Datasets:
File size: 7,438 Bytes
d5ffdd6 47a29ca d5ffdd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# Copyright 2024 RealNetworks
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import (
Any,
Dict,
Iterable,
List,
Tuple,
)
from datasets import (
Audio,
BuilderConfig,
DatasetInfo,
Features,
GeneratorBasedBuilder,
Split,
SplitGenerator,
Value,
)
from datasets.download.download_manager import (
ArchiveIterable,
DownloadManager,
)
import pandas as pd
class ARCTICHSConfig(BuilderConfig):
def __init__(
self,
name,
**kwargs,
):
super(
ARCTICHSConfig,
self,
).__init__(
name=name,
**kwargs,
)
if self.name.endswith("_symmetric"):
self.is_symmetric = True
self.part = "_".join(self.name.split("_")[:-1])
else:
self.is_symmetric = False
self.part = self.name
class ARCTICHSDataset(GeneratorBasedBuilder):
DEFAULT_CONFIG_NAME = "cmu_us_symmetric"
BUILDER_CONFIGS = [
ARCTICHSConfig(name=name)
for name in (
"cmu_non-us",
"cmu_us",
"l2",
"cmu_non-us_symmetric",
"cmu_us_symmetric",
"l2_symmetric",
)
]
def get_audio_archive_path(
self,
) -> Path:
return Path("data") / self.config.part / "splits" / f"test.tar.gz"
def get_metadata_paths(
self,
) -> Dict[str, Path]:
if self.config.part == "cmu_non-us":
return {
speaker: Path("data") / self.config.part / "pairs" / f"{speaker}.csv"
for speaker in (
"ahw",
"aup",
"awb",
"axb",
"fem",
"gka",
"jmk",
"ksp",
"rxr",
"slp",
)
}
elif self.config.part == "cmu_us":
return {
speaker: Path("data") / self.config.part / "pairs" / f"{speaker}.csv"
for speaker in (
"aew",
"bdl",
"clb",
"eey",
"ljm",
"lnh",
"rms",
"slt",
)
}
elif self.config.part == "l2":
return {
speaker: Path("data") / self.config.part / "pairs" / f"{speaker}.csv"
for speaker in (
"aba",
"asi",
"bwc",
"ebvs",
"erms",
"hjk",
"hkk",
"hqtv",
"lxc",
"mbmps",
"ncc",
"njs",
"pnv",
"rrbi",
"ska",
"svbi",
"thv",
"tlv",
"tni",
"txhc",
"ybaa",
"ydck",
"ykwk",
"zhaa",
)
}
def _info(self) -> DatasetInfo:
return DatasetInfo(
description="ARCTIC Human-Synthetic test dataset",
features=Features(
{
"audio": Audio(sampling_rate=16000),
"label": Value("string"),
}
),
supervised_keys=None,
homepage="https://huggingface.co/datasets/realnetworks-kontxt/arctic-hs",
license="CC BY 4.0",
citation="\n".join(
(
"@inproceedings{dropuljic-ssdww2v2ivls",
"author={Dropuljić, Branimir and Šuflaj, Miljenko and Jertec, Andrej and Obadić, Leo}",
"booktitle={2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)}",
"title={Synthetic speech detection with Wav2Vec 2.0 in various language settings}",
"year={2024}",
"volume={}",
"number={}",
"pages={1-5}",
"keywords={Synthetic speech detection;text-to-speech;wav2vec 2.0;spoofing attack;multilingualism}",
"doi={}", # TODO: Add DOI once known
"}",
)
),
)
def _split_generators(
self,
download_manager: DownloadManager,
) -> List[SplitGenerator]:
archive_iterable = self.get_audio_archive_path()
archive_iterable = download_manager.download(archive_iterable)
archive_iterable = download_manager.iter_archive(archive_iterable)
speaker_to_metadata_path = self.get_metadata_paths()
speaker_to_metadata_path = download_manager.download(speaker_to_metadata_path)
return [
SplitGenerator(
name=Split.TEST,
gen_kwargs={
"archive_iterable": archive_iterable,
"speaker_to_metadata_path": speaker_to_metadata_path,
},
),
]
def _generate_examples(
self,
archive_iterable: ArchiveIterable,
speaker_to_metadata_path: Dict[str, Path],
) -> Iterable[Tuple[int, Dict[str, Any]]]:
speaker_to_symmetric = dict()
for speaker, metadata_path in speaker_to_metadata_path.items():
df = pd.read_csv(metadata_path).astype(
{
"name": str,
"has_human_and_synthetic": bool,
}
)
symmetric_names = df[df["has_human_and_synthetic"]]["name"].tolist()
symmetric_names = set(symmetric_names)
if len(symmetric_names) != 0:
speaker_to_symmetric[speaker] = symmetric_names
current_index = 0
for audio_path, audio_file in archive_iterable:
path = Path(audio_path)
name = path.name
# Samples are located in one of 2 folders:
# - 'human'
# - 'synthetic`
#
# Therefore the label is the name of their parent folder
label = path.parent.name
speaker = path.parent.parent.name
if not self.config.is_symmetric or (
speaker in speaker_to_symmetric
and name in speaker_to_symmetric[speaker]
):
audio = {
"path": audio_path,
"bytes": audio_file.read(),
}
yield current_index, {
"audio": audio,
"label": label,
}
current_index += 1
|