Datasets:
File size: 5,372 Bytes
3d81c4a c387054 3d81c4a 97fadc5 3d81c4a 2eb89ec 3d81c4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# coding=utf-8
'''DiaBLA: Dialogue Bilingue datset'''
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = '''\
@article{bawden_DiaBLa:-A-Corpus-of_2021,
author = {Bawden, Rachel and Bilinski, Eric and Lavergne, Thomas and Rosset, Sophie},
doi = {10.1007/s10579-020-09514-4},
title = {DiaBLa: A Corpus of Bilingual Spontaneous Written Dialogues for Machine Translation},
year = {2021},
journal = {Language Resources and Evaluation},
publisher = {Springer Verlag},
volume = {55},
pages = {635--660},
url = {https://hal.inria.fr/hal-03021633},
pdf = {https://hal.inria.fr/hal-03021633/file/diabla-lre-personal-formatting.pdf},
}
'''
_DESCRIPTION = '''\
English-French parallel dataset for the evaluation of \
Machine Translation (MT) for informal, written bilingual dialogue.
'''
#_URL = 'https://github.com/rbawden/DiaBLa-dataset'
#_URLS = {
# 'dialogues': _URL + '/DiaBLa-corpus/all-dialogues.json',
# 'users': _URL + '/DiaBLa-corpus/all-users.json'
#}
class DiablaConfig(datasets.BuilderConfig):
'''BuilderConfig for DiaBLa.'''
def __init__(self, **kwargs):
"""BuilderConfig for SQUAD.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(DiablaConfig, self).__init__(**kwargs)
class Diabla(datasets.GeneratorBasedBuilder):
'''DiaBLa: English-French parallel dataset of bilingual dialogue'''
BUILDER_CONFIGS = [
SquadConfig(
name="plain_text",
version=datasets.Version("1.0.0", ""),
description="Plain text",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
),
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage='https://github.com/rbawden/DiaBLa-dataset',
citation=_CITATION,
task_templates=[
# TODO
],
)
#def _split_generators(self, dl_manager):
# downloaded_files = dl_manager.download_and_extract(_URLS)
# return [
# datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
# datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
# ]
def _generate_examples(self, filepath):
'''This function returns the examples in the raw (text) form.'''
logger.info("generating examples from = %s", filepath)
key = 0
with open(filepath, encoding="utf-8") as f:
diabla = json.load(f)
for dialogue_name in sorted(diabla['dialogues']):
dialogue_history = [] # to store past utterances
dialogue = diabla['dialogues'][dialogue_name]
# Meta-information attached to the dialogue
dialogue_info_keys = ['start_time', 'end_time', 'scenario',
'user1', 'user2', 'translation_model',
'final_evaluation_user1', 'final_evaluation_user2']
dialogue_info = {k: dialogue[k] for k in dialogue_info_keys}
# Main data: the utterances
for utterance_id in dialogue['utterances']:
utterance = utterances[utterance_id]
# Meta-information attached to the utterance
utterance_info_keys = ['judgment', 'verbatim', 'problems', 'user']
utterance_info = {'eval-' + k: utterance['eval'][k] for k in utterance_info_keys}
utterance_info['language'] = utterance['language']
# Utterance text
original_text = utterance['original_text']
mt_text = utterance['postprocessed_text']
reference_text = utterance['reference_translation']
normalised_text = utterance['normalised_version']
id_ = dialogue_name + '_' + utterance_id
utterance_instance = {
'orig_text': original_text,
'norm_text': normalised_text,
'mt_text': mt_text,
'id': id_,
'ref_text': reference_text,
'utterance_meta_info': utterance_info,
'context': dialogue_history
}
# add to history (without dialogue info)
dialogue_history.append(utterance_instance.copy())
utterance_instance['dialogue_meta_info'] = utterance_info
yield id_, utterance_instance
|