import csv import json from tqdm import tqdm import numpy as np from prettytable import PrettyTable import os import time import openai import threading try: with open("apikey.txt", "r") as f: api_key = f.read() except: api_key = '' def get_image_file_location(root, row): if int(row['visual_input']) == 0: return None img_file = row['set_id'] + "_" + row['figure_id'] + ".png" return os.path.join(root, row['category'], row['subcategory'], img_file) def evaluate_by_chatgpt(data, output_entry, correctness_entry, gpt_model="gpt-4", load_json=False, save_json_path="./hallusion_output.json"): if load_json and os.path.exists(save_json_path): with open(save_json_path, 'r') as f: output = json.load(f) else: output = [] for sample in tqdm(data[len(output):]): prompt = 'Imagine you are an intelligent teacher. Thoroughly read the question, reference answer and the prediction answer to ensure a clear understanding of the information provided. Assess the correctness of the predictions. ' prompt += 'If the prediction answer does not conflict with the reference answer, please generate “correct”. If the prediction answer conflict with the reference answer, please generate “incorrect”. If the prediction answer is unclear about the answer, please generate "unclear". \n\n Question:' prompt += sample['question'] prompt += '\nReference answer: ' prompt += sample['gt_answer_details'] prompt += '\nPrediction answer:' prompt += sample[output_entry] prompt += '\nOutput:' # https://github.com/openai/openai-python/issues/322#issuecomment-1767841683 while True: try: response = openai.ChatCompletion.create( model=gpt_model, messages=[{"role": "user", "content": prompt}], api_key=api_key, request_timeout=5) break except: print("Timeout, retrying...") time.sleep(5) # Wait for 5 seconds before retrying output_text = response['choices'][0]['message']['content'] if 'incorrect' in output_text.lower(): gpt_correctness = "0" elif 'correct' in output_text.lower(): gpt_correctness = "1" else: gpt_correctness = "2" sample[correctness_entry] = gpt_correctness output.append(sample) with open(save_json_path, 'w') as f: json.dump(output, f) return output def check_same_by_chatgpt(data, output_entry, gpt_model="gpt-4", load_json=False, save_json_path="./hallusion_output.json"): orig_response = {} for r in data: if str(r["figure_id"]) == "0": key = "_".join([r["category"], r["subcategory"], str(r["set_id"]), str(r["question_id"])]) orig_response[key] = r[output_entry] for sample in tqdm(data): if "same" not in sample.keys(): key = "_".join([sample["category"], sample["subcategory"], str(sample["set_id"]), str(sample["question_id"])]) response2 = orig_response[key] prompt = 'Imagine you are an intelligent teacher. Thoroughly read the two responses to two different questions. Assess the consistency of the information provided within those two responses. ' prompt += 'You do not know the specific questions, but you can asssess the consistency among the two responses by checking for logical conflicts if both responses are correct. ' prompt += 'If response1 does not conflict with response2, please generate “same”. Otherwise, generate "different". \n\n response1:' prompt += sample[output_entry] prompt += '\nresponse2: ' prompt += response2 prompt += '\nOutput:' # https://github.com/openai/openai-python/issues/322#issuecomment-1767841683 while True: try: response = openai.ChatCompletion.create( model=gpt_model, messages=[{"role": "user", "content": prompt}], api_key=api_key, request_timeout=5) break except: print("Timeout, retrying...") time.sleep(5) # Wait for 5 seconds before retrying output_text = response['choices'][0]['message']['content'] gpt_same = "0" if 'same' in output_text.lower(): gpt_same = "1" elif 'different' in output_text.lower(): gpt_same = "0" sample["same"] = gpt_same with open(save_json_path, 'w') as f: json.dump(data, f) return data def get_eval_fig(data): # per figure eval_fig_dict = dict() for r in data: if r["category"] == "VS" and str(r["figure_id"]) == "0": # no figure continue name = "_".join([r["category"], r["subcategory"], str(r["set_id"]), str(r["figure_id"])]) if name in eval_fig_dict: c, t = eval_fig_dict[name] eval_fig_dict[name] = (c + r["correct"], t+1) else: eval_fig_dict[name] = (r["correct"], 1) eval_fig_stat = {} eval_fig_stat["note"] = "all accuracy per image (consistency test)" eval_fig_stat["total"] = len(eval_fig_dict.keys()) eval_fig_stat["correct"] = 0 eval_fig_stat["wrong"] = 0 eval_fig_stat["inconsistent"] = 0 eval_fig_stat["score"] = 0 for v in eval_fig_dict.values(): if v[0] == v[1]: eval_fig_stat["correct"] += 1 elif v[0] == 0: eval_fig_stat["wrong"] += 1 else: eval_fig_stat["inconsistent"] += 1 eval_fig_stat["score"] += (v[0] / v[1]) eval_fig_stat["score"] = eval_fig_stat["score"] / eval_fig_stat["total"] return eval_fig_stat def get_eval_all(data, model_correctness_entry): # per question eval_all_dict = dict() eval_all_stat = {} eval_all_stat["LH"] = 0 eval_all_stat["VI"] = 0 eval_all_stat["Mix"] = 0 for r in data: name = "_".join([r["category"], r["subcategory"], str(r["set_id"]), str(r["figure_id"]), str(r["question_id"])]) assert name not in eval_all_dict eval_all_dict[name] = r["correct"] if str(r["category"]) == "VD": # VD if str(r["figure_id"]) == "0": if str(r[model_correctness_entry]) == "0" or str(r[model_correctness_entry]) == "2": eval_all_stat["VI"] += 1 else: if str(r[model_correctness_entry]) == "0": eval_all_stat["Mix"] += 1 elif str(r[model_correctness_entry]) == "2": eval_all_stat["VI"] += 1 else: # VS if str(r["visual_input"]) == "0": # no visual if str(r[model_correctness_entry]) == "0": eval_all_stat["LH"] += 1 else: # original visual or modified visual (isual_input == 1 or 2) if str(r[model_correctness_entry]) == "0": eval_all_stat["Mix"] += 1 elif str(r[model_correctness_entry]) == "2": eval_all_stat["VI"] += 1 eval_all_stat["note"] = "all accuracy per question" eval_all_stat["total"] = len(eval_all_dict.keys()) eval_all_stat["correct"] = np.count_nonzero(list(eval_all_dict.values())) eval_all_stat["wrong"] = eval_all_stat["total"] - eval_all_stat["correct"] return eval_all_stat def get_eval_pair_all(data, model_correctness_entry): # per question pair orig_correctness = dict() counter = 0 lh_counter = 0 vi_counter = 0 both_counter = 0 for r in data: if str(r["figure_id"]) == "0": key = "_".join([r["category"], r["subcategory"], str(r["set_id"]), str(r["question_id"])]) orig_correctness[key] = r[model_correctness_entry] get_eval_pair_dict = dict() get_analysis_pair_dict = dict() for r in data: name = "_".join([r["category"], r["subcategory"], str(r["set_id"]), str(r["question_id"])]) if name in get_eval_pair_dict: c, t = get_eval_pair_dict[name] get_eval_pair_dict[name] = (c + r["correct"], t+1) else: get_eval_pair_dict[name] = (r["correct"], 1) counter += 1 # (LH, VI) analysis = (0, 0) if str(r["figure_id"]) == "0": # when it's original question if str(r["category"]) == "VD": # VD if str(r[model_correctness_entry]) == "0" or str(r[model_correctness_entry]) == "2": analysis = (0, 1) # VI -- get original image wrong, bad vision else: # VS if str(r[model_correctness_entry]) == "0": analysis = (1, 0) # LH -- wrong answer without visual, making things up else: # when it's not original question key = "_".join([r["category"], r["subcategory"], str(r["set_id"]), str(r["question_id"])]) orig_c = orig_correctness[key] if str(r["category"]) == "VD": # VD if str(orig_c) == "1" and str(r[model_correctness_entry]) == "0": if str(r["same"]) == "1": analysis = (1, 1) # Mixed -- orig correct but modified wrong, with the same answer as the original question, could be bad vision or language hallucination else: analysis = (0, 1) # VI -- orig correct but modified wrong, but answer differently, only due to bad vision elif str(orig_c) == "1" and str(r[model_correctness_entry]) == "2": analysis = (0, 1) # VI -- orig correct but modified uncertain, bad vision elif str(r[model_correctness_entry]) == "0" or str(r[model_correctness_entry]) == "2": # when orig_c == 0 or 2 and current is wrong analysis = (0, 1) # VI -- when original is wrong and current is wrong, bad vision else: # VS key = "_".join([r["category"], r["subcategory"], str(r["set_id"]), str(r["question_id"])]) orig_c = orig_correctness[key] if str(orig_c) == "0": # No visual wrong if str(r[model_correctness_entry]) == "0" and str(r["same"]) == "1": analysis = (1, 0) # LH -- same answer with and without visual, LH overtake visual elif str(r[model_correctness_entry]) == "0": analysis = (1, 1) # LH -- different answer with and without visual but both wrong, both language and visual are bad elif str(r[model_correctness_entry]) == "2": analysis = (1, 1) # Mixed -- no visual wrong, but with visual uncertain, could be either elif str(orig_c) == "2":# No visual uncertain if str(r[model_correctness_entry]) == "0" or str(r[model_correctness_entry]) == "2": analysis = (0, 1) # VI -- no visual uncertain, with visual still wrong or uncertain, visual capability is bad else: # No visual correct if str(r[model_correctness_entry]) == "2": analysis = (0, 1) # VI -- no visual correct, with visual uncertain, visual capability is bad elif str(r[model_correctness_entry]) == "0": # current is wrong if str(r["visual_input"]) == "1": # common sense visual question analysis = (0, 1) # VI -- no visual correct, with visual wrong on common sense question, visual capability is bad elif str(r["visual_input"]) == "2": # counter-common sense visual question if str(r["same"]) == "1": analysis = (1, 0) # LH -- with visual correct, but modified question wrong with the same answer, not considering visual so the error is attributed to Language else: analysis = (0, 1) # VI -- with visual correct, but modified question wrong with different answers, visual capability is bad else: assert False, "Data error" if analysis[0] > 0 and analysis[1] > 0: both_counter += 1 elif analysis[0] > 0: lh_counter += 1 elif analysis[1] > 0: vi_counter += 1 if name in get_analysis_pair_dict: lh, vi = get_analysis_pair_dict[name] get_analysis_pair_dict[name] = (lh + analysis[0], vi + analysis[1]) else: get_analysis_pair_dict[name] = analysis eval_all_pair_stat = {} eval_all_pair_stat["note"] = "all accuracy per question pair" eval_all_pair_stat["total"] = len(get_eval_pair_dict.keys()) eval_all_pair_stat["total_q"] = counter eval_all_pair_stat["correct"] = 0 eval_all_pair_stat["wrong"] = 0 eval_all_pair_stat["LH"] = 0 eval_all_pair_stat["VI"] = 0 eval_all_pair_stat["Mix"] = 0 eval_all_pair_stat["LH_cg"] = lh_counter eval_all_pair_stat["VI_cg"] = vi_counter eval_all_pair_stat["Mix_cg"] = both_counter # for v in get_eval_pair_dict.values(): # if v[0] == v[1]: # eval_all_pair_stat["correct"] += 1 # else: # eval_all_pair_stat["wrong"] += 1 # for v in get_analysis_pair_dict.values(): # if v[0] > 0 and v[1] > 0: # eval_all_pair_stat["Mix"] += 1 # elif v[0] > 0: # eval_all_pair_stat["LH"] += 1 # elif v[1] > 0: # eval_all_pair_stat["VI"] += 1 for k in get_eval_pair_dict.keys(): v = get_eval_pair_dict[k] a = get_analysis_pair_dict[k] if v[0] == v[1]: eval_all_pair_stat["correct"] += 1 else: eval_all_pair_stat["wrong"] += 1 if a[0] > 0 and a[1] > 0: eval_all_pair_stat["Mix"] += 1 elif a[0] > 0: eval_all_pair_stat["LH"] += 1 elif a[1] > 0: eval_all_pair_stat["VI"] += 1 assert (eval_all_pair_stat["wrong"] == (eval_all_pair_stat["Mix"] + eval_all_pair_stat["LH"] + eval_all_pair_stat["VI"])) return eval_all_pair_stat def get_eval_pair_easy(data): get_eval_pair_dict = dict() counter = 0 for r in data: if str(r["visual_input"]) == "2": # if str(r["figure_id"]) != "0": continue name = "_".join([r["category"], r["subcategory"], str(r["set_id"]), str(r["question_id"])]) if name in get_eval_pair_dict: c, t = get_eval_pair_dict[name] get_eval_pair_dict[name] = (c + r["correct"], t+1) else: get_eval_pair_dict[name] = (r["correct"], 1) counter += 1 eval_all_pair_stat = {} eval_all_pair_stat["note"] = "all accuracy per question pair" eval_all_pair_stat["total"] = len(get_eval_pair_dict.values()) eval_all_pair_stat["total_q"] = counter eval_all_pair_stat["correct"] = 0 eval_all_pair_stat["wrong"] = 0 for v in get_eval_pair_dict.values(): if v[0] == v[1]: eval_all_pair_stat["correct"] += 1 else: eval_all_pair_stat["wrong"] += 1 return eval_all_pair_stat def get_eval_pair_hard(data): get_eval_pair_dict = dict() counter = 0 for r in data: if str(r["visual_input"]) != "2": # if str(r["figure_id"]) == "0": continue name = "_".join([r["category"], r["subcategory"], str(r["set_id"]), str(r["question_id"])]) if name in get_eval_pair_dict: c, t = get_eval_pair_dict[name] get_eval_pair_dict[name] = (c + r["correct"], t+1) else: get_eval_pair_dict[name] = (r["correct"], 1) counter += 1 eval_all_pair_stat = {} eval_all_pair_stat["note"] = "all accuracy per question pair" eval_all_pair_stat["total"] = len(get_eval_pair_dict.values()) eval_all_pair_stat["total_q"] = counter eval_all_pair_stat["correct"] = 0 eval_all_pair_stat["wrong"] = 0 for v in get_eval_pair_dict.values(): if v[0] == v[1]: eval_all_pair_stat["correct"] += 1 else: eval_all_pair_stat["wrong"] += 1 return eval_all_pair_stat def assign_correctness(data_arr, correctness_entry): for r in data_arr: assert int(r[correctness_entry]) == 0 or int(r[correctness_entry]) == 1 or int(r[correctness_entry]) == 2 if r["category"] == "VS" and int(r["figure_id"]) == 0: # if there is no visual supplement and the model does not know, count it as correct r["correct"] = 1 if int(r[correctness_entry]) == 1 or int(r[correctness_entry]) == 2 else 0 else: r["correct"] = 1 if int(r[correctness_entry]) == 1 else 0 return data_arr def yes_ratio_stats(data): yes_gt = [int(i["gt_answer"]) for i in data] yes_pred = [int(int(i["correct"]) == int(i["gt_answer"])) for i in data] fp_sample = [i for i in data if int(i["correct"]) == 0] fp = [int(i["gt_answer"]) for i in fp_sample] stats = {} stats["diff"] = sum(yes_pred)/len(yes_pred) - sum(yes_gt)/len(yes_gt) stats["fp"] = (len(fp) - sum(fp))/len(fp) return stats