# coding=utf-8 '''DiscEvalMT: DiscEvalMT: Contrastive test sets for the evaluation of discourse in machine translation (v2)''' import json import datasets logger = datasets.logging.get_logger(__name__) _CITATION = '''\ @inproceedings{bawden-etal-2018-evaluating, title = "Evaluating Discourse Phenomena in Neural Machine Translation", author = "Bawden, Rachel and Sennrich, Rico and Birch, Alexandra and Haddow, Barry", booktitle = {{Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)}}, month = jun, year = "2018", address = "New Orleans, Louisiana", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/N18-1118", doi = "10.18653/v1/N18-1118", pages = "1304--1313" } ''' _DESCRIPTION = '''\ English-French hand-crafted contrastive test set to test anaphora and lexical choice ''' _HOMEPAGE='https://github.com/rbawden/discourse-mt-test-sets/tree/master' _LICENSE = 'CC-BY-SA-4.0' _URLS = { 'test-lexical_choice': 'lexical_choice/eval.jsonl', 'test-anaphora': 'anaphora/eval.jsonl' } class DiscEvalMTConfig(datasets.BuilderConfig): '''BuilderConfig for DiscEvalMT.''' def __init__(self, evaltype: str, **kwargs): """BuilderConfig for DiscEvalMT. Args: **kwargs: keyword arguments forwarded to super. """ self.evaltype = evaltype if evaltype not in ['anaphora', 'lexical_choice']: raise ValueError("Invalid evaltype: %s. You must choose between 'anaphora' and 'lexical_choice' " % evaltype) super(DiscEvalMTConfig, self).__init__(**kwargs) class DiscEvalMT(datasets.GeneratorBasedBuilder): '''DiscEvalMT: English-French contrastive test set for 2 discourse phenomena (anaphora and lexical cohesion)''' BUILDER_CONFIG_CLASS = DiscEvalMTConfig BUILDER_CONFIGS = [ DiscEvalMTConfig( evaltype='anaphora', name='anaphora', version=datasets.Version('2.0.0'), ), DiscEvalMTConfig( evaltype='lexical_choice', name='lexical_choice', version=datasets.Version('2.0.0'), ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ "split": datasets.Value("string"), "ex_num": datasets.Value("int64"), "type": datasets.Value("string"), "context_src": datasets.Value("string"), "current_src": datasets.Value("string"), "context_trg": datasets.Value("string"), "current_trg": datasets.Value("string"), "contrastive_context_trg": datasets.Value("string"), "contrastive_current_trg": datasets.Value("string"), "correct_or_semicorrect": datasets.Value("string")}), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_URLS) return datasets.SplitGenerator(name="test", gen_kwargs={'filepath': downloaded_files['test-' + self.config.evaltype]}), def _generate_examples(self, filepath): logger.info("generating examples from = %s", filepath) key = 0 with open(filepath, encoding="utf-8") as f: for i, line in enumerate(f): example = json.loads(line) print(example.keys()) yield i, example