DiaBLa / DiaBLa.py
rbawden's picture
Update DiaBLa.py
4eb3df1
raw
history blame
11.8 kB
# coding=utf-8
'''DiaBLA: Dialogue Bilingue datset'''
import json
import datasets
from datasets.features import ClassLabel
logger = datasets.logging.get_logger(__name__)
_CITATION = '''\
@article{bawden_DiaBLa:-A-Corpus-of_2021,
author = {Bawden, Rachel and Bilinski, Eric and Lavergne, Thomas and Rosset, Sophie},
doi = {10.1007/s10579-020-09514-4},
title = {DiaBLa: A Corpus of Bilingual Spontaneous Written Dialogues for Machine Translation},
year = {2021},
journal = {Language Resources and Evaluation},
publisher = {Springer Verlag},
volume = {55},
pages = {635--660},
url = {https://hal.inria.fr/hal-03021633},
pdf = {https://hal.inria.fr/hal-03021633/file/diabla-lre-personal-formatting.pdf},
}
'''
_DESCRIPTION = '''\
English-French parallel dataset for the evaluation of \
Machine Translation (MT) for informal, written bilingual dialogue.
'''
_URLS = {
'test': 'DiaBLa.json',
}
class DiablaConfig(datasets.BuilderConfig):
'''BuilderConfig for DiaBLa.'''
def __init__(self, **kwargs):
"""BuilderConfig for DiaBLa.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(DiablaConfig, self).__init__(**kwargs)
class Diabla(datasets.GeneratorBasedBuilder):
'''DiaBLa: English-French parallel dataset of bilingual dialogue'''
BUILDER_CONFIGS = [
DiablaConfig(
name='plain_text',
version=datasets.Version('1.0.0', ''),
description='Plain text',
),
]
#TODO
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
'id': datasets.Value('string'),
'orig': datasets.Value('string'),
'norm': datasets.Value('string'),
'mt': datasets.Value('string'),
'ref': datasets.Value('string'),
'utterance_meta': datasets.features.Sequence(
{
'eval-judgment': ClassLabel(num_classes=3, names=['poor', 'medium', 'perfect']),
'eval-verbatim': datasets.Value('string'),
'eval-problems': datasets.features.Sequence(
[
ClassLabel(num_classes=5, names=['coherence', 'grammar', 'meaning', 'word choice', 'style'])
]
),
'lang': ClassLabel(num_classes=2, names=['en', 'fr']),
}
),
'dialogue_meta': datasets.features.Sequence(
{
'start_time': datasets.Value('string'),
'end_time' : datasets.Value('string'),
'translation_model': datasets.Value('string'),
'final_evaluation_user1': datasets.features.Sequence(
{
'style': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'coherence': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'grammaticality': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'meaning': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'word_choice': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent'])
}
),
'final_evaluation_user2': datasets.features.Sequence(
{
'style': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'coherence': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'grammaticality': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'meaning': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent']),
'word_choice': ClassLabel(num_classes=4, names=['poor', 'average', 'good', 'excellent'])
}
),
'scenario': datasets.features.Sequence(
[
[
datasets.Value("string")
]
]
),
'user1': datasets.features.Sequence(
{
'rolenum': datasets.Value('int64'),
'role': datasets.features.Sequence(
[
datasets.Value('string')
]
)
'initiated_dialogue': datasets.Value('bool'),
'turn_number': datasets.Value('int64'),
'lang': datasets.Value('string'),
}
),
'user2': datasets.features.Sequence(
{
'rolenum': datasets.Value('int64'),
'role': datasets.features.Sequence(
[
datasets.Value('string')
]
)
'initiated_dialogue': datasets.Value('bool'),
'turn_number': datasets.Value('int64'),
'lang': datasets.Value('string'),
}
)
}
),
'dialogue_history': datasets.features.Sequence(
[
datasets.features.Sequence(
{
'id': datasets.Value('string'),
'orig': datasets.Value('string'),
'norm': datasets.Value('string'),
'mt': datasets.Value('string'),
'ref': datasets.Value('string'),
'utterance_meta': datasets.features.Sequence(
{
'judgment': ClassLabel(num_classes=3, names=['poor', 'medium', 'perfect']),
'verbatim': datasets.Value("string"),
'problems': datasets.features.Sequence(
[
ClassLabel(num_classes=5,
names=['coherence', 'grammar', 'meaning', 'word choice', 'style'])
]
),
'lang': ClassLabel(num_classes=2, names=['en', 'fr']),
}
),
}),
]
)
}
),
# TODO?
supervised_keys=None,
homepage='https://github.com/rbawden/DiaBLa-dataset',
citation=_CITATION,
task_templates=[
# TODO
],
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files['test']})]
def _generate_examples(self, filepath):
'''This function returns the examples in the raw (text) form.'''
logger.info("generating examples from = %s", filepath)
key = 0
with open(filepath, encoding="utf-8") as f:
diabla = json.load(f)
for dialogue_name in sorted(diabla['dialogues']):
dialogue_history = [] # to store past utterances
dialogue = diabla['dialogues'][dialogue_name]
# Meta-information attached to the dialogue
dialogue_info_keys = ['start_time', 'end_time', 'scenario',
'user1', 'user2', 'translation_model',
'final_evaluation_user1', 'final_evaluation_user2']
for info_to_remove in ['eval-stage', 'useragent']:
for user in 'user1', 'user2':
if info_to_remove in dialogue[user]:
del dialogue[user][info_to_remove]
dialogue_info = {k: dialogue[k] for k in dialogue_info_keys}
if dialogue_info['end_time'] is None:
dialogue_info['end_time'] = ''
for info_to_remove in ['interface','verbatim_quality',
'particular_problems', 'tech',
'would_use', 'timestamp', 'technical_issue']:
for final_eval in 'final_evaluation_user1', 'final_evaluation_user2':
if info_to_remove in dialogue_info[final_eval]:
del dialogue_info[final_eval][info_to_remove]
# Main data: the utterances
for utterance_id in dialogue['utterances']:
utterance = dialogue['utterances'][utterance_id]
# Meta-information attached to the utterance
utterance_info_keys = ['judgment', 'verbatim', 'problems']
utterance_info = {'eval-' + k: utterance['eval'][k] for k in utterance_info_keys}
if utterance_info['eval-judgment'] is None:
utterance_info['eval-judgment'] = ''
utterance_info['lang'] = utterance['language']
# Utterance text
original_text = utterance['original_text']
mt_text = utterance['postprocessed_text']
reference_text = utterance['reference_translation']
normalised_text = utterance['normalised_version']
id_ = dialogue_name + '_' + utterance_id
utterance_instance = {
'orig': original_text,
'norm': normalised_text,
'mt': mt_text,
'id': id_,
'ref': reference_text,
'utterance_meta': utterance_info
}
# add to history (without dialogue info and history)
dialogue_history.append(utterance_instance.copy())
utterance_instance['dialogue_meta'] = dialogue_info
utterance_instance['dialogue_history'] = dialogue_history
yield id_, utterance_instance