._name_without_version}_v{major}.json.zip"
        else:
            return f"{_BASE_ANNOTATION_URL}/{self._name_without_version}_v{major}_{minor}.json.zip"

    @property
    def image_metadata_url(self):
        if not self.version == _LATEST_VERSIONS["image_metadata"]:
            logger.warning(
                f"Latest image metadata version is {_LATEST_VERSIONS['image_metadata']}. Trying to generate a dataset of version: {self.version}. Please double check that image data are unchanged between the two versions."
            )
        return f"{_BASE_ANNOTATION_URL}/image_data.json.zip"

    @property
    def features(self):
        return datasets.Features(
            {
                **({"image": datasets.Image()} if self.with_image else {}),
                **_BASE_IMAGE_METADATA_FEATURES,
                **self.annotations_features,
            }
        )


class VisualGenome(datasets.GeneratorBasedBuilder):
    """Visual Genome dataset."""

    BUILDER_CONFIG_CLASS = VisualGenomeConfig
    BUILDER_CONFIGS = [
        *[VisualGenomeConfig(name="region_descriptions", version=version) for version in ["1.0.0", "1.2.0"]],
        *[VisualGenomeConfig(name="question_answers", version=version) for version in ["1.0.0", "1.2.0"]],
        *[
            VisualGenomeConfig(name="objects", version=version)
            # TODO: add support for 1.4.0
            for version in ["1.0.0", "1.2.0"]
        ],
        *[VisualGenomeConfig(name="attributes", version=version) for version in ["1.0.0", "1.2.0"]],
        *[
            VisualGenomeConfig(name="relationships", version=version)
            # TODO: add support for 1.4.0
            for version in ["1.0.0", "1.2.0"]
        ],
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=self.config.features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            version=self.config.version,
        )

    def _split_generators(self, dl_manager):
        # Download image meta datas.
        image_metadatas_dir = dl_manager.download_and_extract(self.config.image_metadata_url)
        image_metadatas_file = os.path.join(
            image_metadatas_dir, _get_decompressed_filename_from_url(self.config.image_metadata_url)
        )

        # Download annotations
        annotations_dir = dl_manager.download_and_extract(self.config.annotations_url)
        annotations_file = os.path.join(
            annotations_dir, _get_decompressed_filename_from_url(self.config.annotations_url)
        )

        # Optionally download images
        if self.config.with_image:
            image_folder_keys = list(_BASE_IMAGE_URLS.keys())
            image_dirs = dl_manager.download_and_extract(image_folder_keys)
            image_folder_local_paths = {
                _BASE_IMAGE_URLS[key]: os.path.join(dir_, _BASE_IMAGE_URLS[key])
                for key, dir_ in zip(image_folder_keys, image_dirs)
            }
        else:
            image_folder_local_paths = None

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "image_folder_local_paths": image_folder_local_paths,
                    "image_metadatas_file": image_metadatas_file,
                    "annotations_file": annotations_file,
                    "annotation_normalizer_": _ANNOTATION_NORMALIZER[self.config._name_without_version],
                },
            ),
        ]

    def _generate_examples(
        self,
        image_folder_local_paths: Optional[Dict[str, str]],
        image_metadatas_file: str,
        annotations_file: str,
        annotation_normalizer_: Callable[[Dict[str, Any]], Dict[str, Any]],
    ):
        with open(annotations_file, "r", encoding="utf-8") as fi:
            annotations = json.load(fi)

        with open(image_metadatas_file, "r", encoding="utf-8") as fi:
            image_metadatas = json.load(fi)

        assert len(image_metadatas) == len(annotations)
        for idx, (image_metadata, annotation) in enumerate(zip(image_metadatas, annotations)):
            # in-place operation to normalize image_metadata
            _normalize_image_metadata_(image_metadata)

            # Normalize image_id across all annotations
            if "id" in annotation:
                # annotation["id"] corresponds to image_metadata["image_id"]
                assert (
                    image_metadata["image_id"] == annotation["id"]
                ), f"Annotations doesn't match with image metadataset. Got image_metadata['image_id']: {image_metadata['image_id']} and annotations['id']: {annotation['id']}"
                del annotation["id"]
            else:
                assert "image_id" in annotation
                assert (
                    image_metadata["image_id"] == annotation["image_id"]
                ), f"Annotations doesn't match with image metadataset. Got image_metadata['image_id']: {image_metadata['image_id']} and annotations['image_id']: {annotation['image_id']}"

            # Normalize image_id across all annotations
            if "image_url" in annotation:
                # annotation["image_url"] corresponds to image_metadata["url"]
                assert (
                    image_metadata["url"] == annotation["image_url"]
                ), f"Annotations doesn't match with image metadataset. Got image_metadata['url']: {image_metadata['url']} and annotations['image_url']: {annotation['image_url']}"
                del annotation["image_url"]
            elif "url" in annotation:
                # annotation["url"] corresponds to image_metadata["url"]
                assert (
                    image_metadata["url"] == annotation["url"]
                ), f"Annotations doesn't match with image metadataset. Got image_metadata['url']: {image_metadata['url']} and annotations['url']: {annotation['url']}"

            # in-place operation to normalize annotations
            annotation_normalizer_(annotation)

            # optionally add image to the annotation
            if image_folder_local_paths is not None:
                filepath = _get_local_image_path(image_metadata["url"], image_folder_local_paths)
                image_dict = {"image": filepath}
            else:
                image_dict = {}

            yield idx, {**image_dict, **image_metadata, **annotation}