File size: 7,438 Bytes
d5ffdd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a29ca
d5ffdd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# Copyright 2024 RealNetworks

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from pathlib import Path
from typing import (
    Any,
    Dict,
    Iterable,
    List,
    Tuple,
)

from datasets import (
    Audio,
    BuilderConfig,
    DatasetInfo,
    Features,
    GeneratorBasedBuilder,
    Split,
    SplitGenerator,
    Value,
)
from datasets.download.download_manager import (
    ArchiveIterable,
    DownloadManager,
)
import pandas as pd


class ARCTICHSConfig(BuilderConfig):
    def __init__(
        self,
        name,
        **kwargs,
    ):
        super(
            ARCTICHSConfig,
            self,
        ).__init__(
            name=name,
            **kwargs,
        )

        if self.name.endswith("_symmetric"):
            self.is_symmetric = True
            self.part = "_".join(self.name.split("_")[:-1])
        else:
            self.is_symmetric = False
            self.part = self.name


class ARCTICHSDataset(GeneratorBasedBuilder):
    DEFAULT_CONFIG_NAME = "cmu_us_symmetric"

    BUILDER_CONFIGS = [
        ARCTICHSConfig(name=name)
        for name in (
            "cmu_non-us",
            "cmu_us",
            "l2",
            "cmu_non-us_symmetric",
            "cmu_us_symmetric",
            "l2_symmetric",
        )
    ]

    def get_audio_archive_path(
        self,
    ) -> Path:
        return Path("data") / self.config.part / "splits" / f"test.tar.gz"

    def get_metadata_paths(
        self,
    ) -> Dict[str, Path]:
        if self.config.part == "cmu_non-us":
            return {
                speaker: Path("data") / self.config.part / "pairs" / f"{speaker}.csv"
                for speaker in (
                    "ahw",
                    "aup",
                    "awb",
                    "axb",
                    "fem",
                    "gka",
                    "jmk",
                    "ksp",
                    "rxr",
                    "slp",
                )
            }
        elif self.config.part == "cmu_us":
            return {
                speaker: Path("data") / self.config.part / "pairs" / f"{speaker}.csv"
                for speaker in (
                    "aew",
                    "bdl",
                    "clb",
                    "eey",
                    "ljm",
                    "lnh",
                    "rms",
                    "slt",
                )
            }
        elif self.config.part == "l2":
            return {
                speaker: Path("data") / self.config.part / "pairs" / f"{speaker}.csv"
                for speaker in (
                    "aba",
                    "asi",
                    "bwc",
                    "ebvs",
                    "erms",
                    "hjk",
                    "hkk",
                    "hqtv",
                    "lxc",
                    "mbmps",
                    "ncc",
                    "njs",
                    "pnv",
                    "rrbi",
                    "ska",
                    "svbi",
                    "thv",
                    "tlv",
                    "tni",
                    "txhc",
                    "ybaa",
                    "ydck",
                    "ykwk",
                    "zhaa",
                )
            }

    def _info(self) -> DatasetInfo:
        return DatasetInfo(
            description="ARCTIC Human-Synthetic test dataset",
            features=Features(
                {
                    "audio": Audio(sampling_rate=16000),
                    "label": Value("string"),
                }
            ),
            supervised_keys=None,
            homepage="https://huggingface.co/datasets/realnetworks-kontxt/arctic-hs",
            license="CC BY 4.0",
            citation="\n".join(
                (
                    "@inproceedings{dropuljic-ssdww2v2ivls",
                    "author={Dropuljić, Branimir and Šuflaj, Miljenko and Jertec, Andrej and Obadić, Leo}",
                    "booktitle={2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)}",
                    "title={Synthetic speech detection with Wav2Vec 2.0 in various language settings}",
                    "year={2024}",
                    "volume={}",
                    "number={}",
                    "pages={1-5}",
                    "keywords={Synthetic speech detection;text-to-speech;wav2vec 2.0;spoofing attack;multilingualism}",
                    "doi={}",  # TODO: Add DOI once known
                    "}",
                )
            ),
        )

    def _split_generators(
        self,
        download_manager: DownloadManager,
    ) -> List[SplitGenerator]:
        archive_iterable = self.get_audio_archive_path()
        archive_iterable = download_manager.download(archive_iterable)
        archive_iterable = download_manager.iter_archive(archive_iterable)

        speaker_to_metadata_path = self.get_metadata_paths()
        speaker_to_metadata_path = download_manager.download(speaker_to_metadata_path)

        return [
            SplitGenerator(
                name=Split.TEST,
                gen_kwargs={
                    "archive_iterable": archive_iterable,
                    "speaker_to_metadata_path": speaker_to_metadata_path,
                },
            ),
        ]

    def _generate_examples(
        self,
        archive_iterable: ArchiveIterable,
        speaker_to_metadata_path: Dict[str, Path],
    ) -> Iterable[Tuple[int, Dict[str, Any]]]:
        speaker_to_symmetric = dict()
        for speaker, metadata_path in speaker_to_metadata_path.items():
            df = pd.read_csv(metadata_path).astype(
                {
                    "name": str,
                    "has_human_and_synthetic": bool,
                }
            )

            symmetric_names = df[df["has_human_and_synthetic"]]["name"].tolist()
            symmetric_names = set(symmetric_names)
            if len(symmetric_names) != 0:
                speaker_to_symmetric[speaker] = symmetric_names

        current_index = 0
        for audio_path, audio_file in archive_iterable:
            path = Path(audio_path)

            name = path.name

            # Samples are located in one of 2 folders:
            # - 'human'
            # - 'synthetic`
            #
            # Therefore the label is the name of their parent folder
            label = path.parent.name

            speaker = path.parent.parent.name

            if not self.config.is_symmetric or (
                speaker in speaker_to_symmetric
                and name in speaker_to_symmetric[speaker]
            ):
                audio = {
                    "path": audio_path,
                    "bytes": audio_file.read(),
                }

                yield current_index, {
                    "audio": audio,
                    "label": label,
                }

            current_index += 1