# coding=utf-8 '''DiaBLA: Dialogue Bilingue datset''' import json import datasets logger = datasets.logging.get_logger(__name__) _CITATION = '''\ @article{bawden_DiaBLa:-A-Corpus-of_2021, author = {Bawden, Rachel and Bilinski, Eric and Lavergne, Thomas and Rosset, Sophie}, doi = {10.1007/s10579-020-09514-4}, title = {DiaBLa: A Corpus of Bilingual Spontaneous Written Dialogues for Machine Translation}, year = {2021}, journal = {Language Resources and Evaluation}, publisher = {Springer Verlag}, volume = {55}, pages = {635--660}, url = {https://hal.inria.fr/hal-03021633}, pdf = {https://hal.inria.fr/hal-03021633/file/diabla-lre-personal-formatting.pdf}, } ''' _DESCRIPTION = '''\ English-French parallel dataset for the evaluation of \ Machine Translation (MT) for informal, written bilingual dialogue. ''' #_URL = 'https://github.com/rbawden/DiaBLa-dataset' #_URLS = { # 'dialogues': _URL + '/DiaBLa-corpus/all-dialogues.json', # 'users': _URL + '/DiaBLa-corpus/all-users.json' #} class DiablaConfig(datasets.BuilderConfig): '''BuilderConfig for DiaBLa.''' def __init__(self, **kwargs): """BuilderConfig for SQUAD. Args: **kwargs: keyword arguments forwarded to super. """ super(DiablaConfig, self).__init__(**kwargs) class Diabla(datasets.GeneratorBasedBuilder): '''DiaBLa: English-French parallel dataset of bilingual dialogue''' BUILDER_CONFIGS = [ SquadConfig( name="plain_text", version=datasets.Version("1.0.0", ""), description="Plain text", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "title": datasets.Value("string"), "context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), } ), # No default supervised_keys (as we have to pass both question # and context as input). supervised_keys=None, homepage='https://github.com/rbawden/DiaBLa-dataset', citation=_CITATION, task_templates=[ # TODO ], ) #def _split_generators(self, dl_manager): # downloaded_files = dl_manager.download_and_extract(_URLS) # return [ # datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), # datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), # ] def _generate_examples(self, filepath): '''This function returns the examples in the raw (text) form.''' logger.info("generating examples from = %s", filepath) key = 0 with open(filepath, encoding="utf-8") as f: diabla = json.load(f) for dialogue_name in sorted(diabla['dialogues']): dialogue_history = [] # to store past utterances dialogue = diabla['dialogues'][dialogue_name] # Meta-information attached to the dialogue dialogue_info_keys = ['start_time', 'end_time', 'scenario', 'user1', 'user2', 'translation_model', 'final_evaluation_user1', 'final_evaluation_user2'] dialogue_info = {k: dialogue[k] for k in dialogue_info_keys} # Main data: the utterances for utterance_id in dialogue['utterances']: utterance = utterances[utterance_id] # Meta-information attached to the utterance utterance_info_keys = ['judgment', 'verbatim', 'problems', 'user'] utterance_info = {'eval-' + k: utterance['eval'][k] for k in utterance_info_keys} utterance_info['language'] = utterance['language'] # Utterance text original_text = utterance['original_text'] mt_text = utterance['postprocessed_text'] reference_text = utterance['reference_translation'] normalised_text = utterance['normalised_version'] id_ = dialogue_name + '_' + utterance_id utterance_instance = { 'orig_text': original_text, 'norm_text': normalised_text, 'mt_text': mt_text, 'id': id_, 'ref_text': reference_text, 'utterance_meta_info': utterance_info, 'context': dialogue_history } # add to history (without dialogue info) dialogue_history.append(utterance_instance.copy()) utterance_instance['dialogue_meta_info'] = utterance_info yield id_, utterance_instance