Datasets:
File size: 11,893 Bytes
3d81c4a a2bd85f 3d81c4a 2d13342 0abbaee 2d13342 3d81c4a b05395d 3d81c4a c387054 3d81c4a b05395d 3d4cc61 8236ab8 3d4cc61 3d81c4a b05395d 3d81c4a 3d4cc61 d095de9 3d81c4a 8295f13 8236ab8 8295f13 d095de9 91afe6f d095de9 b1ec1ea c09e8c5 dff3b67 3d4cc61 82a987c 489bc09 3d4cc61 489bc09 3d4cc61 dff3b67 1455d68 dff3b67 ca3d393 dff3b67 3d4cc61 4eb3df1 bf0a8e0 3d4cc61 4f142b4 dff3b67 ca3d393 dff3b67 3d4cc61 4eb3df1 bf0a8e0 3d4cc61 4f142b4 dff3b67 d095de9 3d81c4a dff3b67 0225b93 dff3b67 3d4cc61 0225b93 7536d02 0225b93 91afe6f 0225b93 c09e8c5 0225b93 dff3b67 3d81c4a dff3b67 3d81c4a 97fadc5 3d81c4a 2d13342 3d81c4a 8236ab8 3d81c4a 4f142b4 b405879 0278bca 0140790 3d81c4a 67aa832 2c343af 3d4cc61 a879a37 3d4cc61 3d81c4a b671eb0 3d81c4a 7e539c7 3d81c4a 67aa832 f05adf8 3d81c4a d095de9 3d81c4a d095de9 3d81c4a 3d4cc61 f752342 3d81c4a d2f34be f752342 3d81c4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# coding=utf-8
'''DiaBLA: Dialogue Bilingue datset'''
import json
import datasets
from datasets.features import ClassLabel
logger = datasets.logging.get_logger(__name__)
_CITATION = '''\
@article{bawden_DiaBLa:-A-Corpus-of_2021,
author = {Bawden, Rachel and Bilinski, Eric and Lavergne, Thomas and Rosset, Sophie},
doi = {10.1007/s10579-020-09514-4},
title = {DiaBLa: A Corpus of Bilingual Spontaneous Written Dialogues for Machine Translation},
year = {2021},
journal = {Language Resources and Evaluation},
publisher = {Springer Verlag},
volume = {55},
pages = {635--660},
url = {https://hal.inria.fr/hal-03021633},
pdf = {https://hal.inria.fr/hal-03021633/file/diabla-lre-personal-formatting.pdf},
}
'''
_DESCRIPTION = '''\
English-French parallel dataset for the evaluation of \
Machine Translation (MT) for informal, written bilingual dialogue.
'''
_URLS = {
'test': 'DiaBLa.json',
}
class DiablaConfig(datasets.BuilderConfig):
'''BuilderConfig for DiaBLa.'''
def __init__(self, **kwargs):
"""BuilderConfig for DiaBLa.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(DiablaConfig, self).__init__(**kwargs)
class Diabla(datasets.GeneratorBasedBuilder):
'''DiaBLa: English-French parallel dataset of bilingual dialogue'''
BUILDER_CONFIGS = [
DiablaConfig(
name='plain_text',
version=datasets.Version('1.0.0', ''),
description='Plain text',
),
]
#TODO
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
'id': datasets.Value('string'),
'orig': datasets.Value('string'),
'norm': datasets.Value('string'),
'mt': datasets.Value('string'),
'ref': datasets.Value('string'),
'utterance_meta': datasets.features.Sequence(
{
'eval-judgment': ClassLabel(num_classes=3, names=['poor', 'medium', 'perfect']),
'eval-verbatim': datasets.Value('string'),
'eval-problems': datasets.features.Sequence(
[
ClassLabel(num_classes=6, names=['coherence', 'grammar', 'meaning', 'word choice', 'style', 'other'])
]
),
'lang': ClassLabel(num_classes=2, names=['english', 'french']),
}
),
'dialogue_meta': datasets.features.Sequence(
{
'start_time': datasets.Value('string'),
'end_time' : datasets.Value('string'),
'translation_model': datasets.Value('string'),
'final_evaluation_user1': datasets.features.Sequence(
{
'style': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'coherence': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'grammaticality': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'meaning': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'word_choice': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent'])
}
),
'final_evaluation_user2': datasets.features.Sequence(
{
'style': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'coherence': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'grammaticality': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'meaning': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'word_choice': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent'])
}
),
'scenario': datasets.features.Sequence(
[
[
datasets.Value("string")
]
]
),
'user1': datasets.features.Sequence(
{
'rolenum': datasets.Value('int64'),
'role': datasets.features.Sequence(
[
datasets.Value('string')
]
),
'initiated_dialogue': datasets.Value('bool'),
'turn_number': datasets.Value('int64'),
'lang': ClassLabel(num_classes=2, names=['english', 'french']),
}
),
'user2': datasets.features.Sequence(
{
'rolenum': datasets.Value('int64'),
'role': datasets.features.Sequence(
[
datasets.Value('string')
]
),
'initiated_dialogue': datasets.Value('bool'),
'turn_number': datasets.Value('int64'),
'lang': ClassLabel(num_classes=2, names=['english', 'french']),
}
)
}
),
'dialogue_history': datasets.features.Sequence(
[
datasets.features.Sequence(
{
'id': datasets.Value('string'),
'orig': datasets.Value('string'),
'norm': datasets.Value('string'),
'mt': datasets.Value('string'),
'ref': datasets.Value('string'),
'utterance_meta': datasets.features.Sequence(
{
'eval-judgment': ClassLabel(num_classes=3, names=['poor', 'medium', 'perfect']),
'eval-verbatim': datasets.Value("string"),
'eval-problems': datasets.features.Sequence(
[
ClassLabel(num_classes=6, names=['coherence', 'grammar', 'meaning', 'word choice', 'style', 'other'])
]
),
'lang': ClassLabel(num_classes=2, names=['english', 'french']),
}
),
}),
]
)
}
),
# TODO?
supervised_keys=None,
homepage='https://github.com/rbawden/DiaBLa-dataset',
citation=_CITATION,
task_templates=[
# TODO
],
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files['test']})]
def _generate_examples(self, filepath):
'''This function returns the examples in the raw (text) form.'''
logger.info("generating examples from = %s", filepath)
key = 0
with open(filepath, encoding="utf-8") as f:
diabla = json.load(f)
for dialogue_name in sorted(diabla['dialogues']):
dialogue_history = [] # to store past utterances
dialogue = diabla['dialogues'][dialogue_name]
# Meta-information attached to the dialogue
dialogue_info_keys = ['start_time', 'end_time', 'scenario',
'user1', 'user2', 'translation_model',
'final_evaluation_user1', 'final_evaluation_user2']
for user in 'user1', 'user2':
for info_to_remove in ['eval-stage', 'useragent']:
if info_to_remove in dialogue[user]:
del dialogue[user][info_to_remove]
dialogue_info = {k: dialogue[k] for k in dialogue_info_keys}
if dialogue_info['end_time'] is None:
dialogue_info['end_time'] = ''
for info_to_remove in ['interface','verbatim_quality',
'particular_problems', 'tech',
'would_use', 'timestamp', 'technical_issue']:
for final_eval in 'final_evaluation_user1', 'final_evaluation_user2':
if info_to_remove in dialogue_info[final_eval]:
del dialogue_info[final_eval][info_to_remove]
# Main data: the utterances
for utterance_id in dialogue['utterances']:
utterance = dialogue['utterances'][utterance_id]
# Meta-information attached to the utterance
utterance_info_keys = ['judgment', 'verbatim', 'problems']
utterance_info = {'eval-' + k: utterance['eval'][k] for k in utterance_info_keys}
if utterance_info['eval-judgment'] is None:
utterance_info['eval-judgment'] = ''
utterance_info['lang'] = utterance['language']
# Utterance text
original_text = utterance['original_text']
mt_text = utterance['postprocessed_text']
reference_text = utterance['reference_translation']
normalised_text = utterance['normalised_version']
id_ = dialogue_name + '_' + utterance_id
utterance_instance = {
'orig': original_text,
'norm': normalised_text,
'mt': mt_text,
'id': id_,
'ref': reference_text,
'utterance_meta': utterance_info
}
# add to history (without dialogue info and history)
dialogue_history.append(utterance_instance.copy())
utterance_instance['dialogue_meta'] = dialogue_info
utterance_instance['dialogue_history'] = dialogue_history
yield id_, utterance_instance
|