Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,012 Bytes
24ca5f7
 
9edeb25
a0c348d
9edeb25
 
24ca5f7
 
a0c348d
9edeb25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0c348d
9edeb25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2da732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9edeb25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import json
import os
from itertools import combinations
from random import shuffle, seed

import pandas as pd
from datasets import load_dataset


def get_stats(filename):
    with open(filename) as f:
        _data = [json.loads(i) for i in f.read().splitlines()]
    return len(_data), list(set([len(i['choice']) for i in _data])), len(list(set([i['prefix'] for i in _data])))


def lexical_overlap(word_a, word_b):
    for a in word_a.split(" "):
        for b in word_b.split(" "):
            if a.lower() == b.lower():
                return True
    return False


def create_analogy(_data, output_path, negative_per_relation, instance_per_relation=100):
    # if os.path.exists(output_path):
    #     return
    df = _data.to_pandas()
    analogy_data = []
    for _, i in df.iterrows():
        target = [(q.tolist(), c.tolist()) for q, c in combinations(i['positives'], 2)
                  if not any(lexical_overlap(c[0], y) or lexical_overlap(c[1], y) for y in q)]
        if len(target) == 0:
            continue
        if len(target) > instance_per_relation:
            seed(42)
            shuffle(target)
            target = target[:instance_per_relation]
        for m, (q, c) in enumerate(target):
            negative = []
            for r in df['relation_type']:
                if r == i['relation_type']:
                    continue
                target_per_relation = [y.tolist() for y in df[df['relation_type'] == r]['positives'].values[0]]
                shuffle(target_per_relation)
                negative += target_per_relation[:negative_per_relation]
            analogy_data.append({
                "stem": q,
                "choice": [c, c[::-1]] + negative,
                "answer": 0,
                "prefix": i["relation_type"]
            })
    os.makedirs(os.path.dirname(output_path), exist_ok=True)
    with open(output_path, "w") as f:
        f.write("\n".join([json.dumps(i) for i in analogy_data]))

stat = []
###################################################################
# create analogy from `relbert/semeval2012_relational_similarity` #
###################################################################
if not os.path.exists("dataset/semeval2012_relational_similarity/valid.jsonl"):
    data = load_dataset("relbert/semeval2012_relational_similarity", split="validation")
    analogy_data = [{
        "stem": i['positives'][0], "choice": i["negatives"] + [i['positives'][1]], "answer": 2, "prefix": i["relation_type"]
    } for i in data]
    os.makedirs("dataset/semeval2012_relational_similarity", exist_ok=True)
    with open("dataset/semeval2012_relational_similarity/valid.jsonl", "w") as f:
        f.write("\n".join([json.dumps(i) for i in analogy_data]))

v_size, v_num_choice, v_relation_type = get_stats("dataset/semeval2012_relational_similarity/valid.jsonl")
stat.append({
    "name": "`semeval2012_relational_similarity`",
    "Size (valid/test)": f"{v_size}/-",
    "Num of choice (valid/test)": f"{','.join([str(n) for n in v_num_choice])}/-",
    "Num of relation group (valid/test)": f"{v_relation_type}/-",
    "Original Reference": "[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity)"
})


#############################################################
# create analogy from `relbert/t_rex_relational_similarity` #
#############################################################
data = load_dataset("relbert/t_rex_relational_similarity", "filter_unified.min_entity_1_max_predicate_100", split="test")
create_analogy(data, "dataset/t_rex_relational_similarity/test.jsonl", negative_per_relation=2)
data = load_dataset("relbert/t_rex_relational_similarity", "filter_unified.min_entity_4_max_predicate_100", split="validation")
create_analogy(data, "dataset/t_rex_relational_similarity/valid.jsonl", negative_per_relation=1)

t_size, t_num_choice, t_relation_type = get_stats("dataset/t_rex_relational_similarity/test.jsonl")
v_size, v_num_choice, v_relation_type = get_stats("dataset/t_rex_relational_similarity/valid.jsonl")
stat.append({
    "name": "`t_rex_relational_similarity`",
    "Size (valid/test)": f"{v_size}/{t_size}",
    "Num of choice (valid/test)": f"{','.join([str(n) for n in v_num_choice])}/{','.join([str(n) for n in t_num_choice])}",
    "Num of relation group (valid/test)": f"{v_relation_type}/{t_relation_type}",
    "Original Reference": "[relbert/t_rex_relational_similarity](https://huggingface.co/datasets/relbert/t_rex_relational_similarity)"
})

##################################################################
# create analogy from `relbert/conceptnet_relational_similarity` #
##################################################################
data = load_dataset("relbert/conceptnet_relational_similarity", split="test")
create_analogy(data, "dataset/conceptnet_relational_similarity/test.jsonl", negative_per_relation=1)
data = load_dataset("relbert/conceptnet_relational_similarity", split="validation")
create_analogy(data, "dataset/conceptnet_relational_similarity/valid.jsonl", negative_per_relation=1)
t_size, t_num_choice, t_relation_type = get_stats("dataset/conceptnet_relational_similarity/test.jsonl")
v_size, v_num_choice, v_relation_type = get_stats("dataset/conceptnet_relational_similarity/valid.jsonl")
stat.append({
    "name": "`conceptnet_relational_similarity`",
    "Size (valid/test)": f"{v_size}/{t_size}",
    "Num of choice (valid/test)": f"{','.join([str(n) for n in v_num_choice])}/{','.join([str(n) for n in t_num_choice])}",
    "Num of relation group (valid/test)": f"{v_relation_type}/{t_relation_type}",
    "Original Reference": "[relbert/conceptnet_relational_similarity](https://huggingface.co/datasets/relbert/conceptnet_relational_similarity)"
})

##################################################################
# create analogy from `relbert/conceptnet_relational_similarity` #
##################################################################
data = load_dataset("relbert/nell_relational_similarity", split="test")
create_analogy(data, "dataset/nell_relational_similarity/test.jsonl", negative_per_relation=1)
data = load_dataset("relbert/nell_relational_similarity", split="validation")
create_analogy(data, "dataset/nell_relational_similarity/valid.jsonl", negative_per_relation=1)
t_size, t_num_choice, t_relation_type = get_stats("dataset/nell_relational_similarity/test.jsonl")
v_size, v_num_choice, v_relation_type = get_stats("dataset/nell_relational_similarity/valid.jsonl")
stat.append({
    "name": "`nell_relational_similarity`",
    "Size (valid/test)": f"{v_size}/{t_size}",
    "Num of choice (valid/test)": f"{','.join([str(n) for n in v_num_choice])}/{','.join([str(n) for n in t_num_choice])}",
    "Num of relation group (valid/test)": f"{v_relation_type}/{t_relation_type}",
    "Original Reference": "[relbert/nell_relational_similarity](https://huggingface.co/datasets/relbert/nell_relational_similarity)"
})
print(pd.DataFrame(stat).to_markdown(index=False))