File size: 4,881 Bytes
45ef5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1291e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426e751
1291e49
 
 
426e751
1291e49
 
 
 
 
 
 
426e751
1291e49
 
 
 
 
 
 
 
 
 
 
426e751
1291e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426e751
 
 
 
 
1291e49
426e751
 
 
 
 
 
1291e49
426e751
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright 2024 RealNetworks

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from pathlib import Path
from typing import (
    Any,
    Dict,
    Iterable,
    List,
    Tuple,
)

from datasets import (
    Audio,
    BuilderConfig,
    DatasetInfo,
    Features,
    GeneratorBasedBuilder,
    Split,
    SplitGenerator,
    Value,
)
from datasets.download.download_manager import (
    ArchiveIterable,
    DownloadManager,
)


class FLEURSHSConfig(BuilderConfig):
    def __init__(
        self,
        name,
        **kwargs,
    ):
        super(
            FLEURSHSConfig,
            self,
        ).__init__(
            name=name,
            **kwargs,
        )


class FLEURSHSDataset(GeneratorBasedBuilder):
    DEFAULT_CONFIG_NAME = "en_us"

    BUILDER_CONFIGS = [
        FLEURSHSConfig(name=name)
        for name in (
            "de_de",
            "en_us",
            "es_419",
            "fr_fr",
            "it_it",
            "nl_nl",
            "pl_pl",
            "sv_se",
        )
    ]

    def get_audio_archive_path(
        self,
        split: str,
    ) -> Path:
        return Path("data") / self.config.name / "splits" / f"{split}.tar.gz"

    def _info(self) -> DatasetInfo:
        return DatasetInfo(
            description="FLEURS Human-Synthetic classification dataset",
            features=Features(
                {
                    "audio": Audio(sampling_rate=16000),
                    "label": Value("string"),
                }
            ),
            supervised_keys=None,
            homepage="https://huggingface.co/datasets/realnetworks-kontxt/fleurs-hs",
            license="CC BY 4.0",
            citation="\n".join(
                (
                    "@inproceedings{dropuljic-ssdww2v2ivls",
                    "author={Dropuljić, Branimir and Šuflaj, Miljenko and Jertec, Andrej and Obadić, Leo}",
                    "booktitle={2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)}",
                    "title={Synthetic speech detection with Wav2Vec 2.0 in various language settings}",
                    "year={2024}",
                    "volume={}",
                    "number={}",
                    "pages={1-5}",
                    "keywords={Synthetic speech detection;text-to-speech;wav2vec 2.0;spoofing attack;multilingualism}",
                    "doi={}",  # TODO: Add DOI once known
                    "}",
                )
            ),
        )

    def _split_generators(
        self,
        download_manager: DownloadManager,
    ) -> List[SplitGenerator]:
        archive_iterables = {
            split: str(self.get_audio_archive_path(split=split))
            for split in (
                "train",
                "dev",
                "test",
            )
        }
        archive_iterables = download_manager.download(archive_iterables)
        archive_iterables = {
            split: download_manager.iter_archive(path)
            for split, path in archive_iterables.items()
        }

        return [
            SplitGenerator(
                name=Split.TRAIN,
                gen_kwargs={
                    "archive_iterable": archive_iterables["train"],
                },
            ),
            SplitGenerator(
                name=Split.VALIDATION,
                gen_kwargs={
                    "archive_iterable": archive_iterables["dev"],
                },
            ),
            SplitGenerator(
                name=Split.TEST,
                gen_kwargs={
                    "archive_iterable": archive_iterables["test"],
                },
            ),
        ]

    def _generate_examples(
        self,
        archive_iterable: ArchiveIterable,
    ) -> Iterable[Tuple[int, Dict[str, Any]]]:
        current_index = 0
        for audio_path, audio_file in archive_iterable:
            audio = {
                "path": audio_path,
                "bytes": audio_file.read(),
            }

            # Samples are located in one of 2 folders:
            # - 'human'
            # - 'synthetic`
            #
            # Therefore the label is the name of their parent folder
            label = Path(audio_path).parent.name

            yield current_index, {
                "audio": audio,
                "label": label,
            }
            current_index += 1