|
|
|
'''DiaBLA: Dialogue Bilingue datset''' |
|
|
|
import json |
|
import datasets |
|
from datasets.features import ClassLabel |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = '''\ |
|
@article{bawden_DiaBLa:-A-Corpus-of_2021, |
|
author = {Bawden, Rachel and Bilinski, Eric and Lavergne, Thomas and Rosset, Sophie}, |
|
doi = {10.1007/s10579-020-09514-4}, |
|
title = {DiaBLa: A Corpus of Bilingual Spontaneous Written Dialogues for Machine Translation}, |
|
year = {2021}, |
|
journal = {Language Resources and Evaluation}, |
|
publisher = {Springer Verlag}, |
|
volume = {55}, |
|
pages = {635--660}, |
|
url = {https://hal.inria.fr/hal-03021633}, |
|
pdf = {https://hal.inria.fr/hal-03021633/file/diabla-lre-personal-formatting.pdf}, |
|
} |
|
''' |
|
|
|
_DESCRIPTION = '''\ |
|
English-French parallel dataset for the evaluation of \ |
|
Machine Translation (MT) for informal, written bilingual dialogue. |
|
''' |
|
|
|
_URLS = { |
|
'test': 'DiaBLa.json', |
|
} |
|
|
|
|
|
class DiablaConfig(datasets.BuilderConfig): |
|
'''BuilderConfig for DiaBLa.''' |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for DiaBLa. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(DiablaConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Diabla(datasets.GeneratorBasedBuilder): |
|
'''DiaBLa: English-French parallel dataset of bilingual dialogue''' |
|
|
|
BUILDER_CONFIGS = [ |
|
DiablaConfig( |
|
name='plain_text', |
|
version=datasets.Version('1.0.0', ''), |
|
description='Plain text', |
|
), |
|
] |
|
|
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
'id': datasets.Value('string'), |
|
'orig': datasets.Value('string'), |
|
'norm': datasets.Value('string'), |
|
'mt': datasets.Value('string'), |
|
'ref': datasets.Value('string'), |
|
'utterance_meta': datasets.features.Sequence( |
|
{ |
|
'eval-judgment': datasets.Value("string"), |
|
'eval-verbatim': datasets.Value('string'), |
|
'eval-problems': datasets.features.Sequence( |
|
[ |
|
datasets.Value("string"), |
|
] |
|
), |
|
'lang': datasets.Value("string"), |
|
} |
|
), |
|
'dialogue_meta': datasets.features.Sequence( |
|
{ |
|
'start_time': datasets.Value('string'), |
|
'end_time' : datasets.Value('string'), |
|
'translation_model': datasets.Value('string'), |
|
'final_evaluation_user1': datasets.features.Sequence( |
|
{ |
|
'style': datasets.Value("string"), |
|
'coherence': datasets.Value("string"), |
|
'grammaticality': datasets.Value("string"), |
|
'meaning': datasets.Value("string"), |
|
'word_choice': datasets.Value("string"), |
|
} |
|
), |
|
'final_evaluation_user2': datasets.features.Sequence( |
|
{ |
|
'style': datasets.Value("string"), |
|
'coherence': datasets.Value("string"), |
|
'grammaticality': datasets.Value("string"), |
|
'meaning': datasets.Value("string"), |
|
'word_choice': datasets.Value("string"), |
|
} |
|
), |
|
'scenario': datasets.features.Sequence( |
|
[ |
|
[ |
|
datasets.Value("string") |
|
] |
|
] |
|
), |
|
'user1': datasets.features.Sequence( |
|
{ |
|
'rolenum': datasets.Value('int64'), |
|
'role': datasets.features.Sequence( |
|
[ |
|
datasets.Value('string') |
|
] |
|
), |
|
'initiated_dialogue': datasets.Value('bool'), |
|
'turn_number': datasets.Value('int64'), |
|
'lang': datasets.Value("string"), |
|
} |
|
), |
|
'user2': datasets.features.Sequence( |
|
{ |
|
'rolenum': datasets.Value('int64'), |
|
'role': datasets.features.Sequence( |
|
[ |
|
datasets.Value('string') |
|
] |
|
), |
|
'initiated_dialogue': datasets.Value('bool'), |
|
'turn_number': datasets.Value('int64'), |
|
'lang': datasets.Value("string"), |
|
} |
|
) |
|
} |
|
), |
|
'dialogue_history': datasets.features.Sequence( |
|
[ |
|
datasets.features.Sequence( |
|
{ |
|
'id': datasets.Value('string'), |
|
'orig': datasets.Value('string'), |
|
'norm': datasets.Value('string'), |
|
'mt': datasets.Value('string'), |
|
'ref': datasets.Value('string'), |
|
'utterance_meta': datasets.features.Sequence( |
|
{ |
|
'eval-judgment': datasets.Value("string"), |
|
'eval-verbatim': datasets.Value("string"), |
|
'eval-problems': datasets.features.Sequence( |
|
[ |
|
datasets.Value("string"), |
|
] |
|
), |
|
'lang': datasets.Value("string"), |
|
} |
|
), |
|
}), |
|
] |
|
) |
|
} |
|
), |
|
|
|
supervised_keys=None, |
|
homepage='https://github.com/rbawden/DiaBLa-dataset', |
|
citation=_CITATION, |
|
task_templates=[ |
|
|
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
|
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files['test']})] |
|
|
|
def _generate_examples(self, filepath): |
|
'''This function returns the examples in the raw (text) form.''' |
|
logger.info("generating examples from = %s", filepath) |
|
key = 0 |
|
with open(filepath, encoding="utf-8") as f: |
|
diabla = json.load(f) |
|
for dialogue_name in sorted(diabla['dialogues']): |
|
dialogue_history = [] |
|
dialogue = diabla['dialogues'][dialogue_name] |
|
|
|
dialogue_info_keys = ['start_time', 'end_time', 'scenario', |
|
'user1', 'user2', 'translation_model', |
|
'final_evaluation_user1', 'final_evaluation_user2'] |
|
for user in 'user1', 'user2': |
|
for info_to_remove in ['eval-stage', 'useragent']: |
|
if info_to_remove in dialogue[user]: |
|
del dialogue[user][info_to_remove] |
|
dialogue_info = {k: dialogue[k] for k in dialogue_info_keys} |
|
if dialogue_info['end_time'] is None: |
|
dialogue_info['end_time'] = '' |
|
for info_to_remove in ['interface','verbatim_quality', |
|
'particular_problems', 'tech', |
|
'would_use', 'timestamp', 'technical_issue']: |
|
for final_eval in 'final_evaluation_user1', 'final_evaluation_user2': |
|
if info_to_remove in dialogue_info[final_eval]: |
|
del dialogue_info[final_eval][info_to_remove] |
|
|
|
|
|
for utterance_id in dialogue['utterances']: |
|
utterance = dialogue['utterances'][utterance_id] |
|
|
|
utterance_info_keys = ['judgment', 'verbatim', 'problems'] |
|
utterance_info = {'eval-' + k: utterance['eval'][k] for k in utterance_info_keys} |
|
if utterance_info['eval-judgment'] is None: |
|
utterance_info['eval-judgment'] = '' |
|
utterance_info['lang'] = utterance['language'] |
|
|
|
original_text = utterance['original_text'] |
|
mt_text = utterance['postprocessed_text'] |
|
reference_text = utterance['reference_translation'] |
|
normalised_text = utterance['normalised_version'] |
|
id_ = dialogue_name + '_' + utterance_id |
|
utterance_instance = { |
|
'orig': original_text, |
|
'norm': normalised_text, |
|
'mt': mt_text, |
|
'id': id_, |
|
'ref': reference_text, |
|
'utterance_meta': utterance_info |
|
} |
|
|
|
|
|
dialogue_history.append(utterance_instance.copy()) |
|
utterance_instance['dialogue_meta'] = dialogue_info |
|
utterance_instance['dialogue_history'] = dialogue_history |
|
yield id_, utterance_instance |
|
|