Datasets:
rcds
/

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
Stern5497 commited on
Commit
c74baf8
1 Parent(s): d637f98

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +130 -11
README.md CHANGED
@@ -1,9 +1,62 @@
1
  ---
2
  license: cc-by-sa-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
- # Swiss Law Area Prediction
5
 
6
- ## Introduction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  The dataset contains cases to be classified into the four main areas of law: Public, Civil, Criminal and Social
8
 
9
  These can be classified further into sub-areas:
@@ -13,19 +66,17 @@ These can be classified further into sub-areas:
13
  'criminal': ['Substantive Criminal', 'Criminal Procedure']
14
  ```
15
 
 
16
 
17
- ## Size
18
- * train: 10'475
19
- * validation: 3194
20
- * test: 8587
21
 
 
22
 
23
- ## Load datasets
24
- ```python
25
- dataset = load_dataset("rcds/swiss_law_area_prediction")
26
- ```
27
 
28
- ## Columns
29
  - decision_id: unique identifier for the decision
30
  - facts: facts section of the decision
31
  - considerations: considerations section of the decision
@@ -37,3 +88,71 @@ dataset = load_dataset("rcds/swiss_law_area_prediction")
37
  - chamber: chamber of the decision
38
  - canton: canton of the decision
39
  - region: region of the decision
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-sa-4.0
3
+ annotations_creators:
4
+ - machine-generated
5
+ language:
6
+ - de
7
+ - fr
8
+ - it
9
+ language_creators:
10
+ - expert-generated
11
+ multilinguality:
12
+ - multilingual
13
+ pretty_name: Legal Criticality Prediction
14
+ size_categories:
15
+ - 100K<n<1M
16
+ source_datasets:
17
+ - original
18
+ tags: []
19
+ task_categories:
20
+ - text-classification
21
  ---
 
22
 
23
+ # Dataset Card for Law Area Prediction
24
+
25
+ ## Table of Contents
26
+ - [Table of Contents](#table-of-contents)
27
+ - [Dataset Description](#dataset-description)
28
+ - [Dataset Summary](#dataset-summary)
29
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
30
+ - [Languages](#languages)
31
+ - [Dataset Structure](#dataset-structure)
32
+ - [Data Instances](#data-instances)
33
+ - [Data Fields](#data-fields)
34
+ - [Data Splits](#data-splits)
35
+ - [Dataset Creation](#dataset-creation)
36
+ - [Curation Rationale](#curation-rationale)
37
+ - [Source Data](#source-data)
38
+ - [Annotations](#annotations)
39
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
40
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
41
+ - [Social Impact of Dataset](#social-impact-of-dataset)
42
+ - [Discussion of Biases](#discussion-of-biases)
43
+ - [Other Known Limitations](#other-known-limitations)
44
+ - [Additional Information](#additional-information)
45
+ - [Dataset Curators](#dataset-curators)
46
+ - [Licensing Information](#licensing-information)
47
+ - [Citation Information](#citation-information)
48
+ - [Contributions](#contributions)
49
+
50
+ ## Dataset Description
51
+
52
+ - **Homepage:**
53
+ - **Repository:**
54
+ - **Paper:**
55
+ - **Leaderboard:**
56
+ - **Point of Contact:**
57
+
58
+ ### Dataset Summary
59
+
60
  The dataset contains cases to be classified into the four main areas of law: Public, Civil, Criminal and Social
61
 
62
  These can be classified further into sub-areas:
 
66
  'criminal': ['Substantive Criminal', 'Criminal Procedure']
67
  ```
68
 
69
+ ### Supported Tasks and Leaderboards
70
 
71
+ Law Area Prediction can be used as text classification task
 
 
 
72
 
73
+ ### Languages
74
 
75
+ Switzerland has four official languages with three languages German, French and Italian being represenated. The decisions are written by the judges and clerks in the language of the proceedings.
76
+ German (91k), French (33k), Italian (15k)
77
+
78
+ ## Dataset Structure
79
 
 
80
  - decision_id: unique identifier for the decision
81
  - facts: facts section of the decision
82
  - considerations: considerations section of the decision
 
88
  - chamber: chamber of the decision
89
  - canton: canton of the decision
90
  - region: region of the decision
91
+
92
+ ### Data Fields
93
+ [More Information Needed]
94
+ ### Data Instances
95
+ [More Information Needed]
96
+ ### Data Fields
97
+ [More Information Needed]
98
+ ### Data Splits
99
+
100
+ The dataset was split date-stratisfied
101
+ - Train: 2002-2015
102
+ - Validation: 2016-2017
103
+ - Test: 2018-2022
104
+
105
+ - 329K & 127K & 156K & 46K
106
+
107
+ | Language | Subset | Number of Documents (Training/Validation/Test) |
108
+ |------------|------------|----------------|
109
+ | German | **de** | 127K |
110
+ | French | **fr** | 156K |
111
+ | Italian | **it** | 46K |
112
+
113
+ ## Dataset Creation
114
+ ### Curation Rationale
115
+ ### Source Data
116
+ #### Initial Data Collection and Normalization
117
+
118
+ The original data are published from the Swiss Federal Supreme Court (https://www.bger.ch) in unprocessed formats (HTML). The documents were downloaded from the Entscheidsuche portal (https://entscheidsuche.ch) in HTML.
119
+
120
+ #### Who are the source language producers?
121
+
122
+ The decisions are written by the judges and clerks in the language of the proceedings.
123
+
124
+ ### Annotations
125
+ #### Annotation process
126
+ #### Who are the annotators?
127
+ ### Personal and Sensitive Information
128
+
129
+ The dataset contains publicly available court decisions from the Swiss Federal Supreme Court. Personal or sensitive information has been anonymized by the court before publication according to the following guidelines: https://www.bger.ch/home/juridiction/anonymisierungsregeln.html.
130
+
131
+ ## Considerations for Using the Data
132
+ ### Social Impact of Dataset
133
+ [More Information Needed]
134
+ ### Discussion of Biases
135
+ [More Information Needed]
136
+ ### Other Known Limitations
137
+ [More Information Needed]
138
+ ## Additional Information
139
+ ### Dataset Curators
140
+ [More Information Needed]
141
+ ### Licensing Information
142
+
143
+ We release the data under CC-BY-4.0 which complies with the court licensing (https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf)
144
+ © Swiss Federal Supreme Court, 2002-2022
145
+
146
+ The copyright for the editorial content of this website and the consolidated texts, which is owned by the Swiss Federal Supreme Court, is licensed under the Creative Commons Attribution 4.0 International licence. This means that you can re-use the content provided you acknowledge the source and indicate any changes you have made.
147
+ Source: https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf
148
+
149
+ ### Citation Information
150
+
151
+ *Visu, Ronja, Joel*
152
+ *Title: Blabliblablu*
153
+ *Name of conference*
154
+ ```
155
+ cit
156
+ ```
157
+
158
+ ### Contributions