|
import csv |
|
import json |
|
from tqdm import tqdm |
|
import numpy as np |
|
from prettytable import PrettyTable |
|
import os |
|
from utils import * |
|
|
|
import openai |
|
|
|
|
|
|
|
root_dir = "." |
|
llava = False |
|
|
|
|
|
load_json = True |
|
input_file_name = "HallusionBench.tsv" |
|
|
|
save_json_path_vd = "./hallusion_output_vd.json" |
|
save_json_path_vs = "./hallusion_output_vs.json" |
|
model_output_entry = "gpt4v_output" |
|
model_correctness_entry = "gpt4v_output_gpt_check" |
|
model_correctness_entry_human = "gpt4v_output_human_check" |
|
|
|
if llava: |
|
save_json_path_vd = "./hallusion_output_vd_llava.json" |
|
save_json_path_vs = "./hallusion_output_vs_llava.json" |
|
model_output_entry = "llava_1_5_output" |
|
model_correctness_entry = "llava_1_5_output_gpt_check" |
|
model_correctness_entry_human = "llava_1_5_output_human_check" |
|
|
|
|
|
col_idx = { |
|
'category':0, |
|
'subcategory':1, |
|
'visual_input':2, |
|
'set_id':3, |
|
'figure_id':4, |
|
'sample_note':5, |
|
'question_id':6, |
|
'question':7, |
|
'gt_answer_details':8, |
|
'gt_answer':9, |
|
'gpt4v_output':10, |
|
'gpt4v_output_human_check': 11, |
|
'llava_1_5_output':12, |
|
'llava_1_5_output_human_check': 13, |
|
} |
|
|
|
|
|
|
|
def generate_answer(data, model_output_entry): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return data |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
data_vd = [] |
|
data_vs = [] |
|
with open(input_file_name) as file: |
|
tsv_file = csv.reader(file, delimiter="\t") |
|
flag = 0 |
|
for line in tsv_file: |
|
if line[0] not in ["VD", "VS"]: |
|
continue |
|
data_dict = {} |
|
for k, v in col_idx.items(): |
|
data_dict[k] = line[v] |
|
|
|
data_dict["filename"] = get_image_file_location(root_dir, data_dict) |
|
if line[0] == "VD": |
|
data_vd.append(data_dict) |
|
else: |
|
data_vs.append(data_dict) |
|
|
|
|
|
data_vd = generate_answer(data_vd, model_output_entry) |
|
data_vs = generate_answer(data_vs, model_output_entry) |
|
|
|
|
|
data_vd = evaluate_by_chatgpt(data_vd, model_output_entry, model_correctness_entry, load_json=load_json, save_json_path=save_json_path_vd) |
|
data_vd = check_same_by_chatgpt(data_vd, model_output_entry, load_json=load_json, save_json_path=save_json_path_vd) |
|
data_vs = evaluate_by_chatgpt(data_vs, model_output_entry, model_correctness_entry, load_json=load_json, save_json_path=save_json_path_vs) |
|
data_vs = check_same_by_chatgpt(data_vs, model_output_entry, load_json=load_json, save_json_path=save_json_path_vs) |
|
|
|
data_vd = assign_correctness(data_vd, correctness_entry=model_correctness_entry_human) |
|
data_vs = assign_correctness(data_vs, correctness_entry=model_correctness_entry_human) |
|
data = data_vd + data_vs |
|
|
|
all_data = get_eval_all(data, model_correctness_entry_human) |
|
all_vd = get_eval_all(data_vd, model_correctness_entry_human) |
|
all_vs = get_eval_all(data_vs, model_correctness_entry_human) |
|
human_check_correctness = [i["correct"] for i in data] |
|
|
|
print("##### Human Evaluate #####") |
|
|
|
|
|
table1 = [["per question", "Total"], |
|
["VD", round(100 * all_vd["correct"]/all_vd["total"], 4)], |
|
["VS", round(100 * all_vs["correct"]/all_vs["total"], 4)], |
|
["Overall", round(100 * all_data["correct"]/all_data["total"], 4)]] |
|
tab1 = PrettyTable(table1[0]) |
|
tab1.add_rows(table1[1:]) |
|
print(tab1) |
|
q_acc_human = round(100 * all_data["correct"]/all_data["total"], 4) |
|
|
|
|
|
all_data = get_eval_pair_all(data, model_correctness_entry_human) |
|
easy = get_eval_pair_easy(data) |
|
hard = get_eval_pair_hard(data) |
|
all_vd = get_eval_pair_all(data_vd, model_correctness_entry_human) |
|
easy_vd = get_eval_pair_easy(data_vd) |
|
hard_vd = get_eval_pair_hard(data_vd) |
|
all_vs = get_eval_pair_all(data_vs, model_correctness_entry_human) |
|
easy_vs = get_eval_pair_easy(data_vs) |
|
hard_vs = get_eval_pair_hard(data_vs) |
|
|
|
table3 = [["per question pair", "Easy", "Hard", "Total"], |
|
["VD", round(100 * easy_vd["correct"]/easy_vd["total"], 4), round(100 * hard_vd["correct"]/hard_vd["total"], 4), round(100 * all_vd["correct"]/all_vd["total"], 4)], |
|
["VS", round(100 * easy_vs["correct"]/easy_vs["total"], 4), round(100 * hard_vs["correct"]/hard_vs["total"], 4), round(100 * all_vs["correct"]/all_vs["total"], 4)], |
|
["Overall", round(100 * easy["correct"]/easy["total"], 4), round(100 * hard["correct"]/hard["total"], 4), round(100 * all_data["correct"]/all_data["total"], 4)]] |
|
tab3 = PrettyTable(table3[0]) |
|
tab3.add_rows(table3[1:]) |
|
print(tab3) |
|
|
|
|
|
fig_all = get_eval_fig(data) |
|
fig_vd = get_eval_fig(data_vd) |
|
fig_vs = get_eval_fig(data_vs) |
|
fig_all_human = fig_all |
|
all_data_human = all_data |
|
|
|
table2 = [["per figure", "Correct", "Inconsistant", "Wrong", "Score"], |
|
["VD", round(100 * fig_vd["correct"]/fig_vd["total"], 4), round(100 * fig_vd["inconsistent"]/fig_vd["total"], 4), round(100 * fig_vd["wrong"]/fig_vd["total"], 4), round(100 * fig_vd["score"], 4)], |
|
["VS", round(100 * fig_vs["correct"]/fig_vs["total"], 4), round(100 * fig_vs["inconsistent"]/fig_vs["total"], 4), round(100 * fig_vs["wrong"]/fig_vs["total"], 4), round(100 * fig_vs["score"], 4)], |
|
["Overall", round(100 * fig_all["correct"]/fig_all["total"], 4), round(100 * fig_all["inconsistent"]/fig_all["total"], 4), round(100 * fig_all["wrong"]/fig_all["total"], 4), round(100 * fig_all["score"], 4)]] |
|
tab2 = PrettyTable(table2[0]) |
|
tab2.add_rows(table2[1:]) |
|
print(tab2) |
|
|
|
pair_acc_human = round(100 * all_data["correct"]/all_data["total"], 4) |
|
figure_acc_human = round(100 * fig_all["correct"]/fig_all["total"], 4) |
|
easy_acc_human = round(100 * easy["correct"]/easy["total"], 4) |
|
hard_acc_human = round(100 * hard["correct"]/hard["total"], 4) |
|
|
|
stats_human = yes_ratio_stats(data) |
|
|
|
|
|
|
|
|
|
print("##### GPT Evaluate #####") |
|
|
|
data_vd = assign_correctness(data_vd, correctness_entry=model_correctness_entry) |
|
data_vs = assign_correctness(data_vs, correctness_entry=model_correctness_entry) |
|
data = data_vd + data_vs |
|
|
|
all_data = get_eval_all(data, model_correctness_entry) |
|
all_vd = get_eval_all(data_vd, model_correctness_entry) |
|
all_vs = get_eval_all(data_vs, model_correctness_entry) |
|
gpt_check_correctness = [i["correct"] for i in data] |
|
|
|
|
|
table1 = [["per question", "Total"], |
|
["VD", round(100 * all_vd["correct"]/all_vd["total"], 4)], |
|
["VS", round(100 * all_vs["correct"]/all_vs["total"], 4)], |
|
["Overall", round(100 * all_data["correct"]/all_data["total"], 4)]] |
|
tab1 = PrettyTable(table1[0]) |
|
tab1.add_rows(table1[1:]) |
|
print(tab1) |
|
|
|
q_acc_gpt = round(100 * all_data["correct"]/all_data["total"], 4) |
|
|
|
all_data = get_eval_pair_all(data, model_correctness_entry) |
|
easy = get_eval_pair_easy(data) |
|
hard = get_eval_pair_hard(data) |
|
all_vd = get_eval_pair_all(data_vd, model_correctness_entry) |
|
easy_vd = get_eval_pair_easy(data_vd) |
|
hard_vd = get_eval_pair_hard(data_vd) |
|
all_vs = get_eval_pair_all(data_vs, model_correctness_entry) |
|
easy_vs = get_eval_pair_easy(data_vs) |
|
hard_vs = get_eval_pair_hard(data_vs) |
|
|
|
table3 = [["per question pair", "Easy", "Hard", "Total"], |
|
["VD", round(100 * easy_vd["correct"]/easy_vd["total"], 4), round(100 * hard_vd["correct"]/hard_vd["total"], 4), round(100 * all_vd["correct"]/all_vd["total"], 4)], |
|
["VS", round(100 * easy_vs["correct"]/easy_vs["total"], 4), round(100 * hard_vs["correct"]/hard_vs["total"], 4), round(100 * all_vs["correct"]/all_vs["total"], 4)], |
|
["Overall", round(100 * easy["correct"]/easy["total"], 4), round(100 * hard["correct"]/hard["total"], 4), round(100 * all_data["correct"]/all_data["total"], 4)]] |
|
tab3 = PrettyTable(table3[0]) |
|
tab3.add_rows(table3[1:]) |
|
print(tab3) |
|
|
|
|
|
fig_all = get_eval_fig(data) |
|
fig_vd = get_eval_fig(data_vd) |
|
fig_vs = get_eval_fig(data_vs) |
|
|
|
|
|
table2 = [["per figure", "Correct", "Wrong", "Score"], |
|
["VD", round(100 * fig_vd["correct"]/fig_vd["total"], 4), round(100 * fig_vd["inconsistent"]/fig_vd["total"], 4) + round(100 * fig_vd["wrong"]/fig_vd["total"], 4), round(fig_vd["score"], 4)], |
|
["VS", round(100 * fig_vs["correct"]/fig_vs["total"], 4), round(100 * fig_vs["inconsistent"]/fig_vs["total"], 4) + round(100 * fig_vs["wrong"]/fig_vs["total"], 4), round(fig_vs["score"], 4)], |
|
["Overall", round(100 * fig_all["correct"]/fig_all["total"], 4), round(100 * fig_all["inconsistent"]/fig_all["total"], 4) + round(100 * fig_all["wrong"]/fig_all["total"], 4), round(fig_all["score"], 4)]] |
|
tab2 = PrettyTable(table2[0]) |
|
tab2.add_rows(table2[1:]) |
|
print(tab2) |
|
|
|
pair_acc_gpt = round(100 * all_data["correct"]/all_data["total"], 4) |
|
figure_acc_gpt = round(100 * fig_all["correct"]/fig_all["total"], 4) |
|
easy_acc_gpt = round(100 * easy["correct"]/easy["total"], 4) |
|
hard_acc_gpt = round(100 * hard["correct"]/hard["total"], 4) |
|
|
|
|
|
|
|
|
|
print("##### Question Stats #####") |
|
print("Easy Questions: " + str(easy_vd["total_q"]) + "(Visual Dependent) + " + str(easy_vs["total_q"]) + "(Visual Supplement)") |
|
print("Hard Questions: " + str(hard_vd["total_q"]) + "(Visual Dependent) + " + str(hard_vs["total_q"]) + "(Visual Supplement)") |
|
print("Total Questions: " + str(all_data["total_q"])) |
|
|
|
|
|
print("##### Figure Stats #####") |
|
print("Visual Dependent Figures: " + str(fig_vd["total"])) |
|
print("Visual Supplement Figures: " + str(fig_vs["total"])) |
|
print("Total Figures: " + str(fig_all["total"])) |
|
|
|
print("##### Leaderboard Stats #####") |
|
|
|
table = [["", "Acc per question pair (qAcc)", "Acc per figure (fAcc)", "Acc per easy question (easy aAcc)", "Acc per hard question (hard aAcc)", "Acc per question (aAcc)"], |
|
["Human Eval", pair_acc_human, figure_acc_human, easy_acc_human, hard_acc_human, q_acc_human], |
|
["GPT Eval", pair_acc_gpt, figure_acc_gpt, easy_acc_gpt, hard_acc_gpt, q_acc_gpt]] |
|
leaderboard = PrettyTable(table[0]) |
|
leaderboard.add_rows(table[1:]) |
|
print(leaderboard) |
|
|
|
print(all_data["total"], all_data["wrong"], all_data["LH"], all_data["VI"], all_data["Mix"]) |
|
print(all_data["total_q"], all_data["LH_cg"], all_data["VI_cg"], all_data["Mix_cg"]) |
|
|
|
print(len(gpt_check_correctness)) |
|
print(len(human_check_correctness)) |
|
print(sum(np.array(human_check_correctness) == np.array(gpt_check_correctness))) |
|
print(sum(np.array(human_check_correctness) == np.array(gpt_check_correctness)) / len(gpt_check_correctness)) |
|
|
|
|
|
yes = [int(i["gt_answer"]) for i in data] |
|
print(sum(yes)) |
|
print(len(yes)) |
|
print(sum(yes)/len(yes)) |
|
|
|
stats_gpt = yes_ratio_stats(data) |
|
|
|
table = [["", "Yes/No Bias (Pct Diff)", "Yes/No Bias (FP Ratio)", "Consistency Test (correct)", "Consistency Test (inconsistent)", "Consistency Test (wrong)", "LH", "VI", "Mixed"], |
|
["Human Eval", stats_human["diff"], stats_human["fp"], round(100 * fig_all_human["correct"]/fig_all_human["total"], 4), round(100 * fig_all_human["inconsistent"]/fig_all_human["total"], 4), round(100 * fig_all_human["wrong"]/fig_all_human["total"], 4), round(100 * all_data_human["LH_cg"]/(all_data_human["LH_cg"] + all_data_human["VI_cg"] + all_data_human["Mix_cg"]), 4), round(100 * all_data_human["VI_cg"]/(all_data_human["LH_cg"] + all_data_human["VI_cg"] + all_data_human["Mix_cg"]), 4), round(100 * all_data_human["Mix_cg"]/(all_data_human["LH_cg"] + all_data_human["VI_cg"] + all_data_human["Mix_cg"]), 4)], |
|
["GPT Eval", stats_gpt["diff"], stats_gpt["fp"], round(100 * fig_all["correct"]/fig_all["total"], 4), round(100 * fig_all["inconsistent"]/fig_all["total"], 4), round(100 * fig_all["wrong"]/fig_all["total"], 4), round(100 * all_data["LH_cg"]/(all_data["LH_cg"] + all_data["VI_cg"] + all_data["Mix_cg"]), 4), round(100 * all_data["VI_cg"]/(all_data["LH_cg"] + all_data["VI_cg"] + all_data["Mix_cg"]), 4), round(100 * all_data["Mix_cg"]/(all_data["LH_cg"] + all_data["VI_cg"] + all_data["Mix_cg"]), 4)]] |
|
test = PrettyTable(table[0]) |
|
test.add_rows(table[1:]) |
|
print(test) |