|
import pandas as pd |
|
from datasets import load_dataset |
|
|
|
data = load_dataset('relbert/semeval2012_relational_similarity_v3') |
|
stats = [] |
|
for k in data.keys(): |
|
for i in data[k]: |
|
stats.append( |
|
{ |
|
'relation_type': i['relation_type'], |
|
'split': k, |
|
'positives': len(i['positives']), |
|
'negatives': len(i['negatives']), |
|
'level': i['level'] |
|
}) |
|
df = pd.DataFrame(stats) |
|
df_train = df[df['split'] == 'train'] |
|
df_valid = df[df['split'] == 'validation'] |
|
stats = [] |
|
for (relation_type, level), r in df.groupby(['relation_type', 'level']): |
|
_df_t = r[r['split'] == 'train'] |
|
_df_v = r[r['split'] == 'validation'] |
|
stats.append({ |
|
'relation_type': relation_type, |
|
'level': level, |
|
'positive (train)': 0 if len(_df_t) == 0 else _df_t['positives'].values[0], |
|
'negative (train)': 0 if len(_df_t) == 0 else _df_t['negatives'].values[0], |
|
'positive (validation)': 0 if len(_df_v) == 0 else _df_v['positives'].values[0], |
|
'negative (validation)': 0 if len(_df_v) == 0 else _df_v['negatives'].values[0], |
|
}) |
|
|
|
df = pd.DataFrame(stats).sort_values(by=['relation_type']) |
|
df.index = df.pop('relation_type') |
|
|
|
|
|
|
|
|
|
|
|
df.to_csv('stats.csv') |
|
with open('stats.md', 'w') as f: |
|
f.write(df.to_markdown()) |
|
|
|
|
|
|
|
|